1
|
Montoro-Gámez C, Nolte H, Molinié T, Evangelista G, Tröder SE, Barth E, Popovic M, Trifunovic A, Zevnik B, Langer T, Rugarli EI. SARM1 deletion delays cerebellar but not spinal cord degeneration in an enhanced mouse model of SPG7 deficiency. Brain 2023; 146:4117-4131. [PMID: 37086482 DOI: 10.1093/brain/awad136] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/16/2023] [Accepted: 04/10/2023] [Indexed: 04/24/2023] Open
Abstract
Hereditary spastic paraplegia is a neurological condition characterized by predominant axonal degeneration in long spinal tracts, leading to weakness and spasticity in the lower limbs. The nicotinamide adenine dinucleotide (NAD+)-consuming enzyme SARM1 has emerged as a key executioner of axonal degeneration upon nerve transection and in some neuropathies. An increase in the nicotinamide mononucleotide/NAD+ ratio activates SARM1, causing catastrophic NAD+ depletion and axonal degeneration. However, the role of SARM1 in the pathogenesis of hereditary spastic paraplegia has not been investigated. Here, we report an enhanced mouse model for hereditary spastic paraplegia caused by mutations in SPG7. The eSpg7 knockout mouse carries a deletion in both Spg7 and Afg3l1, a redundant homologue expressed in mice but not in humans. The eSpg7 knockout mice recapitulate the phenotypic features of human patients, showing progressive symptoms of spastic-ataxia and degeneration of axons in the spinal cord as well as the cerebellum. We show that the lack of SPG7 rewires the mitochondrial proteome in both tissues, leading to an early onset decrease in mito-ribosomal subunits and a remodelling of mitochondrial solute carriers and transporters. To interrogate mechanisms leading to axonal degeneration in this mouse model, we explored the involvement of SARM1. Deletion of SARM1 delays the appearance of ataxic signs, rescues mitochondrial swelling and axonal degeneration of cerebellar granule cells and dampens neuroinflammation in the cerebellum. The loss of SARM1 also prevents endoplasmic reticulum abnormalities in long spinal cord axons, but does not halt the degeneration of these axons. Our data thus reveal a neuron-specific interplay between SARM1 and mitochondrial dysfunction caused by lack of SPG7 in hereditary spastic paraplegia.
Collapse
Affiliation(s)
- Carolina Montoro-Gámez
- Institute for Genetics, University of Cologne, Cologne 50931, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne 50931, Germany
| | - Hendrik Nolte
- Max Planck Institute for Biology of Ageing, Cologne 50931, Germany
| | - Thibaut Molinié
- Institute for Genetics, University of Cologne, Cologne 50931, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne 50931, Germany
| | - Giovanna Evangelista
- Institute for Genetics, University of Cologne, Cologne 50931, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne 50931, Germany
| | - Simon E Tröder
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne 50931, Germany
- in vivo Research Facility, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne 50931, Germany
| | - Esther Barth
- Institute for Genetics, University of Cologne, Cologne 50931, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne 50931, Germany
| | - Milica Popovic
- Institute for Genetics, University of Cologne, Cologne 50931, Germany
- Institute for Mitochondrial Diseases and Aging, Medical Faculty, University of Cologne, Cologne 50931, Germany
| | - Aleksandra Trifunovic
- Institute for Genetics, University of Cologne, Cologne 50931, Germany
- Institute for Mitochondrial Diseases and Aging, Medical Faculty, University of Cologne, Cologne 50931, Germany
- Center for Molecular Medicine (CMMC), University of Cologne, Cologne 50931, Germany
| | - Branko Zevnik
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne 50931, Germany
- in vivo Research Facility, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne 50931, Germany
| | - Thomas Langer
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne 50931, Germany
- Max Planck Institute for Biology of Ageing, Cologne 50931, Germany
| | - Elena I Rugarli
- Institute for Genetics, University of Cologne, Cologne 50931, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne 50931, Germany
- Center for Molecular Medicine (CMMC), University of Cologne, Cologne 50931, Germany
| |
Collapse
|
2
|
Xie X, Chen R, Wang X, Smith L, Wang J. Activity-dependent labeling and manipulation of fentanyl-recruited striatal ensembles using ArcTRAP approach. STAR Protoc 2023; 4:102369. [PMID: 37354458 PMCID: PMC10320278 DOI: 10.1016/j.xpro.2023.102369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/27/2023] [Accepted: 05/17/2023] [Indexed: 06/26/2023] Open
Abstract
Understanding the memory substrates underlying substance abuse requires the permanent tagging and manipulation of drug-recruited neural ensembles. Here, we present a protocol for activity-dependent labeling and chemogenetic manipulation of fentanyl-activated striatal ensembles using the ArcTRAP approach. We outline the necessary steps to breed ArcTRAP mice, prepare drugs and reagents, conduct behavioral training, and perform tagging and manipulation. This approach can be adapted to investigate drug-recruited ensembles in other brain regions, providing a versatile tool for exploring the neural mechanisms underlying addiction. For complete details on the use and execution of this protocol, please refer to Wang et al.1.
Collapse
Affiliation(s)
- Xueyi Xie
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA.
| | - Ruifeng Chen
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Xuehua Wang
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Laura Smith
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Jun Wang
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA.
| |
Collapse
|
3
|
Wigger M, Schneider M, Feldmann A, Assenmacher S, Zevnik B, Tröder SE. Successful use of HTF as a basal fertilization medium during SEcuRe mouse in vitro fertilization. BMC Res Notes 2023; 16:184. [PMID: 37620881 PMCID: PMC10463834 DOI: 10.1186/s13104-023-06452-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/08/2023] [Indexed: 08/26/2023] Open
Abstract
OBJECTIVE The ever-increasing number of genetically engineered mouse models highlights the need for efficient archiving and distribution of these lines. Sperm cryopreservation has become the preferred technique for the majority of these models due to its low requirement of costs, time, and experimental animals. Yet, current in vitro fertilization (IVF) protocols either exhibit decreased fertilization efficiency for the most popular C57BL/6 strain, as recently demonstrated by us, or require costly and difficult-to-prepare media, respectively. As a result, we previously developed SEcuRe, a modified IVF protocol with low costs and high fertilization efficiency. The popular basal fertilization medium, Cook's® proprietary "Research vitro fert" (RVF), used in this protocol has recently been discontinued. As a result, the application of the SEcuRe approach and other IVF protocols employing this medium has been severely limited. RESULTS Here we show that human tubal fluid (HTF), a popular and widely available medium with a known composition, can be used as a basal fertilization medium instead of RVF. Comparison of RVF and HTF during 58 independent SEcuRe IVFs with cryopreserved C57BL/6 sperm revealed equal fertilization and live birth rates. In addition, we demonstrate that HTF has a substantially extended shelf-life by utilizing commercial HTF that was six months past its expiration date, yet did not affect fertilization during IVF or subsequent embryo development. This finding not only increases the economic value of our modified method, but also validates it once more. Our results demonstrate that common, shelf-life extended HTF can be used in SEcuRe IVF in place of now-discontinued RVF medium and ensure the applicability of the method, which we since termed SEcuRe 2.0. Our modified SEcuRe 2.0 strategy will assist researchers to efficiently archive and distribute genetically engineered mouse models in a cost-effective, easily adaptable, and 3R-compliant manner with minimal animal use.
Collapse
Affiliation(s)
- Magdalena Wigger
- Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany
- In Vivo Research Facility, Faculty of Medicine and University Hospital Cologne, University of Cologne, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany
| | - Marco Schneider
- Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany
- In Vivo Research Facility, Faculty of Medicine and University Hospital Cologne, University of Cologne, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany
| | - Anni Feldmann
- Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany
- In Vivo Research Facility, Faculty of Medicine and University Hospital Cologne, University of Cologne, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany
| | - Sonja Assenmacher
- Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany
- In Vivo Research Facility, Faculty of Medicine and University Hospital Cologne, University of Cologne, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany
| | - Branko Zevnik
- Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany
- In Vivo Research Facility, Faculty of Medicine and University Hospital Cologne, University of Cologne, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany
| | - Simon E Tröder
- Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany.
- In Vivo Research Facility, Faculty of Medicine and University Hospital Cologne, University of Cologne, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany.
| |
Collapse
|
4
|
Sari GP, Hilario PLL, Yuri S, Honda A, Isotani A. Scheduled simple production method of pseudopregnant female mice for embryo transfer using the luteinizing hormone-releasing hormone agonist. Sci Rep 2022; 12:21985. [PMID: 36539541 PMCID: PMC9767918 DOI: 10.1038/s41598-022-26425-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
The use of mice as experimental animal models has been a practice since the development of genetically engineered mouse models (GEMMs) in the early 1980s. New technologies, including genome editing, have helped in the time- and cost-efficient generation of GEMMs. However, methods for preparing pseudopregnant females, essential for the generation of GEMMs, remain less advanced. This study proposes a new method to achieve simple production of pseudopregnant female mice using a luteinizing hormone-releasing hormone agonist (LHRHa). A 20 µg LHRHa/mouse was identified as the best dose for inducing estrus synchronization. However, the frequency of copulation was 40% on a single injection. With sequential injections of 20 µg LHRHa/mouse on Days-1 and -2, followed by pairing on Day-5, 74% of LHRHa-treated females copulated with male mice. Moreover, LHRHa treatment did not affect fetal and postnatal development. Eventually, successful generation of offspring via embryo transfer was attained using LHRHa-treated pseudopregnant females. LHRHa administration method is efficient in producing pseudopregnant female mice for the generation of GEMMs, and we expect that it will contribute towards advancing the clinical research.
Collapse
Affiliation(s)
- Gema Puspa Sari
- grid.260493.a0000 0000 9227 2257Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-Cho, Ikoma, Nara 630-0192 Japan
| | - Patrick Louis Lagman Hilario
- grid.260493.a0000 0000 9227 2257Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-Cho, Ikoma, Nara 630-0192 Japan
| | - Shunsuke Yuri
- grid.260493.a0000 0000 9227 2257Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-Cho, Ikoma, Nara 630-0192 Japan
| | - Arata Honda
- grid.410804.90000000123090000Center for Development of Advanced Medical Technology, School of Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-Shi, Tochigi-Ken 329-0498 Japan
| | - Ayako Isotani
- grid.260493.a0000 0000 9227 2257Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-Cho, Ikoma, Nara 630-0192 Japan
| |
Collapse
|
5
|
Abstract
Translational biomedical research relies on animal experiments and provides the underlying proof of practice for clinical trials, which places an increased duty of care on translational researchers to derive the maximum possible output from every experiment performed. The implementation of open science practices has the potential to initiate a change in research culture that could improve the transparency and quality of translational research in general, as well as increasing the audience and scientific reach of published research. However, open science has become a buzzword in the scientific community that can often miss mark when it comes to practical implementation. In this Essay, we provide a guide to open science practices that can be applied throughout the research process, from study design, through data collection and analysis, to publication and dissemination, to help scientists improve the transparency and quality of their work. As open science practices continue to evolve, we also provide an online toolbox of resources that we will update continually. Open science has become a buzzword in the scientific community that too often misses the practical application for individual researchers. This Essay, provides a guide to choosing the most appropriate tools to make animal research more transparent.
Collapse
|