1
|
Kirby NV, Meade RD, McCormick JJ, King KE, Notley SR, Kenny GP. Brain-derived neurotrophic factor in older adults exposed to simulated indoor overheating. Eur J Appl Physiol 2024:10.1007/s00421-024-05623-y. [PMID: 39417862 DOI: 10.1007/s00421-024-05623-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024]
Abstract
PURPOSE Brain-derived neurotrophic factor (BDNF) is a neuroprotective growth factor that increases in young adults during short, intense bouts of passive heat stress. However, this may not reflect the response in heat-vulnerable populations exposed to air temperatures more consistent with indoor overheating during hot weather and heatwaves, especially as the BDNF response to acute stressors may diminish with increasing age. We therefore evaluated the ambient and body temperature-dependent responses of BDNF in older adults during daylong passive heating. METHODS Sixteen older adults (6 females; aged 66-78 years) completed 8-h exposure to four randomized ambient conditions simulating those experienced indoors during hot weather and heatwaves in continental climates: 22 °C (air-conditioning; control), 26 °C (health-agency-recommended indoor temperature limit), 31 °C, and 36 °C (non-airconditioned home); all 45% relative humidity. To further investigate upstream mechanisms of BDNF regulation during thermal strain, we also explored associations between BDNF and circulating heat shock protein 70 (HSP70; taken as an indicator of the heat shock response). RESULTS Circulating BDNF was elevated by ~ 28% (1139 [95%CI: 166, 2112] pg/mL) at end-exposure in the 36 °C compared to the 22 °C control condition (P = 0.026; 26 °C-and 31 °C-22 °C differences: P ≥ 0.090), increasing 90 [22, 158] pg/mL per 1 °C rise in ambient temperature (linear trend: P = 0.011). BDNF was also positively correlated with mean body temperatures (P = 0.013), which increased 0.12 [0.10, 0.13]°C per 1 °C rise in ambient temperature (P < 0.001). By contrast, serum HSP70 did not change across conditions (P ≥ 0.156), nor was it associated with BDNF (P = 0.376). CONCLUSION Our findings demonstrate a progressive increase in circulating BDNF during indoor overheating in older adults.
Collapse
Affiliation(s)
- Nathalie V Kirby
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, 125 University Private, Montpetit Hall, Room 367, Ottawa, ON, K1N 6N5, Canada
| | - Robert D Meade
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, 125 University Private, Montpetit Hall, Room 367, Ottawa, ON, K1N 6N5, Canada
| | - James J McCormick
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, 125 University Private, Montpetit Hall, Room 367, Ottawa, ON, K1N 6N5, Canada
| | - Kelli E King
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, 125 University Private, Montpetit Hall, Room 367, Ottawa, ON, K1N 6N5, Canada
| | - Sean R Notley
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, 125 University Private, Montpetit Hall, Room 367, Ottawa, ON, K1N 6N5, Canada
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, 125 University Private, Montpetit Hall, Room 367, Ottawa, ON, K1N 6N5, Canada.
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.
| |
Collapse
|
2
|
Worley ML, Reed EL, Klaes N, Schlader ZJ, Johnson BD. Cool head-out water immersion does not alter cerebrovascular reactivity to hypercapnia despite elevated middle cerebral artery blood velocity: A pilot study. PLoS One 2024; 19:e0298587. [PMID: 38478550 PMCID: PMC10936844 DOI: 10.1371/journal.pone.0298587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/28/2024] [Indexed: 03/24/2024] Open
Abstract
Episodic increases in cerebral blood flow (CBF) are thought to contribute to improved cerebrovascular function and health. Head-out water immersion (HOWI) may be a useful modality to increase CBF secondary to the hydrostatic pressure placed on the body. However, it is unclear whether water temperatures common to the general public elicit similar cerebrovascular responses. We tested the hypothesis that mean middle cerebral artery blood velocity (MCAvmean) and cerebrovascular reactivity to CO2 (CVRCO2) would be higher during an acute bout of thermoneutral (TN; 35°C) vs. cool (COOL; 25°C) HOWI. Ten healthy participants (age: 23±3 y; 4 women) completed two randomized HOWI visits. Right MCAvmean, end-tidal CO2 (PETCO2) mean arterial pressure (MAP), and MCA conductance (MCAvmean/MAP) were continuously recorded. CVRCO2 was assessed using a stepped hypercapnia protocol before (PRE), at 30 minutes of HOWI (HOWI), immediately after HOWI (POST-1), and 45 minutes after HOWI (POST-2). Absolute values are reported as mean ± SD. MCAvmean, PETCO2, MAP, and CVRCO2 were not different between conditions at any timepoint (all P≥0.17). In COOL, MCAvmean increased from PRE (61±9 cm/s) during HOWI (68±11 cm/s), at POST-1 (69±11 cm/s), and POST-2 (72±8 cm/s) (all P<0.01), and in TN from PRE to POST-1 (66±13 vs. 71±14 cm/s; P = 0.05). PETCO2 did not change over time in either condition. In COOL, MAP increased from PRE (85±5 mmHg) during HOWI (101±4 mmHg), at POST-1 (97±7 mmHg), and POST-2 (96±9 mmHg), and in TN from PRE (88±5 mmHg) at HOWI (98±7 mmHg) and POST-1 (99±8 mmHg) (all P<0.01). In COOL, CVRCO2 increased from PRE to HOWI (1.66±0.55 vs. 1.92±0.52 cm/s/mmHg; P = 0.04). MCA conductance was not different between or within conditions. These data indicate that 30 minutes of cool HOWI augments MCAvmean and that the increase in MCAvmean persists beyond cool HOWI. However, cool HOWI does not alter CVRCO2 in healthy young adults.
Collapse
Affiliation(s)
- Morgan L. Worley
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, United States of America
| | - Emma L. Reed
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, United States of America
- Department of Human Physiology, College of Arts and Sciences, University of Oregon, Eugene, OR, United States of America
| | - Nathan Klaes
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, United States of America
| | - Zachary J. Schlader
- Department of Kinesiology, School of Public Health-Bloomington, Indiana University, Bloomington, IN, United States of America
| | - Blair D. Johnson
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, United States of America
- Department of Kinesiology, School of Public Health-Bloomington, Indiana University, Bloomington, IN, United States of America
| |
Collapse
|
3
|
Nohara M, Hisaeda K, Ono T, Inoue Y, Ogawa K, Hata A, Sibano K, Nagahata H, Fujitani N. The relationships between environmental parameters in livestock pen and physiological parameters of Holstein dairy cows. J Vet Med Sci 2022; 84:964-977. [PMID: 35650166 PMCID: PMC9353096 DOI: 10.1292/jvms.22-0187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
There has been an increase in temperature and the incidence of extreme weather events, such as heat wave, due to global warming, which has promoted the incidence of livestock diseases.
Therefore, it is important to examine the effect of changes in environmental parameters on livestock performance. The aim of this study was to examine the relationship between ambient
environmental conditions in livestock pen and the physiological parameters of Holstein dairy cows. The results showed that there was a decrease in the red blood cell counts, hemoglobin
concentrations, and mean corpuscular hemoglobin concentration of the cows with increasing pen temperature, wet bulb globe temperature (WBGT), and temperature humidity index (THI).
Additionally, high daily variation in temperature caused a decrease in the serum albumin levels of the cows. Moreover, the lowest serum calcium, inorganic phosphorus, and magnesium
concentrations were observed in November, and were negatively correlated with the 24-hr temperature, WBGT, and THI range of the pen prior to sampling. Multiple regression analysis showed a
positive correlation between serum cortisol concentration and 24-hr WBGT range of the pen prior to samplings and packed cell volume. However, serum cortisol and total protein concentrations
were negatively correlated. Overall, the findings of the study suggest that large variation in temperature induced stress in the cows, which could be overcome by increased water consumption
and improved protein digestion and absorption by the animals, and the addition of minerals, such as calcium to the diet.
Collapse
Affiliation(s)
- Masakatsu Nohara
- Department of Veterinary Associated Science, Faculty of Veterinary Medicine, Okayama University of Science
| | - Keiichi Hisaeda
- Department of Veterinary Associated Science, Faculty of Veterinary Medicine, Okayama University of Science
| | - Tetsushi Ono
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, Okayama University of Science
| | - Yoichi Inoue
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, Okayama University of Science
| | - Kouji Ogawa
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, Okayama University of Science
| | - Akihisa Hata
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, Okayama University of Science
| | - Kenichi Sibano
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, Okayama University of Science
| | - Hajime Nagahata
- Department of Veterinary Associated Science, Faculty of Veterinary Medicine, Okayama University of Science
| | - Noboru Fujitani
- Department of Veterinary Associated Science, Faculty of Veterinary Medicine, Okayama University of Science
| |
Collapse
|