1
|
Lozar T, Carchman E. Pathophysiology of Anal Cancer. Surg Oncol Clin N Am 2025; 34:21-35. [PMID: 39547766 DOI: 10.1016/j.soc.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
The pathophysiology of the development of anal cancer is thought to be linked to chronic inflammation, a possible consequence of infections with human papillomavirus (HPV) or HIV, or inflammation from inflammatory bowel disease. Anal HPV-induced carcinogenesis bears similarities to its cervical counterpart via viral integration into the host genome and the development of precursor lesions termed anal intraepithelial neoplasia. HPV-16 and -18 are the most common HPV genotypes associated with anal cancer. Other risk factors for the development of anal cancer include chronic immunosuppression, sexual activity and sexually transmitted diseases, female gender, history of anogenital dysplasia, and smoking.
Collapse
Affiliation(s)
- Taja Lozar
- Department of Oncology, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705, USA.
| | - Evie Carchman
- Department of Surgery, University of Wisconsin-Madison, 1111 Highland Avenue, WIMR 1 5137, Madison, WI 53792, USA; University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, 600 Highland Avenue, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, 2500 Overlook Terrace, Madison, WI 53705, USA
| |
Collapse
|
2
|
Walcheck MT, Schwartz PB, Carrillo ND, Matkowskyj KA, Nukaya M, Bradfield CA, Ronnekleiv-Kelly SM. Aryl Hydrocarbon Receptor Knockout Accelerates PanIN Formation and Fibro-Inflammation in a Mutant Kras -Driven Pancreatic Cancer Model. Pancreas 2024; 53:e670-e680. [PMID: 38696422 PMCID: PMC11321943 DOI: 10.1097/mpa.0000000000002357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
OBJECTIVES The pathogenesis of pancreas cancer (PDAC) remains poorly understood, hindering efforts to develop a more effective therapy for PDAC. Recent discoveries show the aryl hydrocarbon receptor (AHR) plays a crucial role in the development of several cancers and can be targeted for therapeutic effect. However, its involvement in the pathogenesis of PDAC remains unclear. To address this gap, we evaluated the role of AHR in the development of PDAC precancerous lesions in vivo . MATERIALS AND METHODS We created a global AHR-null, mutant Kras -driven PDAC mouse model (A -/- KC) and evaluated the changes in PDAC precursor lesion formation (PanIN-1, 2, and 3) and associated fibro-inflammation between KC and A -/- KC at 5 months of age. We then examined the changes in the immune microenvironment followed by single-cell RNA-sequencing analysis to evaluate concomitant transcriptomic changes. RESULTS We identified a significant increase in PanIN-1 lesion formation and PanIN-1 associated fibro-inflammatory infiltrate in A -/- KC versus KC mice. This was associated with significant changes in the adaptive immune system, particularly a decrease in the CD4+/CD8+ T-cell ratio, as well as a decrease in the T-regulatory/Th17 T-cell ratio suggesting unregulated inflammation. CONCLUSIONS These findings show the loss of AHR results in heightened Kras -induced PanIN formation, through modulation of immune cells within the pancreatic tumor microenvironment.
Collapse
Affiliation(s)
- Morgan T Walcheck
- From the Division of Surgical Oncology, Department of Surgery, University of Wisconsin School of Medicine and Public Health
| | - Patrick B Schwartz
- From the Division of Surgical Oncology, Department of Surgery, University of Wisconsin School of Medicine and Public Health
| | - Noah D Carrillo
- McArdle Laboratory for Cancer Research, University of Wisconsin
| | | | | | | | | |
Collapse
|
3
|
Walcheck MT, Nukaya M, Ranheim EA, Matkowskyj KA, Ronnekleiv-Kelly S. Pdx1 expression in hematopoietic cells activates Kras-mutation to drive leukemia in KC ( Pdx1-Cre; LSL-KrasG12D/+) mice. Leuk Lymphoma 2023; 64:1112-1122. [PMID: 37081806 PMCID: PMC10503568 DOI: 10.1080/10428194.2023.2202788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 03/01/2023] [Accepted: 04/09/2023] [Indexed: 04/22/2023]
Abstract
The highly utilized KC model has a reported lethality rate of about 30%, which has been attributed to pancreas cancer. However, a competing cause of lethality in KC mice is due to the activation of mutant-Kras gene (KrasG12D/+) in the multipotent progenitor cells (MPP), and subsequent development of Kras-mutant T-cell acute lymphoblastic leukemia (T-ALL). Overall, 20% (5/25) of KC mice developed T-ALL by 9 months of age. Transplantation of pooled bone marrow from KC mice into CD45 congenic mice caused T-ALL in 100% of recipient mice, confirming that mutant-Kras expression in the hematologic compartment is driving the development of T-ALL in the KC mouse model. These results are an essential consideration for investigators using this model. Further, the lower penetrance of T-ALL in KC mice (versus existing leukemia models) suggests this model could be considered as an alternative research model to evaluate onset and factors that exacerbate the development of T-ALL.
Collapse
Affiliation(s)
- Morgan T Walcheck
- Department of Surgery, Division of Surgical Oncology, University of Wisconsin School of Medicine and Public Health, K3/705 CSC, Madison, WI, USA
| | - Manabu Nukaya
- Department of Surgery, Division of Surgical Oncology, University of Wisconsin School of Medicine and Public Health, K3/705 CSC, Madison, WI, USA
| | - Erik A Ranheim
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Kristina A Matkowskyj
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Sean Ronnekleiv-Kelly
- Department of Surgery, Division of Surgical Oncology, University of Wisconsin School of Medicine and Public Health, K3/705 CSC, Madison, WI, USA
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| |
Collapse
|
4
|
Schwartz PB, Walcheck MT, Nukaya M, Pavelec DM, Matkowskyj KA, Ronnekleiv-Kelly SM. Chronic jetlag accelerates pancreatic neoplasia in conditional Kras-mutant mice. Chronobiol Int 2023; 40:417-437. [PMID: 36912021 PMCID: PMC10337099 DOI: 10.1080/07420528.2023.2186122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/14/2023] [Accepted: 02/25/2023] [Indexed: 03/14/2023]
Abstract
Misalignment of the circadian clock compared to environmental cues causes circadian desynchrony, which is pervasive in humans. Clock misalignment can lead to various pathologies including obesity and diabetes, both of which are associated with pancreatic ductal adenocarcinoma - a devastating cancer with an 80% five-year mortality rate. Although circadian desynchrony is associated with an increased risk of several solid-organ cancers, the correlation between clock misalignment and pancreas cancer is unclear. Using a chronic jetlag model, we investigated the impact of clock misalignment on pancreas cancer initiation in mice harboring a pancreas-specific activated Kras mutation. We found that chronic jetlag accelerated the development of pancreatic cancer precursor lesions, with a concomitant increase in precursor lesion grade. Cell-autonomous knock-out of the clock in pancreatic epithelial cells of Kras-mutant mice demonstrated no acceleration of precursor lesion formation, indicating non-cell-autonomous clock dysfunction was responsible for the expedited tumor development. Therefore, we applied single-cell RNA sequencing over time and identified fibroblasts as the cell population manifesting the greatest clock-dependent changes, with enrichment of specific cancer-associated fibroblast pathways due to circadian misalignment.
Collapse
Affiliation(s)
- Patrick B Schwartz
- Department of Surgery, Division of Surgical Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Morgan T Walcheck
- Department of Surgery, Division of Surgical Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Manabu Nukaya
- Department of Surgery, Division of Surgical Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | | | - Kristina A Matkowskyj
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- William S Middleton Memorial Veterans Hospital, Madison, Wisconsin
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Sean M Ronnekleiv-Kelly
- Department of Surgery, Division of Surgical Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI
| |
Collapse
|
5
|
Yan H, Talty R, Jain A, Cai Y, Zheng J, Shen X, Muca E, Paty PB, Bosenberg MW, Khan SA, Johnson CH. Discovery of decreased ferroptosis in male colorectal cancer patients with KRAS mutations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.28.530478. [PMID: 36909561 PMCID: PMC10002683 DOI: 10.1101/2023.02.28.530478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Aberrant tumor metabolism is a hallmark of cancer in which metabolic rewiring can support tumor growth under nutrient deficient conditions. KRAS mutations occur in 35-45% of all colorectal cancer (CRC) cases and are difficult to treat. The relationship between mutant KRAS and aberrant metabolism in CRCs has not been fully explored and could be a target for intervention. We previously acquired non-targeted metabolomics data from 161 tumor tissues and 39 normal colon tissues from stage I-III chemotherapy naïve CRC patients. In this study, we revealed that tumors from male patients with KRAS mutations only, had several altered pathways that suppress ferroptosis, including glutathione biosynthesis, transsulfuration activity, and methionine metabolism. To validate this phenotype, MC38 CRC cells (KRAS G13R ) were treated with a ferroptosis inducer; RAS-selected lethal (RSL3). RSL3 altered metabolic pathways in the opposite direction to that seen in KRAS mutant tumors from male patients confirming a suppressed ferroptosis metabolic phenotype in these patients. We further validated gene expression data from an additional CRC patient cohort (Gene Expression Omnibus (GEO), and similarly observed differences in ferroptosis-related genes by sex and KRAS status. Further examination of the relationship between these genes and overall survival (OS) in the GEO cohort showed that KRAS mutant tumors are associated with poorer 5-year OS compared to KRAS wild type tumors, and only in male patients. Additionally, high compared to low expression of GPX4, FTH1, FTL , which suppressed ferroptosis, were associated with poorer 5-year OS only in KRAS mutant tumors from male CRC patients. Low compared to high expression of ACSL4 was associated with poorer OS for this group. Our results show that KRAS mutant tumors from male CRC patients have suppressed ferroptosis, and gene expression changes that suppress ferroptosis associate with adverse outcomes for these patients, revealing a novel potential avenue for therapeutic approaches.
Collapse
Affiliation(s)
- Hong Yan
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, USA
| | - Ronan Talty
- Department of Pathology, Yale School of Medicine, USA
| | - Abhishek Jain
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, USA
| | - Yuping Cai
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, USA
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jie Zheng
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, USA
| | - Xinyi Shen
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, USA
| | - Engjel Muca
- Department of Surgery, Memorial Sloan Kettering Cancer Center, USA
| | - Philip B. Paty
- Department of Surgery, Memorial Sloan Kettering Cancer Center, USA
| | - Marcus W. Bosenberg
- Departments of Pathology, Dermatology, and Immunobiology, Yale School of Medicine, USA
| | - Sajid A. Khan
- Division of Surgical Oncology, Department of Surgery, Yale School of Medicine, USA
| | - Caroline H. Johnson
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, USA
| |
Collapse
|