1
|
Wang HHS, Thaker H, Bigger-Allen A, Nagy JA, Rutkove SB. Novel phenotype characterization utilizing electrical impedance myography signatures in murine spinal cord injury neurogenic bladder models. Sci Rep 2023; 13:19520. [PMID: 37945675 PMCID: PMC10636012 DOI: 10.1038/s41598-023-46740-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 11/04/2023] [Indexed: 11/12/2023] Open
Abstract
Neurogenic bladder (NB) affects people of all ages. Electric impedance myography (EIM) assesses localized muscle abnormalities. Here, we sought to investigate whether unique detrusor EIM signatures are present in NB due to spinal cord injury (SCI). Twenty-eight, 8-10 weeks old, C57BL/6J female mice were studied. Twenty underwent spinal cord transection; 8 served as controls. Cohorts were euthanized at 4 and 6 weeks after spinal cord transection. Each bladder was measured in-situ with EIM with applied frequencies of 1 kHz to 10 MHz, and then processed for molecular and histologic study. SCI mice had greater bladder-to-body weight ratio (p < 0.0001), greater collagen deposition (p = 0.009), and greater smooth-muscle-myosin-heavy-chain isoform A/B ratio (p < 0.0001). Compared with the control group, the SCI group was associated with lower phase, reactance, and resistance values (p < 0.01). Significant correlations (p < 0.001) between bladder-to-body weight ratios and EIM measurements were observed across the entire frequency spectrum. A severely hypertrophied phenotype was characterized by even greater bladder-to-body weight ratios and more depressed EIM values. Our study demonstrated distinct EIM alterations in the detrusor muscle of mice with NB due to SCI. With further refinement, EIM may offer a potential point-of-care tool for the assessment of NB and its response to treatment.
Collapse
Affiliation(s)
- Hsin-Hsiao Scott Wang
- Department of Urology, Boston Children's Hospital, 300 Longwood Ave, HU390, Boston, MA, USA.
- Harvard Medical School, Boston, MA, 02215, USA.
| | - Hatim Thaker
- Department of Urology, Boston Children's Hospital, 300 Longwood Ave, HU390, Boston, MA, USA
- Harvard Medical School, Boston, MA, 02215, USA
| | - Alex Bigger-Allen
- Department of Urology, Boston Children's Hospital, 300 Longwood Ave, HU390, Boston, MA, USA
| | - Janice A Nagy
- Harvard Medical School, Boston, MA, 02215, USA
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Seward B Rutkove
- Harvard Medical School, Boston, MA, 02215, USA
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| |
Collapse
|
2
|
Rutkove SB, Chen ZZ, Pandeya S, Callegari S, Mourey T, Nagy JA, Nath AK. Surface Electrical Impedance Myography Detects Skeletal Muscle Atrophy in Aged Wildtype Zebrafish and Aged gpr27 Knockout Zebrafish. Biomedicines 2023; 11:1938. [PMID: 37509577 PMCID: PMC10377526 DOI: 10.3390/biomedicines11071938] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Throughout a vertebrate organism's lifespan, skeletal muscle mass and function progressively decline. This age-related condition is termed sarcopenia. In humans, sarcopenia is associated with risk of falling, cardiovascular disease, and all-cause mortality. As the world population ages, projected to reach 2 billion older adults worldwide in 2050, the economic burden on the healthcare system is also projected to increase considerably. Currently, there are no pharmacological treatments for sarcopenia, and given the long-term nature of aging studies, high-throughput chemical screens are impractical in mammalian models. Zebrafish is a promising, up-and-coming vertebrate model in the field of sarcopenia that could fill this gap. Here, we developed a surface electrical impedance myography (sEIM) platform to assess skeletal muscle health, quantitatively and noninvasively, in adult zebrafish (young, aged, and genetic mutant animals). In aged zebrafish (~85% lifespan) as compared to young zebrafish (~20% lifespan), sEIM parameters (2 kHz phase angle, 2 kHz reactance, and 2 kHz resistance) robustly detected muscle atrophy (p < 0.000001, q = 0.000002; p = 0.000004, q = 0.000006; p = 0.000867, q = 0.000683, respectively). Moreover, these same measurements exhibited strong correlations with an established morphometric parameter of muscle atrophy (myofiber cross-sectional area), as determined by histological-based morphometric analysis (r = 0.831, p = 2 × 10-12; r = 0.6959, p = 2 × 10-8; and r = 0.7220; p = 4 × 10-9, respectively). Finally, the genetic deletion of gpr27, an orphan G-protein coupled receptor (GPCR), exacerbated the atrophy of skeletal muscle in aged animals, as evidenced by both sEIM and histology. In conclusion, the data here show that surface EIM techniques can effectively discriminate between healthy young and sarcopenic aged muscle as well as the advanced atrophied muscle in the gpr27 KO animals. Moreover, these studies show how EIM values correlate with cell size across the animals, making it potentially possible to utilize sEIM as a "virtual biopsy" in zebrafish to noninvasively assess myofiber atrophy, a valuable measure for muscle and gerontology research.
Collapse
Affiliation(s)
- Seward B. Rutkove
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; (S.B.R.); (J.A.N.)
| | - Zsu-Zsu Chen
- Department of Endocrinology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Department of Cardiology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Sarbesh Pandeya
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; (S.B.R.); (J.A.N.)
| | - Santiago Callegari
- Department of Cardiology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Tyler Mourey
- Zebrafish Core Facility, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Janice A. Nagy
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; (S.B.R.); (J.A.N.)
| | - Anjali K. Nath
- Department of Cardiology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Broad Institute, Cambridge, MA 02142, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
3
|
Wang H, Dai J, Wang C, Gao Z, Liu Y, Dai M, Zhao Z, Yang L, Tan G. Assessment of Low Back Pain in Helicopter Pilots Using Electrical Bio-Impedance Technique: A Feasibility Study. Front Neurosci 2022; 16:883348. [PMID: 35911977 PMCID: PMC9330605 DOI: 10.3389/fnins.2022.883348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022] Open
Abstract
Low back pain (LBP) is known to pose a serious threat to helicopter pilots. This study aimed to explore the potential of electrical bio-impedance (EBI) technique with the advantages of no radiation, non-invasiveness and low cost, which is intended to be used as a daily detection tool to assess LBP in primary aviation medical units. The LBP scales (severity) in 72 helicopter pilots were assessed using a pain questionnaire, while the bilateral impedance measurements of the lumbar muscle were carried out with a high precision EBI measurement system. Results showed that the modulus of lumbar muscle impedance increased with LBP scale whereas the phase angle decreased. For different LBP scales, significant differences were found in the modulus of lumbar muscle impedance sum on both sides (Zsum), as well as in the modulus and phase angle of lumbar muscle impedance difference between both sides (Zdiff and ϕdiff), respectively (P < 0.05). Moreover, Spearman’s correlation analysis manifested a strong correlation between Zsum and LBP scale (R = 0.692, P < 0.01), an excellent correlation between Zdiff and LBP scale (R = 0.86, P < 0.01), and a desirable correlation between ϕdiff and LBP scale (R = −0.858, P < 0.01). In addition, receiver operator characteristic analysis showed that for LBP prediction, the area under receiver operator characteristic curve of Zsum, Zdiff, and ϕdiff were 0.931, 0.992, and 0.965, respectively. These findings demonstrated that EBI could sensitively and accurately detect the state of lumbar muscle associated with LBP, which might be the potential tool for daily detection of LBP in primary aviation medical units.
Collapse
Affiliation(s)
- Hang Wang
- Department of Aerospace Medicine, Fourth Military Medical University, Xi’an, China
| | - Jing Dai
- Department of Aerospace Medicine, Fourth Military Medical University, Xi’an, China
| | - Chunchen Wang
- Department of Aerospace Medicine, Fourth Military Medical University, Xi’an, China
| | - Zhijun Gao
- Department of Aerospace Medicine, Fourth Military Medical University, Xi’an, China
| | - Yang Liu
- Department of Aerospace Medicine, Fourth Military Medical University, Xi’an, China
| | - Meng Dai
- Department of Biomedical Engineering, Fourth Military Medical University, Xi’an, China
| | - Zhanqi Zhao
- Department of Biomedical Engineering, Fourth Military Medical University, Xi’an, China
- Institute of Technical Medicine, Furtwangen University, Villingen-Schwenningen, Germany
| | - Lin Yang
- Department of Aerospace Medicine, Fourth Military Medical University, Xi’an, China
- *Correspondence: Lin Yang,
| | - Guodong Tan
- Air Force Medical Center, Fourth Military Medical University, Beijing, China
- Guodong Tan,
| |
Collapse
|