1
|
Yan Y, Wang J, Xu B, Ni J, Dai T, Wang L, Wang H, Hua Z, Li K, Zhou Y. Exosomal SOX21-AS1 Regulates EREG by Sponging miR-451a and Promotes the Malignancy of Pancreatic Ductal Adenocarcinoma. J Cancer 2024; 15:3321-3337. [PMID: 38817864 PMCID: PMC11134441 DOI: 10.7150/jca.95014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 04/04/2024] [Indexed: 06/01/2024] Open
Abstract
The incidence and mortality of pancreatic ductal adenocarcinoma (PDAC) have increased. Exosomes, as a regulatory mode of intercellular communication, contain lncRNAs. SOX21-AS1 has been studied in other cancers, and its expression is elevated in PDAC, but its role in PDAC remains unclear. First, we analyzed the expression of lncRNAs in PDAC tissues and nontumor tissues through the TCGA database. Next, the results of the RT-qPCR experiment confirmed the prediction that the expression of SOX21-AS1 was elevated in PDAC tissues. In vivo and in vitro cell function assays confirmed that the degree of malignancy of PDAC was proportional to the expression of SOX21-AS1. In addition, through exosome isolation and uptake experiments, we first found that PDAC could secrete exosomal SOX21-AS1 and play an angiogenic role in HUVECs. Subsequently, the relationship between SOX21-AS1, miR-451a and epiregulin (EREG) was verified through database prediction and analysis and RIP assays. Finally, functional recovery assays in vivo and in vitro verified that SOX21-AS1 regulates the expression of EREG through combination with miR-451a and thus promotes the malignancy of PDAC. SOX21-AS1 was upregulated in PDAC. The upregulation of SOX21-AS1 can stimulate the proliferation, migration, invasion, stemness and epithelial-mesenchymal transition (EMT) progression of PDAC cells. Furthermore, PDAC cells secrete exosomal SOX21-AS1, which is absorbed by HUVECs and promotes angiogenesis. Our study first identified that SOX21-AS1 promotes the malignancy of PDAC through the SOX21-AS1/miR-451a/EREG axis, and also that exosomal SOX21-AS1 promotes angiogenesis in PDAC.
Collapse
Affiliation(s)
- Yong Yan
- Department of Hepatobiliary Surgery, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, China
| | - Jinyi Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Bin Xu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jianming Ni
- Department of Radiology, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, China
| | - Tu Dai
- Department of Hepatobiliary Surgery, Jiangnan University Medical Center, JUMC, Wuxi, China
| | - Liying Wang
- Department of Hepatobiliary Surgery, Jiangnan University Medical Center, JUMC, Wuxi, China
| | - Hao Wang
- Department of Hepatobiliary Surgery, Jiangnan University Medical Center, JUMC, Wuxi, China
| | - Zhiyuan Hua
- Department of Hepatobiliary Surgery, Jiangnan University Medical Center, JUMC, Wuxi, China
| | - Kuan Li
- Department of Hepatobiliary Surgery, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, China
| | - Yongping Zhou
- Department of Hepatobiliary Surgery, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, China
| |
Collapse
|
2
|
Wan N, Liu Q, Shi J, Wang S. LncRNA SNHG25 Predicts Poor Prognosis and Promotes Progression in Osteosarcoma via the miR-497-5p/SOX4 Axis. Comb Chem High Throughput Screen 2024; 27:725-744. [PMID: 37278038 PMCID: PMC11092561 DOI: 10.2174/1386207326666230602122618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 03/20/2023] [Accepted: 03/27/2023] [Indexed: 06/07/2023]
Abstract
BACKGROUND Osteosarcoma is a disease that primarily affects adolescents with skeletal immaturity. LncRNAs are abnormally expressed and correlated with osteosarcoma patients' prognosis. We identified aberrant expression of LncRNA SNHG25 (small nucleolar RNA host gene 25) in osteosarcoma and analyzed the molecular mechanisms by which it regulates osteosarcoma progression. METHODS The expression levels of SNHG25 in tumour specimens and cells were measured by RTqPCR. Loss-of-function assays were conducted to investigate the functional role of SNHG25 in vitro and in vivo. Bioinformatic predictions, dual-luciferase reporter assays, and western blotting were performed to explore the possible underlying mechanisms. RESULTS SNHG25 was highly expressed in osteosarcoma cells and tissues. The Kaplan-Meier curve showed that the survival rate of patients with high SNHG25 expression was significantly lower than those with low SNHG25 expression. Functional studies have indicated that inhibition of SNHG25 suppresses cell proliferation, migration, and invasion, while promoting apoptosis. SNHG25 knockdown suppresses osteosarcoma tumour growth in vivo. SNHG25 functions as a sponge for miR-497-5p in osteosarcoma cells. The level of SNHG25 was negatively correlated with that of miR-497-5p. The proliferation, invasion, and migration of osteosarcoma cells were restored by transfection of the miR-497-5p inhibitor in the SNHG25 knockdown group. CONCLUSION SNHG25 was determined to function as an oncogene by promoting osteosarcoma cell proliferation, invasion, and migration through the miR-497-5p/SOX4 axis. Upregulation of SNHG25 expression indicated poor prognosis in patients with osteosarcoma, which showed that SNHG25 may serve as a potential therapeutic target and prognostic biomarker in osteosarcoma.
Collapse
Affiliation(s)
- Ningjun Wan
- Ningxia Medical University, Yinchuan, Ningxia, China
- Department of Orthopedics, People’s Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China
| | - Qiang Liu
- Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jiandang Shi
- Department of Orthopedics, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Siliang Wang
- Ningxia Medical University, Yinchuan, Ningxia, China
| |
Collapse
|
3
|
Akrami S, Tahmasebi A, Moghadam A, Ramezani A, Niazi A. Integration of mRNA and protein expression data for the identification of potential biomarkers associated with pancreatic ductal adenocarcinoma. Comput Biol Med 2023; 157:106529. [PMID: 36921457 DOI: 10.1016/j.compbiomed.2022.106529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 12/21/2022] [Accepted: 12/31/2022] [Indexed: 01/15/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most death-dealing tumors, with a tremendously poor prognosis. Here, we, through interrogation of mRNA and protein data combined with a system biology approach, identified several key genes, functional processes, and pathways that can have critical roles in PDAC. We detected an interesting module related to the clinical traits that enriched in the ribosome, hematopoietic cell lineage, and cell adhesion molecules-related pathways. We also identified several hub genes in important modules that are associated with immune system processes. The results also indicated some lncRNAs, such as FAM30A, and MIR223HG with essential functions that are involved in PDAC. Additionally, five genes, including CD53, ITGAL, WDFY4, TLX1, and LMAN1L were screened by survival analysis and can be considered as candidate biomarkers or therapeutic targets. According to our strategy, the findings of this study may provide a better understanding of the molecular mechanisms and suggest potential prognostic and therapeutic targets for PDAC.
Collapse
Affiliation(s)
- Sahar Akrami
- Institute of Biotechnology, Shiraz University, Shiraz, Iran
| | - Ahmad Tahmasebi
- Institute of Biotechnology, Shiraz University, Shiraz, Iran; Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Moghadam
- Institute of Biotechnology, Shiraz University, Shiraz, Iran
| | - Amin Ramezani
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ali Niazi
- Institute of Biotechnology, Shiraz University, Shiraz, Iran.
| |
Collapse
|
4
|
Comprehensive evaluation of circRNAs in cirrhotic cardiomyopathy before and after liver transplantation. Int Immunopharmacol 2023; 114:109495. [PMID: 36462338 DOI: 10.1016/j.intimp.2022.109495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022]
Abstract
Cirrhotic cardiomyopathy (CCM) is a common complication of liver cirrhosis. Many patients with cirrhotic livers do not die from liver failure but from abnormal hemodynamics secondary to liver cirrhosis. Liver transplantation is one of the most effective treatments for liver diseases. Recent studies have found that liver transplantation can reverse CCM and improve cardiac function; however, its role and remedial mechanism remain unclear. Circular RNAs (circRNAs) have become an important marker for diagnosing diseases. The differential expression of circRNAs is associated with heart diseases. In this study, we used gene sequencing to detect the circRNA expression profile of patients with CCM before and after liver transplantation and predicted the differential circRNA target genes. The results showed that a total of 1495 circRNAs were dysregulated after liver transplantation, 1319 genes were downregulated, and 176 were upregulated (P < 0.05, log2 (fold change) > 2.0). The qRT-PCR results showed that circ-ASAP1, circ-N4BP2L2, circ-EXOC6B were significantly downregulated (P < 0.05), which were consistent with the RNA sequencing data, and circ-ASAP1 had the most significant difference. Bioinformatics analysis suggested that mTOR and MAPK signaling pathways might be involved in the pathogenesis of CCM. By constructing a circRNA-miRNA-mRNA interaction network, hsa-miR-197-3p, hsa-miR-483-3p, and hsa-miR-885-3p, particularly key miRNA (hsa-miR-483-3p), were found to be the major potential genes involved in CCM regulation. In summary, this study suggested that circRNAs play a crucial regulatory role in the occurrence of CCM before and after liver transplantation, and their potential biological function might be the key to diagnosis and treatment.
Collapse
|
5
|
Matuszyk J. MALAT1-miRNAs network regulate thymidylate synthase and affect 5FU-based chemotherapy. Mol Med 2022; 28:89. [PMID: 35922756 PMCID: PMC9351108 DOI: 10.1186/s10020-022-00516-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/22/2022] [Indexed: 12/12/2022] Open
Abstract
Background The active metabolite of 5-Fluorouracil (5FU), used in the treatment of several types of cancer, acts by inhibiting the thymidylate synthase encoded by the TYMS gene, which catalyzes the rate-limiting step in DNA replication. The major failure of 5FU-based cancer therapy is the development of drug resistance. High levels of TYMS-encoded protein in cancerous tissues are predictive of poor response to 5FU treatment. Expression of TYMS is regulated by various mechanisms, including involving non-coding RNAs, both miRNAs and long non-coding RNAs (lncRNAs). Aim To delineate the miRNAs and lncRNAs network regulating the level of TYMS-encoded protein. Main body Several miRNAs targeting TYMS mRNA have been identified in colon cancers, the levels of which can be regulated to varying degrees by lncRNAs. Due to their regulation by the MALAT1 lncRNA, these miRNAs can be divided into three groups: (1) miR-197-3p, miR-203a-3p, miR-375-3p which are downregulated by MALAT1 as confirmed experimentally and the levels of these miRNAs are actually reduced in colon and gastric cancers; (2) miR-140-3p, miR-330-3p that could potentially interact with MALAT1, but not yet supported by experimental results; (3) miR-192-5p, miR-215-5p whose seed sequences do not recognize complementary response elements within MALAT1. Considering the putative MALAT1-miRNAs interaction network, attention is drawn to the potential positive feedback loop causing increased expression of MALAT1 in colon cancer and hepatocellular carcinoma, where YAP1 acts as a transcriptional co-factor which, by binding to the TCF4 transcription factor/ β-catenin complex, may increase the activation of the MALAT1 gene whereas the MALAT1 lncRNA can inhibit miR-375-3p which in turn targets YAP1 mRNA. Conclusion The network of non-coding RNAs may reduce the sensitivity of cancer cells to 5FU treatment by upregulating the level of thymidylate synthase.
Collapse
Affiliation(s)
- Janusz Matuszyk
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 R. Weigla Street, 53-114, Wroclaw, Poland.
| |
Collapse
|
6
|
Li Z, Zhao Y, Cheng J, Xu L, Wen X, Sun Y, Xia M, He Y. Integrated Plasma Metabolomics and Gut Microbiota Analysis: The Intervention Effect of Jiawei Xiaoyao San on Liver Depression and Spleen Deficiency Liver Cancer Rats. Front Pharmacol 2022; 13:906256. [PMID: 35924041 PMCID: PMC9340265 DOI: 10.3389/fphar.2022.906256] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/31/2022] [Indexed: 12/26/2022] Open
Abstract
Primary liver cancer is the third most common malignancy, and hepatocellular carcinoma is its main subtype, with a high recurrence rate and high mortality. Intestinal microflora and metabolic disorders are present in most HCC patients. Traditional Chinese medicine (TCM) plays an important role in the composition of intestinal microorganisms and the transformation of active metabolites. Many scholars are trying to develop related drugs to assist in the treatment of liver cancer. In the preliminary study of the research group, it was found that the Jiawei Xiaoyao San has a certain therapeutic effect on liver cancer, but the specific mechanism is still unclear. Therefore, this study constructed a liver cancer rat model with liver stagnation and spleen deficiency, to explore the regulatory effect of Jiawei Xiaoyao San on plasma metabolites and intestinal microflora and to find the potential mechanism of Jiawei Xiaoyao San in the treatment of liver cancer. Plasma samples and fecal samples were collected from liver cancer rats with liver depression and spleen deficiency for microbiome 16S rDNA sequencing and metabolic ESI-QTRAP-MS/MS analysis. Various bioinformatics methods were used to analyze the dataset individually and in combination. The analysis and identification of plasma metabolomics showed that the intervention effect of Jiawei Xiaoyao San on liver cancer rats with liver depression and spleen deficiency was related to 11 differential metabolites and signal pathways such as primary bile acid biosynthesis, phenylalanine metabolism, pantothenate and COA biosynthesis, metabolic pathways, cholesterol metabolism, and bile secretion. Combined with fecal microbiological analysis, it was found that Jiawei Xiaoyao San could significantly change the composition of intestinal flora in liver cancer rates, increase beneficial bacteria, and reduce the composition of harmful bacteria. This study provides some experimental basis for the traditional Chinese medicine theory and clinical application of Jiawei Xiaoyao San in the adjuvant treatment of liver cancer. The potential mechanism may be to regulate metabolism and intestinal flora to play the role of regulating liver depression, activating blood, and detoxifying, to achieve the purpose of adjuvant treatment of liver cancer.
Collapse
Affiliation(s)
- Zhuoxian Li
- School of Basic Medicine, Guangxi University of Chinese Medicine, Nanning, China
| | - Youxing Zhao
- School of Basic Medicine, Guangxi University of Chinese Medicine, Nanning, China
| | - Jinlai Cheng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lijing Xu
- School of Basic Medicine, Guangxi University of Chinese Medicine, Nanning, China
| | - Xiaoyu Wen
- School of Basic Medicine, Guangxi University of Chinese Medicine, Nanning, China
| | - Yuhao Sun
- School of Basic Medicine, Guangxi University of Chinese Medicine, Nanning, China
| | - Meng Xia
- School of Basic Medicine, Guangxi University of Chinese Medicine, Nanning, China
- *Correspondence: Meng Xia, ; Yining He, ;,
| | - Yining He
- School of Basic Medicine, Guangxi University of Chinese Medicine, Nanning, China
- *Correspondence: Meng Xia, ; Yining He, ;,
| |
Collapse
|