1
|
Tariq U, Saeed F. Predicting peptide properties from mass spectrometry data using deep attention-based multitask network and uncertainty quantification. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.21.609035. [PMID: 39229185 PMCID: PMC11370541 DOI: 10.1101/2024.08.21.609035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Database search algorithms reduce the number of potential candidate peptides against which scoring needs to be performed using a single (i.e. mass) property for filtering. While useful, filtering based on one property may lead to exclusion of non-abundant spectra and uncharacterized peptides - potentially exacerbating the streetlight effect. Here we present ProteoRift, a novel attention and multitask deep-network, which can predict multiple peptide properties (length, missed cleavages, and modification status) directly from spectra. We demonstrate that ProteoRift can predict these properties with up to 97% accuracy resulting in search-space reduction by more than 90%. As a result, our end-to-end pipeline is shown to exhibit 8x to 12x speedups with peptide deduction accuracy comparable to algorithmic techniques. We also formulate two uncertainty estimation metrics, which can distinguish between in-distribution and out-of-distribution data (ROC-AUC 0.99) and predict high-scoring mass spectra against correct peptide (ROC-AUC 0.94). These models and metrics are integrated in an end-to-end ML pipeline available at https://github.com/pcdslab/ProteoRift.
Collapse
Affiliation(s)
- Usman Tariq
- Knight Foundation School of Computing, and Information Sciences, Florida International University (FIU), Miami, FL USA
| | - Fahad Saeed
- Knight Foundation School of Computing, and Information Sciences, Florida International University (FIU), Miami, FL USA
- Biomolecular Sciences Institute (BSI), Florida International University, Miami, FL, USA
- Department of Human and Molecular Genetics, Herbert Wertheim School of Medicine, Florida International University, Miami, FL, USA
| |
Collapse
|
2
|
Kalhor M, Lapin J, Picciani M, Wilhelm M. Rescoring Peptide Spectrum Matches: Boosting Proteomics Performance by Integrating Peptide Property Predictors Into Peptide Identification. Mol Cell Proteomics 2024; 23:100798. [PMID: 38871251 PMCID: PMC11269915 DOI: 10.1016/j.mcpro.2024.100798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/26/2024] [Accepted: 06/09/2024] [Indexed: 06/15/2024] Open
Abstract
Rescoring of peptide spectrum matches originating from database search engines enabled by peptide property predictors is exceeding the performance of peptide identification from traditional database search engines. In contrast to the peptide spectrum match scores calculated by traditional database search engines, rescoring peptide spectrum matches generates scores based on comparing observed and predicted peptide properties, such as fragment ion intensities and retention times. These newly generated scores enable a more efficient discrimination between correct and incorrect peptide spectrum matches. This approach was shown to lead to substantial improvements in the number of confidently identified peptides, facilitating the analysis of challenging datasets in various fields such as immunopeptidomics, metaproteomics, proteogenomics, and single-cell proteomics. In this review, we summarize the key elements leading up to the recent introduction of multiple data-driven rescoring pipelines. We provide an overview of relevant post-processing rescoring tools, introduce prominent data-driven rescoring pipelines for various applications, and highlight limitations, opportunities, and future perspectives of this approach and its impact on mass spectrometry-based proteomics.
Collapse
Affiliation(s)
- Mostafa Kalhor
- Computational Mass Spectrometry, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Joel Lapin
- Computational Mass Spectrometry, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Mario Picciani
- Computational Mass Spectrometry, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Mathias Wilhelm
- Computational Mass Spectrometry, TUM School of Life Sciences, Technical University of Munich, Freising, Germany; Munich Data Science Institute, Technical University of Munich, Garching, Germany.
| |
Collapse
|
3
|
Tariq MU, Ebert S, Saeed F. Making MS Omics Data ML-Ready: SpeCollate Protocols. Methods Mol Biol 2024; 2836:135-155. [PMID: 38995540 DOI: 10.1007/978-1-0716-4007-4_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
The increasing complexity and volume of mass spectrometry (MS) data have presented new challenges and opportunities for proteomics data analysis and interpretation. In this chapter, we provide a comprehensive guide to transforming MS data for machine learning (ML) training, inference, and applications. The chapter is organized into three parts. The first part describes the data analysis needed for MS-based experiments and a general introduction to our deep learning model SpeCollate-which we will use throughout the chapter for illustration. The second part of the chapter explores the transformation of MS data for inference, providing a step-by-step guide for users to deduce peptides from their MS data. This section aims to bridge the gap between data acquisition and practical applications by detailing the necessary steps for data preparation and interpretation. In the final part, we present a demonstrative example of SpeCollate, a deep learning-based peptide database search engine that overcomes the problems of simplistic simulation of theoretical spectra and heuristic scoring functions for peptide-spectrum matches by generating joint embeddings for spectra and peptides. SpeCollate is a user-friendly tool with an intuitive command-line interface to perform the search, showcasing the effectiveness of the techniques and methodologies discussed in the earlier sections and highlighting the potential of machine learning in the context of mass spectrometry data analysis. By offering a comprehensive overview of data transformation, inference, and ML model applications for mass spectrometry, this chapter aims to empower researchers and practitioners in leveraging the power of machine learning to unlock novel insights and drive innovation in the field of mass spectrometry-based omics.
Collapse
Affiliation(s)
- Muhammad Usman Tariq
- Knight Foundation School of Computing and Information Sciences (KFSCIS), Florida International University (FIU), Miami, FL, USA
| | - Samuel Ebert
- Knight Foundation School of Computing and Information Sciences (KFSCIS), Florida International University (FIU), Miami, FL, USA
| | - Fahad Saeed
- Knight Foundation School of Computing and Information Sciences (KFSCIS), Florida International University (FIU), Miami, FL, USA.
| |
Collapse
|
4
|
Haseeb M, Saeed F. GPU-acceleration of the distributed-memory database peptide search of mass spectrometry data. Sci Rep 2023; 13:18713. [PMID: 37907498 PMCID: PMC10618243 DOI: 10.1038/s41598-023-43033-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/18/2023] [Indexed: 11/02/2023] Open
Abstract
Database peptide search is the primary computational technique for identifying peptides from the mass spectrometry (MS) data. Graphical Processing Units (GPU) computing is now ubiquitous in the current-generation of high-performance computing (HPC) systems, yet its application in the database peptide search domain remains limited. Part of the reason is the use of sub-optimal algorithms in the existing GPU-accelerated methods resulting in significantly inefficient hardware utilization. In this paper, we design and implement a new-age CPU-GPU HPC framework, called GiCOPS, for efficient and complete GPU-acceleration of the modern database peptide search algorithms on supercomputers. Our experimentation shows that the GiCOPS exhibits between 1.2 to 5[Formula: see text] speed improvement over its CPU-only predecessor, HiCOPS, and over 10[Formula: see text] improvement over several existing GPU-based database search algorithms for sufficiently large experiment sizes. We further assess and optimize the performance of our framework using the Roofline Model and report near-optimal results for several metrics including computations per second, occupancy rate, memory workload, branch efficiency and shared memory performance. Finally, the CPU-GPU methods and optimizations proposed in our work for complex integer- and memory-bounded algorithmic pipelines can also be extended to accelerate the existing and future peptide identification algorithms. GiCOPS is now integrated with our umbrella HPC framework HiCOPS and is available at: https://github.com/pcdslab/gicops .
Collapse
Affiliation(s)
- Muhammad Haseeb
- Knight Foundation School of Computing and Information Sciences, Florida International University (FIU), Miami, FL, USA
| | - Fahad Saeed
- Knight Foundation School of Computing and Information Sciences, Florida International University (FIU), Miami, FL, USA.
- Biomolecular Sciences Institute (BSI), Miami, FL, USA.
- Department of Human and Molecular Genetics, Herbert Wertheim School of Medicine, Florida International University, Miami, FL, USA.
| |
Collapse
|
5
|
Neely BA, Dorfer V, Martens L, Bludau I, Bouwmeester R, Degroeve S, Deutsch EW, Gessulat S, Käll L, Palczynski P, Payne SH, Rehfeldt TG, Schmidt T, Schwämmle V, Uszkoreit J, Vizcaíno JA, Wilhelm M, Palmblad M. Toward an Integrated Machine Learning Model of a Proteomics Experiment. J Proteome Res 2023; 22:681-696. [PMID: 36744821 PMCID: PMC9990124 DOI: 10.1021/acs.jproteome.2c00711] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Indexed: 02/07/2023]
Abstract
In recent years machine learning has made extensive progress in modeling many aspects of mass spectrometry data. We brought together proteomics data generators, repository managers, and machine learning experts in a workshop with the goals to evaluate and explore machine learning applications for realistic modeling of data from multidimensional mass spectrometry-based proteomics analysis of any sample or organism. Following this sample-to-data roadmap helped identify knowledge gaps and define needs. Being able to generate bespoke and realistic synthetic data has legitimate and important uses in system suitability, method development, and algorithm benchmarking, while also posing critical ethical questions. The interdisciplinary nature of the workshop informed discussions of what is currently possible and future opportunities and challenges. In the following perspective we summarize these discussions in the hope of conveying our excitement about the potential of machine learning in proteomics and to inspire future research.
Collapse
Affiliation(s)
- Benjamin A. Neely
- National
Institute of Standards and Technology, Charleston, South Carolina 29412, United States
| | - Viktoria Dorfer
- Bioinformatics
Research Group, University of Applied Sciences
Upper Austria, Softwarepark
11, 4232 Hagenberg, Austria
| | - Lennart Martens
- VIB-UGent
Center for Medical Biotechnology, VIB, 9000 Ghent, Belgium
- Department
of Biomolecular Medicine, Faculty of Health Sciences and Medicine, Ghent University, 9000 Ghent, Belgium
| | - Isabell Bludau
- Department
of Proteomics and Signal Transduction, Max
Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Robbin Bouwmeester
- VIB-UGent
Center for Medical Biotechnology, VIB, 9000 Ghent, Belgium
- Department
of Biomolecular Medicine, Faculty of Health Sciences and Medicine, Ghent University, 9000 Ghent, Belgium
| | - Sven Degroeve
- VIB-UGent
Center for Medical Biotechnology, VIB, 9000 Ghent, Belgium
- Department
of Biomolecular Medicine, Faculty of Health Sciences and Medicine, Ghent University, 9000 Ghent, Belgium
| | - Eric W. Deutsch
- Institute
for Systems Biology, Seattle, Washington 98109, United States
| | | | - Lukas Käll
- Science
for Life Laboratory, KTH - Royal Institute
of Technology, 171 21 Solna, Sweden
| | - Pawel Palczynski
- Department
of Biochemistry and Molecular Biology, University
of Southern Denmark, 5230 Odense, Denmark
| | - Samuel H. Payne
- Department
of Biology, Brigham Young University, Provo, Utah 84602, United States
| | - Tobias Greisager Rehfeldt
- Institute
for Mathematics and Computer Science, University
of Southern Denmark, 5230 Odense, Denmark
| | | | - Veit Schwämmle
- Department
of Biochemistry and Molecular Biology, University
of Southern Denmark, 5230 Odense, Denmark
| | - Julian Uszkoreit
- Medical
Proteome Analysis, Center for Protein Diagnostics (ProDi), Ruhr University Bochum, 44801 Bochum, Germany
- Medizinisches
Proteom-Center, Medical Faculty, Ruhr University
Bochum, 44801 Bochum, Germany
| | - Juan Antonio Vizcaíno
- European Molecular Biology Laboratory,
European Bioinformatics Institute
(EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, United
Kingdom
| | - Mathias Wilhelm
- Computational
Mass Spectrometry, Technical University
of Munich (TUM), 85354 Freising, Germany
| | - Magnus Palmblad
- Leiden University Medical Center, Postbus 9600, 2300
RC Leiden, The Netherlands
| |
Collapse
|
6
|
Saeed F, Haseeb M, Iyengar SS. Communication Lower-Bounds for Distributed-Memory Computations for Mass Spectrometry based Omics Data. JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING 2022; 161:37-47. [PMID: 34898836 PMCID: PMC8658624 DOI: 10.1016/j.jpdc.2021.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Mass spectrometry (MS) based omics data analysis require significant time and resources. To date, few parallel algorithms have been proposed for deducing peptides from mass spectrometry-based data. However, these parallel algorithms were designed, and developed when the amount of data that needed to be processed was smaller in scale. In this paper, we prove that the communication bound that is reached by the existing parallel algorithms is Ω ( m n + 2 r q p ) , where m and n are the dimensions of the theoretical database matrix, q and r are dimensions of spectra, and p is the number of processors. We further prove that communication-optimal strategy with fast-memory M = m n + 2 q r p can achieve Ω ( 2 m n q p ) but is not achieved by any existing parallel proteomics algorithms till date. To validate our claim, we performed a meta-analysis of published parallel algorithms, and their performance results. We show that sub-optimal speedups with increasing number of processors is a direct consequence of not achieving the communication lower-bounds. We further validate our claim by performing experiments which demonstrate the communication bounds that are proved in this paper. Consequently, we assert that next-generation of provable, and demonstrated superior parallel algorithms are urgently needed for MS based large systems-biology studies especially for meta-proteomics, proteogenomic, microbiome, and proteomics for non-model organisms. Our hope is that this paper will excite the parallel computing community to further investigate parallel algorithms for highly influential MS based omics problems.
Collapse
|