1
|
Abuhijjleh RK, Al Saeedy DY, Ashmawy NS, Gouda AE, Elhady SS, Al-Abd AM. Chemomodulatory Effect of the Marine-Derived Metabolite "Terrein" on the Anticancer Properties of Gemcitabine in Colorectal Cancer Cells. Mar Drugs 2023; 21:md21050271. [PMID: 37233465 DOI: 10.3390/md21050271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/19/2023] [Accepted: 04/22/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND Terrein (Terr) is a bioactive marine secondary metabolite that possesses antiproliferative/cytotoxic properties by interrupting various molecular pathways. Gemcitabine (GCB) is an anticancer drug used to treat several types of tumors such as colorectal cancer; however, it suffers from tumor cell resistance, and therefore, treatment failure. METHODS The potential anticancer properties of terrein, its antiproliferative effects, and its chemomodulatory effects on GCB were assessed against various colorectal cancer cell lines (HCT-116, HT-29, and SW620) under normoxic and hypoxic (pO2 ≤ 1%) conditions. Further analysis via flow cytometry was carried out in addition to quantitative gene expression and 1HNMR metabolomic analysis. RESULTS In normoxia, the effect of the combination treatment (GCB + Terr) was synergistic in HCT-116 and SW620 cell lines. In HT-29, the effect was antagonistic when the cells were treated with (GCB + Terr) under both normoxic and hypoxic conditions. The combination treatment was found to induce apoptosis in HCT-116 and SW620. Metabolomic analysis revealed that the change in oxygen levels significantly affected extracellular amino acid metabolite profiling. CONCLUSIONS Terrein influenced GCB's anti-colorectal cancer properties which are reflected in different aspects such as cytotoxicity, cell cycle progression, apoptosis, autophagy, and intra-tumoral metabolism under normoxic and hypoxic conditions.
Collapse
Affiliation(s)
- Reham Khaled Abuhijjleh
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates
| | - Dalia Yousef Al Saeedy
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates
| | - Naglaa S Ashmawy
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11591, Egypt
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Ahmed E Gouda
- Life Science Unit, Biomedical Research Division, Nawah Scientific, Al-Mokkatam, Cairo 11571, Egypt
| | - Sameh S Elhady
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ahmed Mohamed Al-Abd
- Life Science Unit, Biomedical Research Division, Nawah Scientific, Al-Mokkatam, Cairo 11571, Egypt
- National Research Centre, Department of Pharmacology, Medical and Clinical Research Institute, Cairo 12622, Egypt
| |
Collapse
|
2
|
Albi E, Mandarano M, Cataldi S, Ceccarini MR, Fiorani F, Beccari T, Sidoni A, Codini M. The Effect of Cholesterol in MCF7 Human Breast Cancer Cells. Int J Mol Sci 2023; 24:ijms24065935. [PMID: 36983016 PMCID: PMC10052157 DOI: 10.3390/ijms24065935] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/14/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023] Open
Abstract
In the last decade, cholesterol level has been implicated in several types of cancer, including breast cancer. In the current study, we aimed to investigate the condition of lipid depletion, hypocholesterolemia or hypercholesterolemia reproduced in vitro to analyze the response of different human breast cancer cells. Thus, MCF7 as the luminal A model, MB453 as the HER2 model and MB231 as the triple-negative model were used. No effect on cell growth and viability was detected in MB453 and MB231 cells. In MCF7 cells, hypocholesterolemia (1) reduced cell growth, and Ki67 expression; (2) increased ER/PgR expression; (3) stimulated the 3-Hydroxy-3-Methylglutaryl-CoA reductase and neutral sphingomyelinase and; (4) stimulated the expression of CDKN1A gene coding cyclin-dependent kinase inhibitor 1A protein, GADD45A coding growth arrest and DNA-damage-inducible alpha protein and, PTEN gene coding phosphatase and tensin homolog. All these effects were exacerbated by the lipid-depleted condition and reversed by the hypercholesterolemic condition. The relationship between cholesterol level and sphingomyelin metabolism was demonstrated. In summary, our data suggest that cholesterol levels should be controlled in luminal A breast cancer.
Collapse
Affiliation(s)
- Elisabetta Albi
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy
| | - Martina Mandarano
- Division of Pathological Anatomy and Histology, Department of Experimental Medicine, School of Medicine and Surgery, University of Perugia, 06126 Perugia, Italy
| | - Samuela Cataldi
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy
| | | | - Federico Fiorani
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy
| | - Tommaso Beccari
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy
| | - Angelo Sidoni
- Division of Pathological Anatomy and Histology, Department of Experimental Medicine, School of Medicine and Surgery, University of Perugia, 06126 Perugia, Italy
| | - Michela Codini
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy
| |
Collapse
|
3
|
Corsetto PA, Zava S, Rizzo AM, Colombo I. The Critical Impact of Sphingolipid Metabolism in Breast Cancer Progression and Drug Response. Int J Mol Sci 2023; 24:ijms24032107. [PMID: 36768427 PMCID: PMC9916652 DOI: 10.3390/ijms24032107] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 01/25/2023] Open
Abstract
Breast cancer is the second leading cause of cancer-related death in women in the world, and its management includes a combination of surgery, radiation therapy, chemotherapy, and immunotherapy, whose effectiveness depends largely, but not exclusively, on the molecular subtype (Luminal A, Luminal B, HER2+ and Triple Negative). All breast cancer subtypes are accompanied by peculiar and substantial changes in sphingolipid metabolism. Alterations in sphingolipid metabolite levels, such as ceramides, dihydroceramide, sphingosine, sphingosine-1-phosphate, and sphingomyelin, as well as in their biosynthetic and catabolic enzymatic pathways, have emerged as molecular mechanisms by which breast cancer cells grow, respond to or escape therapeutic interventions and could take on diagnostic and prognostic value. In this review, we summarize the current landscape around two main themes: 1. sphingolipid metabolites, enzymes and transport proteins that have been found dysregulated in human breast cancer cells and/or tissues; 2. sphingolipid-driven mechanisms that allow breast cancer cells to respond to or evade therapies. Having a complete picture of the impact of the sphingolipid metabolism in the development and progression of breast cancer may provide an effective means to improve and personalize treatments and reduce associated drug resistance.
Collapse
|
4
|
Novel Thieno [2,3-b]pyridine Anticancer Compound Lowers Cancer Stem Cell Fraction Inducing Shift of Lipid to Glucose Metabolism. Int J Mol Sci 2022; 23:ijms231911457. [PMID: 36232754 PMCID: PMC9569594 DOI: 10.3390/ijms231911457] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/23/2022] [Accepted: 09/25/2022] [Indexed: 11/19/2022] Open
Abstract
Due to the role of cancer stem cells (CSCs) in tumor resistance and glycosphingolipid (GSL) involvement in tumor pathogenesis, we investigated the effect of a newly synthesized compound (3-amino-N-(3-chloro-2-methylphenyl)-5-oxo-5,6,7,8-tetrahydrothieno[2,3-b]quinoline-2-carboxamide 1 on the percentage of CSCs and the expression of six GSLs on CSCs and non-CSCs on breast cancer cell lines (MDA-MB-231 and MCF-7). We also investigated the effect of 1 on the metabolic profile of these cell lines. The MTT assay was used for cytotoxicity determination. Apoptosis and expression of GSLs were assessed by flow cytometry. A GC–MS-coupled system was used for the separation and identification of metabolites. Compound 1 was cytotoxic for both cell lines, and the majority of cells died by treatment-induced apoptosis. The percentage of CSCs was significantly lower in the MDA-MB-231 cell line. Treatment with 1 caused a decrease of CSC IV6Neu5Ac-nLc4Cer+ MDA-MB-231 cells. In the MCF-7 cell line, the percentage of GalNAc-GM1b+ CSCs was increased, while the expression of Gg3Cer was decreased in both CSC and non-CSC. Twenty-one metabolites were identified by metabolic profiling. The major impact of the treatment was in glycolysis/gluconeogenesis, pyruvate and inositol metabolism. Compound 1 exhibited higher potency in MBA-MB-231 cells, and it deserves further examination.
Collapse
|
5
|
Pal P, Atilla-Gokcumen GE, Frasor J. Emerging Roles of Ceramides in Breast Cancer Biology and Therapy. Int J Mol Sci 2022; 23:ijms231911178. [PMID: 36232480 PMCID: PMC9569866 DOI: 10.3390/ijms231911178] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
One of the classic hallmarks of cancer is the imbalance between elevated cell proliferation and reduced cell death. Ceramide, a bioactive sphingolipid that can regulate this balance, has long been implicated in cancer. While the effects of ceramide on cell death and therapeutic efficacy are well established, emerging evidence indicates that ceramide turnover to downstream sphingolipids, such as sphingomyelin, hexosylceramides, sphingosine-1-phosphate, and ceramide-1-phosphate, is equally important in driving pro-tumorigenic phenotypes, such as proliferation, survival, migration, stemness, and therapy resistance. The complex and dynamic sphingolipid network has been extensively studied in several cancers, including breast cancer, to find key sphingolipidomic alterations that can be exploited to develop new therapeutic strategies to improve patient outcomes. Here, we review how the current literature shapes our understanding of how ceramide synthesis and turnover are altered in breast cancer and how these changes offer potential strategies to improve breast cancer therapy.
Collapse
Affiliation(s)
- Purab Pal
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - G. Ekin Atilla-Gokcumen
- Department of Chemistry, University at Buffalo, The State University of New York (SUNY), Buffalo, NY 14260, USA
- Correspondence: (G.E.A.-G.); (J.F.)
| | - Jonna Frasor
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
- Correspondence: (G.E.A.-G.); (J.F.)
| |
Collapse
|
6
|
Ceramide Metabolism Regulated by Sphingomyelin Synthase 2 Is Associated with Acquisition of Chemoresistance via Exosomes in Human Leukemia Cells. Int J Mol Sci 2022; 23:ijms231810648. [PMID: 36142562 PMCID: PMC9505618 DOI: 10.3390/ijms231810648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/07/2022] [Accepted: 09/10/2022] [Indexed: 11/17/2022] Open
Abstract
Ceramide levels controlled by the sphingomyelin (SM) cycle have essential roles in cancer cell fate through the regulation of cell proliferation, death, metastasis, and drug resistance. Recent studies suggest that exosomes confer cancer malignancy. However, the relationship between ceramide metabolism and exosome-mediated cancer malignancy is unclear. In this study, we elucidated the role of ceramide metabolism via the SM cycle in exosomes and drug resistance in human leukemia HL-60 and adriamycin-resistant HL-60/ADR cells. HL-60/ADR cells showed significantly increased exosome production and release compared with parental chemosensitive HL-60 cells. In HL-60/ADR cells, increased SM synthase (SMS) activity reduced ceramide levels, although released exosomes exhibited a high ceramide ratio in both HL-60- and HL-60/ADR-derived exosomes. Overexpression of SMS2 but not SMS1 suppressed intracellular ceramide levels and accelerated exosome production and release in HL-60 cells. Notably, HL-60/ADR exosomes conferred cell proliferation and doxorubicin resistance properties to HL-60 cells. Finally, microRNA analysis in HL-60 and HL-60/ADR cells and exosomes showed that miR-484 elevation in HL-60/ADR cells and exosomes was associated with exosome-mediated cell proliferation. This suggests that intracellular ceramide metabolism by SMS2 regulates exosome production and release, leading to acquisition of drug resistance and enhanced cell proliferation in leukemia cells.
Collapse
|
7
|
AlHumaidi RB, Fayed B, Shakartalla SB, Jagal J, Jayakumar MN, Al Shareef ZM, Sharif SI, Noreddin A, Semreen MH, Omar HM, Haider M, Soliman SS. Optimum inhibition of MCF-7 breast cancer cells by efficient targeting of the macropinocytosis using optimized paclitaxel-loaded nanoparticles. Life Sci 2022; 305:120778. [DOI: 10.1016/j.lfs.2022.120778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/23/2022] [Accepted: 06/29/2022] [Indexed: 12/23/2022]
|