1
|
Mutunga T, Sinanovic S, Harrison CS. Integrating Wireless Remote Sensing and Sensors for Monitoring Pesticide Pollution in Surface and Groundwater. SENSORS (BASEL, SWITZERLAND) 2024; 24:3191. [PMID: 38794044 PMCID: PMC11125874 DOI: 10.3390/s24103191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/07/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024]
Abstract
Water constitutes an indispensable resource crucial for the sustenance of humanity, as it plays an integral role in various sectors such as agriculture, industrial processes, and domestic consumption. Even though water covers 71% of the global land surface, governments have been grappling with the challenge of ensuring the provision of safe water for domestic use. A contributing factor to this situation is the persistent contamination of available water sources rendering them unfit for human consumption. A common contaminant, pesticides are not frequently tested for despite their serious effects on biodiversity. Pesticide determination in water quality assessment is a challenging task because the procedures involved in the extraction and detection are complex. This reduces their popularity in many monitoring campaigns despite their harmful effects. If the existing methods of pesticide analysis are adapted by leveraging new technologies, then information concerning their presence in water ecosystems can be exposed. Furthermore, beyond the advantages conferred by the integration of wireless sensor networks (WSNs), the Internet of Things (IoT), Machine Learning (ML), and big data analytics, a notable outcome is the attainment of a heightened degree of granularity in the information of water ecosystems. This paper discusses methods of pesticide detection in water, emphasizing the possible use of electrochemical sensors, biosensors, and paper-based sensors in wireless sensing. It also explores the application of WSNs in water, the IoT, computing models, ML, and big data analytics, and their potential for integration as technologies useful for pesticide monitoring in water.
Collapse
Affiliation(s)
- Titus Mutunga
- School of Engineering and Built Environment, Glasgow Caledonian University, Glasgow G4 0BA, Scotland, UK; (S.S.); (C.S.H.)
| | | | | |
Collapse
|
2
|
Zhang C, Li Y, Yang N, You M, Hao J, Wang J, Li J, Zhang M. Electrochemical sensors of neonicotinoid insecticides residues in food samples: From structure to analysis. Talanta 2024; 267:125254. [PMID: 37801927 DOI: 10.1016/j.talanta.2023.125254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/13/2023] [Accepted: 09/27/2023] [Indexed: 10/08/2023]
Abstract
Most food samples are detected positive for neonicotinoid insecticides, posing a severe threat to human health. Electrochemical sensors have been proven effective for monitoring the residues to guarantee food safety, but there needs to be more review to conclude the development status comprehensively. On the other hand, various modified materials were emphasized to improve the performance of electrochemical sensors in relevant reviews, rather than the reasons why they were selected. Therefore, this paper reviewed the electrochemical sensors of neonicotinoid insecticides according to bases and strategies. The fundamental basis is the molecular structure of neonicotinoid insecticides, which was disassembled into four functional groups: nitro group, saturated nitrogen ring system, aromatic heterocycle and chlorine substituent. Their relationships were established with strategies including direct sensing, enzyme sensors, aptasensors, immunosensors, and sample pretreatment, respectively. It is hoped to provide a reference for the effective design of electrochemical sensors for small molecule compounds.
Collapse
Affiliation(s)
- Changqiu Zhang
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, China
| | - Yanqing Li
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, China
| | - Ningxia Yang
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, China
| | - Minghui You
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, China
| | - Jinhua Hao
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, China
| | - Jiacheng Wang
- Medical College, Yangzhou University, No. 11 Huaihai Road, Yangzhou, Jiangsu, 225009, China
| | - Juxiu Li
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, China.
| | - Min Zhang
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
3
|
Wang Y, Zhang M, Bu T, Bai F, Zhao S, Cao Y, He K, Wu H, Xi J, Wang L. Immunochromatographic Assay based on Sc-TCPP 3D MOF for the rapid detection of imidacloprid in food samples. Food Chem 2023; 401:134131. [PMID: 36103740 DOI: 10.1016/j.foodchem.2022.134131] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 08/31/2022] [Accepted: 09/03/2022] [Indexed: 12/29/2022]
Abstract
In this work, a highly sensitive immunochromatographic test strip (ITS) based on Scandium-Tetrakis (4-carboxyphenyl) porphyrin (TCPP) metal-organic framework nanocubes (ScTMNs) was developed for ultrasensitive and facile visual determination of imidacloprid (IDP). TCPP as the porphyrin-based planar ligand and Sc3+ as the metal center were applied to form the ScTMNs via coordination chelation. Giving the credit to its excellent optical characteristics, strong affinity with monoclonal antibodies, and favorable biocompatibility, the ScTMNs was selected as a signal tag. Under optimized conditions, the ITS exhibited a great liner relationship in the range of 0.04-3 ng/mL and the detection limit was 0.04 ng/mL for the IDP detection. Additionally, IDP was successfully detected in tomatoes, millet, corn and carrot samples with satisfied recoveries. To the best of our knowledge, this is the first time that ScTMNs have been used in immunochromatography which are expected to have potential applications in detection of other substances.
Collapse
Affiliation(s)
- Ying Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Meng Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Tong Bu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Feier Bai
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Shuang Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yuanyuan Cao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Kunyi He
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Haiyu Wu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jia Xi
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Li Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
4
|
Abdel razik MAA, Al Dhafar ZM, Alqahtani AM, Osman MA, Sweelam ME. Dissipation and Residues of Imidacloprid and Its Efficacy against Whitefly, Bemisia tabaci, in Tomato Plants under Field Conditions. Molecules 2022; 27:7607. [PMID: 36364434 PMCID: PMC9659103 DOI: 10.3390/molecules27217607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/22/2022] [Accepted: 11/02/2022] [Indexed: 09/14/2023] Open
Abstract
The whitefly, Bemisia tabaci, is the main pest for many field and horticultural crops, causing main and significant problems. The efficiency of imidacloprid insecticide as seed treatment and foliar spray at three rates against the whitefly, B. tabaci, was evaluated in tomato plants under field conditions; in addition, insecticide residues were determined in tomato leaves and fruits. The obtained results revealed that the seedlings produced from treated seeds with imidacloprid were the most effective treatment in decreasing whitefly stages. Reduction percentages of whitefly stages in seedlings produced from treated seeds and sprayed with ½, ¾ and 1 field rates of imidacloprid were more than that produced from untreated seeds. Tomato fruit yield in seedlings produced from treated seeds and sprayed with one recommended rate of imidacloprid was more than that of untreated seeds. The residues of imidacloprid in leaves and fruits in seedlings produced from treated seeds and sprayed with field rate were more than that of untreated seeds; additionally, the residues were higher in leaves than in fruits. The residual level in fruits was less than the maximum residual level (MRL = 1 mg kg-1) of the Codex Alimentarius Commission. The half-life (t ½) was 6.99 and 6.48 days for leaves and fruits of seedlings produced from treated seeds and 5.59 and 4.59 days for untreated seeds. Residues in tomato fruits were less than the MRL, therefore, imidacloprid is considered an unconventional insecticide appropriate for B. tabaci control that could be safe for the environment.
Collapse
Affiliation(s)
- Manal A. A. Abdel razik
- Pesticides Department, Faculty of Agriculture, Menoufia University, Shebin El-Kom P.O. Box 32514, Egypt
| | - Zamzam M. Al Dhafar
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
- Basic and Applied Scientific Research Center (BASRC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Aisha M. Alqahtani
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
- Basic and Applied Scientific Research Center (BASRC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Mohamed A. Osman
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
- Basic and Applied Scientific Research Center (BASRC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Mohamed E. Sweelam
- Economic Entomology & Agricultural Zoology Department, Faculty of Agriculture, Menoufia University, Shebin El-Kom P.O. Box 32514, Egypt
| |
Collapse
|
5
|
Mugo SM, Lu W, Robertson SV. Molecularly Imprinted Polymer-Modified Microneedle Sensor for the Detection of Imidacloprid Pesticides in Food Samples. SENSORS (BASEL, SWITZERLAND) 2022; 22:8492. [PMID: 36366189 PMCID: PMC9655949 DOI: 10.3390/s22218492] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/24/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
A portable, molecularly imprinted polymer (MIP)-based microneedle (MN) sensor for the electrochemical detection of imidacloprid (IDP) has been demonstrated. The MN sensor was fabricated via layer-by-layer (LbL) in-tube coating using a carbon nanotube (CNT)/cellulose nanocrystal (CNC) composite, and an IDP-imprinted polyaniline layer co-polymerized with imidazole-functionalized CNCs (PANI-co-CNC-Im) as the biomimetic receptor film. The sensor, termed MIP@CNT/CNC MN, was analyzed using both cyclic voltammetry (CV) and differential pulse voltammetry (DPV) and showed excellent electrochemical performance for the detection of IDP. The CV detection range for IDP was 2.0-99 µM, with limits of detection (LOD) of 0.35 µM, while the DPV detection range was 0.20-92 µM with an LOD of 0.06 µM. Additionally, the MIP@CNT/CNC MN sensor showed excellent reusability and could be used up to nine times with a 1.4 % relative standard deviation (% RSD) between uses. Lastly, the MIP@CNT/CNC MN sensor successfully demonstrated the quantification of IDP in a honey sample.
Collapse
|
6
|
Emerging biotechnology applications in natural product and synthetic pharmaceutical analyses. Acta Pharm Sin B 2022; 12:4075-4097. [DOI: 10.1016/j.apsb.2022.08.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/02/2022] [Accepted: 08/22/2022] [Indexed: 11/15/2022] Open
|
7
|
Peng S, Wang A, Lian Y, Jia J, Ji X, Yang H, Li J, Yang S, Liao J, Zhou S. Technology for Rapid Detection of Cyromazine Residues in Fruits and Vegetables: Molecularly Imprinted Electrochemical Sensors. BIOSENSORS 2022; 12:bios12060414. [PMID: 35735561 PMCID: PMC9221054 DOI: 10.3390/bios12060414] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 11/16/2022]
Abstract
Cyromazine is an insect growth regulator insecticide with high selectivity and is widely used in the production and cultivation of fruits and vegetables. In recent years, incidents of excessive cyromazine residues in food have occurred frequently, and it is urgent to establish an accurate, fast, and convenient method for the detection of cyromazine residues to ensure the safety of edible agricultural products. To achieve rapid detection of cyromazine residues, we prepared a molecularly imprinted electrochemical sensor for the detection of cyromazine residues in agricultural products. Samples of tomato (Lycopersicon esculentum Miller), cowpea (Vigna unguiculata), and water were tested for the recovery rate of cyromazine. The results showed that the concentration of cyromazine showed a good linear relationship with the peak response current of the sensor developed in this study. The lower limit of detection for cyromazine was 0.5 µmol/L, and the sensor also had good reproducibility and interference resistance. This paper can be used as a basis for the study of methods for the detection of cyromazine residues in edible agricultural products.
Collapse
Affiliation(s)
- Sihua Peng
- Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan Province, College of Forestry, Hainan University, Haikou 570228, China; (S.P.); (A.W.); (Y.L.); (H.Y.); (J.L.); (S.Y.)
- College of Plant Protection, Hainan University, Haikou 570228, China
| | - Aqiang Wang
- Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan Province, College of Forestry, Hainan University, Haikou 570228, China; (S.P.); (A.W.); (Y.L.); (H.Y.); (J.L.); (S.Y.)
| | - Yuyang Lian
- Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan Province, College of Forestry, Hainan University, Haikou 570228, China; (S.P.); (A.W.); (Y.L.); (H.Y.); (J.L.); (S.Y.)
| | - Jingjing Jia
- Institute of Plant Protection, Hainan Academy of Agricultural Sciences (Research Center of Quality Safety and Standards for Agricultural Products of Hainan Academy of Agricultural Sciences), Haikou 571199, China; (J.J.); (X.J.)
| | - Xuncong Ji
- Institute of Plant Protection, Hainan Academy of Agricultural Sciences (Research Center of Quality Safety and Standards for Agricultural Products of Hainan Academy of Agricultural Sciences), Haikou 571199, China; (J.J.); (X.J.)
| | - Heming Yang
- Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan Province, College of Forestry, Hainan University, Haikou 570228, China; (S.P.); (A.W.); (Y.L.); (H.Y.); (J.L.); (S.Y.)
| | - Jinlei Li
- Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan Province, College of Forestry, Hainan University, Haikou 570228, China; (S.P.); (A.W.); (Y.L.); (H.Y.); (J.L.); (S.Y.)
| | - Shuyan Yang
- Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan Province, College of Forestry, Hainan University, Haikou 570228, China; (S.P.); (A.W.); (Y.L.); (H.Y.); (J.L.); (S.Y.)
| | - Jianjun Liao
- Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan Province, College of Forestry, Hainan University, Haikou 570228, China; (S.P.); (A.W.); (Y.L.); (H.Y.); (J.L.); (S.Y.)
- Correspondence: (J.L.); (S.Z.)
| | - Shihao Zhou
- Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan Province, College of Forestry, Hainan University, Haikou 570228, China; (S.P.); (A.W.); (Y.L.); (H.Y.); (J.L.); (S.Y.)
- Correspondence: (J.L.); (S.Z.)
| |
Collapse
|
8
|
Ozcelikay G, Karadurmus L, Bilge S, Sınağ A, Ozkan SA. New analytical strategies Amplified with 2D carbon nanomaterials for electrochemical sensing of food pollutants in water and soils sources. CHEMOSPHERE 2022; 296:133974. [PMID: 35181423 DOI: 10.1016/j.chemosphere.2022.133974] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/13/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Pharmaceutical and food pollutants have threatened global health. Pharmacotherapy has left a positive impression in the field of health and life of people and animals. However, the many unresolved problems brought along with residues of pharmaceuticals in the environmental and food. Consumption of the world's freshwater resources, toxic chemicals, air pollution, plastic waste directly affects water and soil resources. Pesticides have a wide role in pollutants. Therefore, the determination of pesticides is significant to eliminate their negative effects on living things. Nowadays, there are many analytical methods available. However, new analysis methods are still being researched due to certain limitations of traditional methods. Electrochemical sensors have drawn attention because of their superior properties, such as short analysis time, affordability, high sensitivity, and selectivity. The development of new analytical strategies for assessing risks from pharmaceutical to food pollutants in water and soil sources is important for the measurement of different pollutants. Moreover, the 2D-carbon nanomaterials used in the development of electrochemical sensors are widely utilized to enlarge the surface area, increase porosity, and make easy immobilization. Graphene (graphene derivations) and carbon nanotubes integrated nanosensors are widely used for the determination of pesticides. 2D-carbon nanomaterials can be tailored according to the purpose of the study. The characterization and synthesis methods of 2D-carbon nanomaterials are widely explained. Furthermore, enzyme nanobiosensors, especially Acetylcholinesterase (AChE), are widely used to determine pesticides. The three main topics are focused on in this review: 2D-carbon nanomaterials, pesticides that threaten life, and the application of 2D-carbon nanomaterials-based electrochemical sensors. The various developed 2D-carbon nanomaterials-based electrochemical sensors were applied in pharmaceutical forms, fruits, tap/lake water, beverages, and soils sources. This work aims to indicate the recently published paper related to pesticide analysis and highlight the importance of 2D-nanomaterials on sensors.
Collapse
Affiliation(s)
- Goksu Ozcelikay
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560, Ankara, Turkey
| | - Leyla Karadurmus
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560, Ankara, Turkey; Adıyaman University, Faculty of Pharmacy, Department of Analytical Chemistry, Adıyaman, Turkey
| | - Selva Bilge
- Ankara University, Faculty of Science, Department of Chemistry, 06100, Ankara, Turkey
| | - Ali Sınağ
- Ankara University, Faculty of Science, Department of Chemistry, 06100, Ankara, Turkey
| | - Sibel A Ozkan
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560, Ankara, Turkey.
| |
Collapse
|