1
|
Tan W, Dai F, Ci Q, Deng Z, Liu H, Cheng Y. Characterization of tumor prognosis and sensitive chemotherapy drugs based on cuproptosis-related gene signature in ovarian cancer. BMC Womens Health 2025; 25:37. [PMID: 39849417 PMCID: PMC11761216 DOI: 10.1186/s12905-024-03519-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 12/17/2024] [Indexed: 01/25/2025] Open
Abstract
BACKGROUND Cuproptosis is a novel form of cell death, acting on the tricarboxylic acid cycle in mitochondrial respiration and mediated by protein lipoylation. Other cancer cell death processes, such as necroptosis, pyroptosis, and ferroptosis, have been shown to play crucial roles in the therapy and prognosis of ovarian cancer. However, the role of cuproptosis in ovarian cancer remains unclear. METHODS The expression profiles of 10 cuproptosis-related genes were extracted from GSE140082. Kaplan-Meier survival and Cox proportional hazards regression were used to identify prognostic genes for constructing risk models. Following this, Least Absolute Shrinkage and Selection Operator regression was employed to construct a risk score model. Next, a nomogram was constructed to predict overall survival in ovarian cancer. Ultimately, our analysis compared the two groups across various dimensions, including clinical characteristics, tumor progression, metabolism-related pathways, immune landscape, and drug sensitivity. RESULTS MTF1 and LIAS were identified as protective factors in ovarian cancer, with patients in the higher risk group being significantly associated with poorer survival. Furthermore, integrating the risk score with clinical characteristics in the nomogram demonstrated high specificity and sensitivity in predicting survival. A higher propotion of M2 macrophages, follicular helper T cells, and resting mast cells was observed in the high-risk group. Additionally, the IC50 values of Dasatinib, Bortezomib, Parthenolide, and Imatinib were significantly lower in the high-risk group. CONCLUSIONS The study highlights the prognostic significance of cuproptosis-related genes and provides new insights into developing pharmacological therapeutic strategies targeting cuproptosis for the prevention and treatment of ovarian cancer.
Collapse
Affiliation(s)
- Wei Tan
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Fangfang Dai
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Qinyu Ci
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zhimin Deng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Hua Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Yanxiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
2
|
Anchoori RK, Tseng SH, Tsai HL, Palande V, Rudek MA, Roden RBS. Preclinical studies of RA475, a guanidine-substituted spirocyclic candidate RPN13/ADRM1 inhibitor for treatment of ovarian cancer. PLoS One 2024; 19:e0305710. [PMID: 38990850 PMCID: PMC11239005 DOI: 10.1371/journal.pone.0305710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 06/04/2024] [Indexed: 07/13/2024] Open
Abstract
There is an urgent unmet need for more targeted and effective treatments for advanced epithelial ovarian cancer (EOC). The emergence of drug resistance is a particular challenge, but small molecule covalent inhibitors have promise for difficult targets and appear less prone to resistance. Michael acceptors are covalent inhibitors that form bonds with cysteines or other nucleophilic residues in the target protein. However, many are categorized as pan-assay interference compounds (PAINS) and considered unsuitable as drugs due to their tendency to react non-specifically. Targeting RPN13/ADRM1-mediated substrate recognition and deubiquitination by the proteasome 19S Regulatory Particle (RP) is a promising treatment strategy. Early candidate RPN13 inhibitors (iRPN13) produced a toxic accumulation of very high molecular weight polyubiquitinated substrates, resulting in therapeutic activity in mice bearing liquid or solid tumor models, including ovarian cancer; however, they were not drug-like (PAINS) because of their central piperidone core. Up284 instead has a central spiro-carbon ring. We hypothesized that adding a guanidine moiety to the central ring nitrogen of Up284 would produce a compound, RA475, with improved drug-like properties and therapeutic activity in murine models of ovarian cancer. RA475 produced a rapid accumulation of high molecular polyubiquitinated proteins in cancer cell lines associated with apoptosis, similar to Up284 although it was 3-fold less cytotoxic. RA475 competed binding of biotinylated Up284 to RPN13. RA475 shows improved solubility and distinct pharmacodynamic properties compared to Up284. Specifically, tetraubiquitin firefly luciferase expressed in leg muscle was stabilized in mice more effectively upon IP treatment with RA475 than with Up284. However, pharmacologic analysis showed that RA475 was more rapidly cleared from the circulation, and less orally available than Up284. RA475 shows reduced ability to cross the blood-brain barrier and in vitro inhibition of HERG. Treatment of mice with RA475 profoundly inhibited the intraperitoneal growth of the ID8-luciferase ovarian tumor model. Likewise, RA475 treatment of immunocompetent mice inhibited the growth of spontaneous genetically-engineered peritoneal tumor, as did weekly cisplatin dosing. The combination of RA475 and cisplatin significantly extended survival compared to individual treatments, consistent with synergistic cytotoxicity in vitro. In sum, RA475 is a promising candidate covalent RPN13i with potential utility for treatment of patients with advanced EOC in combination with cisplatin.
Collapse
Affiliation(s)
- Ravi K. Anchoori
- Department of Oncology, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Ssu-Hsueh Tseng
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Hua-Ling Tsai
- Department of Oncology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Vikrant Palande
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Michelle A. Rudek
- Department of Oncology, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Richard B. S. Roden
- Department of Oncology, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
3
|
Shao Z, Wang Y, He Y, Zhang C, Zhao Y, Zhang M, Li Q, Wang J. The high expression of ADRM1 in hepatocellular carcinoma is closely related to tumor immune infiltration and is regulated by miR-891a-5p. Sci Rep 2024; 14:14002. [PMID: 38890391 PMCID: PMC11189539 DOI: 10.1038/s41598-024-64928-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 06/14/2024] [Indexed: 06/20/2024] Open
Abstract
Liver cancer is one of the most common malignant tumors worldwide. Although some progress has been made in the diagnosis and treatment of Hepatocellular carcinoma (HCC), the diagnosis and treatment of HCC is still facing great challenges because of the high mortality rate and poor prognosis of HCC. The purpose of this study was to explore the relationship between adhesion-regulating molecule1 (ADRM1), and liver cancer, and the relationship between prognoses. ADRM1 is highly expressed in tumors and is closely associated with the prognosis of patients with liver cancer. In our previous study, we found that ADRM1 was highly expressed in HCC and was closely related to tumor immune and immune checkpoint levels in HCC. We validated the immune expression of ADRM1 in liver cancer cells using flow cytometry. In hepatocellular carcinoma tissues, miR-891a-5p regulates ADRM1. Upregulation of miR-891a-5p upregulates ADRM1, and downregulation of miR-891a-5p downregulates ADRM1. It is suggested that ADRM1 plays a key role in the occurrence and development of hepatocellular carcinoma. This study is expected to provide new ideas for the research and development of anti-HCC drugs targeting miR-891a-5p/ADRM1. However, further trials are needed to confirm these results and explore the actual results in patients with HCC.
Collapse
Affiliation(s)
- Ziqi Shao
- Department of General Surgery of the Second Affiliated Hospital of Xuzhou Medical University, No.32 of Meijian Road, Xuzhou, 221000, Jiangsu Province, China
| | - Yuan Wang
- Department of General Surgery of the Second Affiliated Hospital of Xuzhou Medical University, No.32 of Meijian Road, Xuzhou, 221000, Jiangsu Province, China
| | - Yuejun He
- Department of General Surgery of the Second Affiliated Hospital of Xuzhou Medical University, No.32 of Meijian Road, Xuzhou, 221000, Jiangsu Province, China
| | - Chen Zhang
- Department of General Surgery of the Second Affiliated Hospital of Xuzhou Medical University, No.32 of Meijian Road, Xuzhou, 221000, Jiangsu Province, China
| | - Yandong Zhao
- Department of General Surgery of the Second Affiliated Hospital of Xuzhou Medical University, No.32 of Meijian Road, Xuzhou, 221000, Jiangsu Province, China
| | - Mimi Zhang
- Department of General Surgery of the Second Affiliated Hospital of Xuzhou Medical University, No.32 of Meijian Road, Xuzhou, 221000, Jiangsu Province, China
| | - Qiang Li
- Department of General Surgery of the Second Affiliated Hospital of Xuzhou Medical University, No.32 of Meijian Road, Xuzhou, 221000, Jiangsu Province, China.
| | - Jian Wang
- Department of General Surgery of the Second Affiliated Hospital of Xuzhou Medical University, No.32 of Meijian Road, Xuzhou, 221000, Jiangsu Province, China.
| |
Collapse
|
4
|
Yu QX, Wang JC, Liu JF, Ye LX, Guo YQ, Zheng HH. Adhesion-regulating molecule 1 (ADRM1) can be a potential biomarker and target for bladder cancer. Sci Rep 2023; 13:14803. [PMID: 37684377 PMCID: PMC10491834 DOI: 10.1038/s41598-023-41992-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 09/04/2023] [Indexed: 09/10/2023] Open
Abstract
Adhesion-regulating molecule 1 (ADRM1) has been implicated in tumor development, yet its specific role in bladder cancer (BC) remains undefined. This study aimed to elucidate the function of ADRM1 in BC through a combination of bioinformatics analysis and immunohistochemical analysis (IHC). Utilizing R version 3.6.3 and relevant packages, we analyzed online database data. Validation was conducted through IHC data, approved by the Institutional Ethics Committee (Approval No. K20220830). In both paired and unpaired comparisons, ADRM1 expression was significantly elevated in BC tissues compared to adjacent tissues, as evidenced by the results of TCGA dataset and IHC data. Patients with high ADRM1 expression had statistically worse overall survival than those with low ADRM1 expression in TCGA dataset, GSE32548 dataset, GSE32894 dataset, and IHC data. Functional analysis unveiled enrichment in immune-related pathways, and a robust positive correlation emerged between ADRM1 expression and pivotal immune checkpoints, including CD274, PDCD1, and PDCD1LG2. In tumor microenvironment, samples with the high ADRM1 expression contained statistical higher proportion of CD8 + T cells and Macrophage infiltration. Meanwhile, these high ADRM1-expressing samples displayed elevated tumor mutation burden scores and stemness indices, implying potential benefits from immunotherapy. Patients with low ADRM1 expression were sensitive to cisplatin, docetaxel, vinblastine, mitomycin C, and methotrexate. According to the findings from bioinformatics and IHC analyses, ADRM1 demonstrates prognostic significance for BC patients and holds predictive potential for both immunotherapy and chemotherapy responses. This underscores its role as a biomarker and therapeutic target in BC.
Collapse
Affiliation(s)
- Qing-Xin Yu
- Department of Pathology, Taizhou Hospital, Wenzhou Medical University, Linhai, 317000, Zhejiang Province, China
- Ningbo Clinical Pathology Diagnosis Center, Ningbo City, Zhejiang Province, China
| | - Jiao-Chen Wang
- Department of Pathology, Taizhou Hospital, Wenzhou Medical University, Linhai, 317000, Zhejiang Province, China
| | - Jun-Fei Liu
- Department of Pathology, Taizhou Hospital, Wenzhou Medical University, Linhai, 317000, Zhejiang Province, China
| | - Lu-Xia Ye
- Department of Pathology, Taizhou Hospital, Wenzhou Medical University, Linhai, 317000, Zhejiang Province, China
| | - Yi-Qing Guo
- Department of Pathology, Taizhou Hospital, Wenzhou Medical University, Linhai, 317000, Zhejiang Province, China
| | - Hai-Hong Zheng
- Department of Pathology, Taizhou Hospital, Wenzhou Medical University, Linhai, 317000, Zhejiang Province, China.
| |
Collapse
|
5
|
Anchoori RK, Anchoori V, Lam B, Tseng SH, Das S, Velasquez FC, Karanam B, Poddatoori D, Patnam R, Rudek MA, Chang YN, Roden RBS. Development and anticancer properties of Up284, a spirocyclic candidate ADRM1/RPN13 inhibitor. PLoS One 2023; 18:e0285221. [PMID: 37315065 PMCID: PMC10266688 DOI: 10.1371/journal.pone.0285221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 04/03/2023] [Indexed: 06/16/2023] Open
Abstract
Bortezomib has been successful for treatment of multiple myeloma, but not against solid tumors, and toxicities of neuropathy, thrombocytopenia and the emergence of resistance have triggered efforts to find alternative proteasome inhibitors. Bis-benzylidine piperidones such as RA190 covalently bind ADRM1/RPN13, a ubiquitin receptor that supports recognition of polyubiquitinated substrates of the proteasome and their subsequent deububiqutination and degradation. While these candidate RPN13 inhibitors (iRPN13) show promising anticancer activity in mouse models of cancer, they have suboptimal drug-like properties. Here we describe Up284, a novel candidate iRPN13 possessing a central spiro-carbon ring in place of RA190's problematic piperidone core. Cell lines derived from diverse cancer types (ovarian, triple negative breast, colon, cervical and prostate cancers, multiple myeloma and glioblastoma) were sensitive to Up284, including several lines resistant to bortezomib or cisplatin. Up284 and cisplatin showed synergistic cytotoxicity in vitro. Up284-induced cytotoxicity was associated with mitochondrial dysfunction, elevated levels of reactive oxygen species, accumulation of very high molecular weight polyubiquitinated protein aggregates, an unfolded protein response and the early onset of apoptosis. Up284 and RA190, but not bortezomib, enhanced antigen presentation in vitro. Up284 cleared from plasma in a few hours and accumulated in major organs by 24 h. A single dose of Up284, when administered to mice intra peritoneally or orally, inhibited proteasome function in both muscle and tumor for >48 h. Up284 was well tolerated by mice in repeat dose studies. Up284 demonstrated therapeutic activity in xenograft, syngeneic and genetically-engineered murine models of ovarian cancer.
Collapse
Affiliation(s)
- Ravi K. Anchoori
- Department of Oncology, Johns Hopkins University, Baltimore, MD, United States of America
- Department of Pathology, Johns Hopkins University, Baltimore, MD, United States of America
- Up Therapeutics LLC, Frederick, MD, United States of America
| | - Vidyasagar Anchoori
- Up Therapeutics LLC, Frederick, MD, United States of America
- SV Chem Biotech, Edmonton, AB, Canada
| | - Brandon Lam
- Department of Pathology, Johns Hopkins University, Baltimore, MD, United States of America
| | - Ssu-Hsueh Tseng
- Department of Pathology, Johns Hopkins University, Baltimore, MD, United States of America
| | - Samarjit Das
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Fernanda Carrizo Velasquez
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Balasubramanyam Karanam
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, Alabama, United States of America
| | | | - Ramesh Patnam
- Prochem Organics, IDA Pashamylaram, Isnapur, Medak, Telangana, India
| | - Michelle A. Rudek
- Department of Oncology, Johns Hopkins University, Baltimore, MD, United States of America
- Department of Medicine, Johns Hopkins University, Baltimore, MD, United States of America
| | - Yung-Nien Chang
- Up Therapeutics LLC, Frederick, MD, United States of America
| | - Richard B. S. Roden
- Department of Oncology, Johns Hopkins University, Baltimore, MD, United States of America
- Department of Pathology, Johns Hopkins University, Baltimore, MD, United States of America
| |
Collapse
|
6
|
Analogues of Anticancer Natural Products: Chiral Aspects. Int J Mol Sci 2023; 24:ijms24065679. [PMID: 36982753 PMCID: PMC10058835 DOI: 10.3390/ijms24065679] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Life is chiral, as its constituents consist, to a large degree, of optically active molecules, be they macromolecules (proteins, nucleic acids) or small biomolecules. Hence, these molecules interact disparately with different enantiomers of chiral compounds, creating a preference for a particular enantiomer. This chiral discrimination is of special importance in medicinal chemistry, since many pharmacologically active compounds are used as racemates—equimolar mixtures of two enantiomers. Each of these enantiomers may express different behaviour in terms of pharmacodynamics, pharmacokinetics, and toxicity. The application of only one enantiomer may improve the bioactivity of a drug, as well as reduce the incidence and intensity of adverse effects. This is of special significance regarding the structure of natural products since the great majority of these compounds contain one or several chiral centres. In the present survey, we discuss the impact of chirality on anticancer chemotherapy and highlight the recent developments in this area. Particular attention has been given to synthetic derivatives of drugs of natural origin, as naturally occurring compounds constitute a major pool of new pharmacological leads. Studies have been selected which report the differential activity of the enantiomers or the activities of a single enantiomer and the racemate.
Collapse
|
7
|
Sparks A, Kelly CJ, Saville MK. Ubiquitin receptors play redundant roles in the proteasomal degradation of the p53 repressor MDM2. FEBS Lett 2022; 596:2746-2767. [PMID: 35735670 PMCID: PMC9796813 DOI: 10.1002/1873-3468.14436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/01/2022] [Accepted: 06/05/2022] [Indexed: 01/07/2023]
Abstract
Much remains to be determined about the participation of ubiquitin receptors in proteasomal degradation and their potential as therapeutic targets. Suppression of the ubiquitin receptor S5A/PSMD4/hRpn10 alone stabilises p53/TP53 but not the key p53 repressor MDM2. Here, we observed S5A and the ubiquitin receptors ADRM1/PSMD16/hRpn13 and RAD23A and B functionally overlap in MDM2 degradation. We provide further evidence that degradation of only a subset of ubiquitinated proteins is sensitive to S5A knockdown because ubiquitin receptor redundancy is commonplace. p53 can be upregulated by S5A modulation while degradation of substrates with redundant receptors is maintained. Our observations and analysis of Cancer Dependency Map (DepMap) screens show S5A depletion/loss substantially reduces cancer cell line viability. This and selective S5A dependency of proteasomal substrates make S5A a target of interest for cancer therapy.
Collapse
Affiliation(s)
| | - Christopher J. Kelly
- School of MedicineUniversity of DundeeUK,Institute of Infection, Immunity and InflammationUniversity of GlasgowUK
| | - Mark K. Saville
- School of MedicineUniversity of DundeeUK,Silver River EditingDundeeUK
| |
Collapse
|