1
|
Mon HY, Alemayehu H, Pampapathi K, Oyibo SO. Exacerbation of Hyperbilirubinemia by Falciparum Malaria in a Patient With Coexisting Gilbert's Syndrome and Glucose-6-Phosphate Dehydrogenase Deficiency. Cureus 2024; 16:e73073. [PMID: 39502751 PMCID: PMC11537425 DOI: 10.7759/cureus.73073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2024] [Indexed: 11/08/2024] Open
Abstract
Gilbert's syndrome and G6PD deficiency are common genetic disorders. They both give rise to unconjugated hyperbilirubinemia through different mechanisms. Falciparum malaria-induced hemolysis is another cause of unconjugated hyperbilirubinemia. We have reported a 51-year-old Asian male who presented with a four-day history of fever and sweating just after a holiday in Kenya. He admitted to not taken malaria prophylaxis while on holiday. Initial investigations revealed that he had falciparum malaria along with co-existing severe G6PD deficiency and Gilbert's syndrome, which we believe, all contributed to an exacerbation of unconjugated hyperbilirubinemia (four-fold rise). He was treated with intravenous fluids, paracetamol and oral artemether/lumefantrine combination therapy. He made a good clinical recovery. After a month, he still exhibited chronic unconjugated hyperbilirubinemia with recurrent elevation in his reticulocyte count but no anaemia, suggesting further episodes of compensated hemolysis. We also discuss the differential diagnosis for unconjugated hyperbilirubinemia in relation to this interesting case.
Collapse
Affiliation(s)
- Hsu Y Mon
- Medicine, Peterborough City Hospital, Peterborough, GBR
| | | | | | - Samson O Oyibo
- Diabetes and Endocrinology, Peterborough City Hospital, Peterborough, GBR
| |
Collapse
|
2
|
Asare KK, Agrah B, Ofori-Acquah FS, Kudzi W, Aryee NA, Amoah LE. Immune responses to P falciparum antibodies in symptomatic malaria patients with variant hemoglobin genotypes in Ghana. BMC Immunol 2024; 25:14. [PMID: 38336647 PMCID: PMC10858493 DOI: 10.1186/s12865-024-00607-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Haemoglobin (Hb) variants such as sickle cell trait (SCT/HbAS) play a role in protecting against clinical malaria, but little is known about the development of immune responses against malaria parasite (Plasmodium falciparum surface protein 230 (Pfs230) and Plasmodium falciparum erythrocyte binding antigen 175 region-3 (PfEBA175-3R)) and vector (on the An. gambiae Salivary Gland Protein-6 peptide 1 (gSG6-P1)) antigens in individuals with variants Hb genotypes. This study assessed antibody (IgG) responses against malaria parasite, Pfs230 and PfEBA175-3R and vector, gSG6-P1 in febrile individuals with variant Hb genotypes. METHODS The study was conducted on symptomatic malaria patients attending various healthcare facilities throughout Ghana. Microscopy and ELISA were used to determine the natural IgG antibody levels of gSG6-P1, PfEBA175-3R & Pfs230, and Capillarys 2 Flex Piercing was used for Hb variants determination. RESULTS Of the 600 symptomatic malaria patients, 50.0% of the participants had malaria parasites by microscopy. The majority 79.0% (398/504) of the participants had Hb AA, followed by HbAS variant at 11.3% (57/504) and HbAC 6.7% (34/504). There were significantly (p < 0.0001) reduced levels of gSG6-P1 IgG in individuals with both HbAC and HbAS genotypes compared to the HbAA genotype. The levels of gSG6-P1 IgG were significantly (p < 0.0001) higher in HbAS compared to HbAC. Similarly, Pfs230 IgG and PfEBA-175-3R IgG distributions observed across the haemoglobin variants were significantly higher in HbAC relative to HbAS. CONCLUSION The study has shown that haemoglobin variants significantly influence the pattern of anti-gSG6-P1, Pfs230, and PfEBA-175 IgG levels in malaria-endemic population. The HbAS genotype is suggested to confer protection against malaria infection. Reduced exposure to infection ultimately reduces the induction of antibodies targeted against P. falciparum antigens.
Collapse
Affiliation(s)
- Kwame Kumi Asare
- Department of Biomedical Science, School of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana
- Biomedical and Clinical Research Centre, College of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Benjamin Agrah
- Department of Medical Biochemistry, College of Health Sciences, University of Ghana Medical School, University of Ghana, Korle- Bu, Accra, Ghana
| | | | - William Kudzi
- West Africa Genetic Medicine Centre, University of Ghana, Accra, Ghana
| | - Nii Ayite Aryee
- Department of Medical Biochemistry, College of Health Sciences, University of Ghana Medical School, University of Ghana, Korle- Bu, Accra, Ghana
| | - Linda Eva Amoah
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana.
| |
Collapse
|
3
|
Amoah LE, Asare KK, Dickson D, Abankwa J, Busayo A, Bredu D, Annan S, Asumah GA, Peprah NY, Asamoah A, Malm KL. Correction: Genotypic glucose-6-phosphate dehydrogenase (G6PD) deficiency protects against Plasmodium falciparum infection in individuals living in Ghana. PLoS One 2023; 18:e0294702. [PMID: 37967114 PMCID: PMC10651023 DOI: 10.1371/journal.pone.0294702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023] Open
Abstract
[This corrects the article DOI: 10.1371/journal.pone.0257562.].
Collapse
|
4
|
Shenkutie TT, Nega D, Hailu A, Kepple D, Witherspoon L, Lo E, Negash MT, Adamu A, Gebremichael SG, Gidey B, Tasew G, Feleke SM, Kebede T. Prevalence of G6PD deficiency and distribution of its genetic variants among malaria-suspected patients visiting Metehara health centre, Eastern Ethiopia. Malar J 2022; 21:260. [PMID: 36076204 PMCID: PMC9461287 DOI: 10.1186/s12936-022-04269-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 08/17/2022] [Indexed: 12/04/2022] Open
Abstract
Background Glucose-6-phosphate dehydrogenase (G6PD) is cytosolic enzyme, which has a vital role for the integrity and functioning of red blood cells. Lower activity of this enzyme leads to the occurrence of acute haemolytic anaemia after exposure to oxidative stressors like primaquine. Primaquine is an important drug for the radical cure of Plasmodium vivax and blocking transmission of Plasmodium falciparum, and thereby enhancing malaria elimination. However, there is a need to identify G6PD deficient individuals and administer the drug with caution due to its haemolytic side effects. The main objective of this study is to determine the prevalence of G6PD deficiency among malaria-suspected individuals. Methods A facility-based cross-sectional study was conducted from September 2020 to September 2021 in Metehara Health Centre, Eastern Ethiopia. A structured questionnaire was used to collect the socio-demographic and clinical information of the study participants. Capillary and venous blood samples were collected based on standard procedures for onsite screening, dried blood spot preparation, and malaria microscopy. The G6PD enzyme activity was measured by careSTART™ G6PD biosensor analyzer. Data was entered and analysed by SPSS. Results A total of 498 study participants were included in the study, of which 62% (309) were males. The overall prevalence of G6PD deficiency based on the biosensor screening was 3.6% (18/498), of which 2.9% and 4.8% were males and females, respectively. Eleven of the G6PD deficient samples had mutations confirmed by G6PD gene sequencing analysis. Mutations were detected in G267 + 119C/T, A376T, and ChrX:154535443. A significant association was found in sex and history of previous malaria infection with G6PD deficiency. Conclusions The study showed that the G6PD deficient phenotype exists in Metehara even if the prevalence is not very high. G267 + 119C/T mutation is the predominant G6PD variant in this area. Therefore, malaria patient treatment using primaquine should be monitored closely for any adverse effects. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-022-04269-5.
Collapse
Affiliation(s)
- Tassew Tefera Shenkutie
- Department of Medical Laboratory Sciences, Debre Berhan University, Debre Berhan, Ethiopia. .,Department of Microbiology, Immunology and Parasitology, Addis Ababa University, Addis Ababa, Ethiopia. .,Bacterial, Parasitic, and Zoonotic Diseases Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia.
| | - Desalegn Nega
- Bacterial, Parasitic, and Zoonotic Diseases Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Asrat Hailu
- Department of Microbiology, Immunology and Parasitology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Daniel Kepple
- Department of Biological Sciences, University of North Carolina, Charlotte, NC, USA
| | - Logan Witherspoon
- Department of Biological Sciences, University of North Carolina, Charlotte, NC, USA
| | - Eugenia Lo
- Department of Biological Sciences, University of North Carolina, Charlotte, NC, USA.,School of Data Science, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Meshesha Tsigie Negash
- Bacterial, Parasitic, and Zoonotic Diseases Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Aderaw Adamu
- Department of Medical Laboratory Sciences, Wollo University, Dessie, Ethiopia
| | | | - Bokretsion Gidey
- Bacterial, Parasitic, and Zoonotic Diseases Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Geremew Tasew
- Bacterial, Parasitic, and Zoonotic Diseases Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Sindew M Feleke
- Bacterial, Parasitic, and Zoonotic Diseases Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Tadesse Kebede
- Department of Microbiology, Immunology and Parasitology, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
5
|
Ley B, Alam MS, Satyagraha AW, Phru CS, Thriemer K, Tadesse D, Shibiru T, Hailu A, Kibria MG, Hossain MS, Rahmat H, Poespoprodjo JR, Khan WA, Simpson JA, Price RN. Variation in Glucose-6-Phosphate Dehydrogenase activity following acute malaria. PLoS Negl Trop Dis 2022; 16:e0010406. [PMID: 35544453 PMCID: PMC9094517 DOI: 10.1371/journal.pntd.0010406] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 04/08/2022] [Indexed: 01/12/2023] Open
Abstract
Primaquine and tafenoquine are the only licensed drugs with activity against Plasmodium vivax hypnozoites but cause haemolysis in patients with glucose-6-phosphate dehydrogenase (G6PD) deficiency. Malaria also causes haemolysis, leading to the replacement of older erythrocytes with low G6PD activity by reticulocytes and young erythrocytes with higher activity. Aim of this study was to assess the impact of acute malaria on G6PD activity. Selected patients with uncomplicated malaria were recruited in Bangladesh (n = 87), Indonesia (n = 75), and Ethiopia (n = 173); G6PD activity was measured at the initial presentation with malaria and a median of 176 days later (range 140 to 998) in the absence of malaria. Among selected participants (deficient participants preferentially enrolled in Bangladesh but not at other sites) G6PD activity fell between malaria and follow up by 79.1% (95%CI: 40.4 to 117.8) in 6 participants classified as deficient (<30% activity), 43.7% (95%CI: 34.2 to 53.1) in 39 individuals with intermediate activity (30% to <70%), and by 4.5% (95%CI: 1.4 to 7.6) in 290 G6PD normal (≥70%) participants. In Bangladesh and Indonesia G6PD activity was significantly higher during acute malaria than when the same individuals were retested during follow up (40.9% (95%CI: 33.4-48.1) and 7.4% (95%CI: 0.2 to 14.6) respectively), whereas in Ethiopia G6PD activity was 3.6% (95%CI: -1.0 to -6.1) lower during acute malaria. The change in G6PD activity was apparent in patients presenting with either P. vivax or P. falciparum infection. Overall, 66.7% (4/6) severely deficient participants and 87.2% (34/39) with intermediate deficiency had normal activities when presenting with malaria. These findings suggest that G6PD activity rises significantly and at clinically relevant levels during acute malaria. Prospective case-control studies are warranted to confirm the degree to which the predicted population attributable risks of drug induced haemolysis is lower than would be predicted from cross sectional surveys.
Collapse
Affiliation(s)
- Benedikt Ley
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
- * E-mail:
| | - Mohammad Shafiul Alam
- Infectious Diseases Division, International Centre for Diarrheal Diseases Research, Bangladesh, Mohakhali, Dhaka, Bangladesh
| | | | - Ching Swe Phru
- Infectious Diseases Division, International Centre for Diarrheal Diseases Research, Bangladesh, Mohakhali, Dhaka, Bangladesh
| | - Kamala Thriemer
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | - Dagimawie Tadesse
- Arba Minch University, College of Medicine & Health Sciences, Arba Minch, Ethiopia
| | - Tamiru Shibiru
- Arba Minch University, College of Medicine & Health Sciences, Arba Minch, Ethiopia
| | - Asrat Hailu
- Arba Minch University, College of Medicine & Health Sciences, Arba Minch, Ethiopia
| | - Mohammad Golam Kibria
- Infectious Diseases Division, International Centre for Diarrheal Diseases Research, Bangladesh, Mohakhali, Dhaka, Bangladesh
| | - Mohammad Sharif Hossain
- Infectious Diseases Division, International Centre for Diarrheal Diseases Research, Bangladesh, Mohakhali, Dhaka, Bangladesh
| | - Hisni Rahmat
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Jeanne R. Poespoprodjo
- Timika Malaria Research Program, Papuan Health and Community Development Foundation, Timika, Papua
- Centre for Child Health-PRO, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Wasif Ali Khan
- Infectious Diseases Division, International Centre for Diarrheal Diseases Research, Bangladesh, Mohakhali, Dhaka, Bangladesh
| | - Julie A. Simpson
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia
| | - Ric N. Price
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|