1
|
Feng H, Liu C, Liu Q, Wang J, Zeng Y, Sun Y, Zhang M, Zhang H, Liu Z, Zhao J, Liu H. Study on the transport and internalisation mechanism of dietary supplement nattokinase in the small intestine using animal and Caco-2 cell monolayer models. Xenobiotica 2023; 53:670-680. [PMID: 37971898 DOI: 10.1080/00498254.2023.2284249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
Maintaining proper blood flow is critical to promoting good health. Nattokinase is a serine protease from Bacillus subtilis that has significant in vitro thrombolytic activity, but its mechanism as a dietary supplement to prevent thrombosis through intestinal absorption and transport is still unclear.The purpose of this study is to study the transport and internalisation mechanism of NK in the small intestine using animal models and Caco-2 cell monolayer models.This study first evaluated the preventive effect of supplementing low dose (4000 FU (Fibrin Unit)/kg, n = 6), medium dose (8000 FU/kg, n = 6), and high dose (12000 FU/kg, n = 6) of nattokinase on carrageenan induced thrombosis in mice. Subsequently, we used the rat gut sac model, ligated intestinal loop model, and Caco-2 cell uptake model to study the intestinal transport mechanism of NK.Results indicate that NK is a moderately absorbed biomolecule whose transport through enterocytes is energy- and time-dependent. Chlorpromazine, nystatin and EIPA all inhibited the endocytosis of NK to varying degrees, indicating that the endocytosis of NK in Caco-2 cells involves macropinocytosis, clathrin-mediated and caveolae-mediated pathway. These findings offer a theoretical basis for investigating the mechanism of oral NK supplementation in greater depth.
Collapse
Affiliation(s)
- Huawei Feng
- School of Pharmaceutical Sciences, Liaoning University, Shenyang, China
- Key Laboratory of Computational Simulation and Information Processing of Biomacromolecules of Liaoning Province, Shenyang, China
- Engineering Laboratory for Molecular Simulation and Designing of Drug Molecules of Liaoning, Shenyang, China
- Key Laboratory for Computer Simulating and Information Processing of Bio-Macromolecules of Shenyang, Shenyang, China
| | - Chang Liu
- School of Pharmaceutical Sciences, Liaoning University, Shenyang, China
| | - Qingqing Liu
- School of Pharmaceutical Sciences, Liaoning University, Shenyang, China
| | - Jie Wang
- School of Pharmaceutical Sciences, Liaoning University, Shenyang, China
| | - Yingyue Zeng
- Key Laboratory of Computational Simulation and Information Processing of Biomacromolecules of Liaoning Province, Shenyang, China
- Engineering Laboratory for Molecular Simulation and Designing of Drug Molecules of Liaoning, Shenyang, China
- Key Laboratory for Computer Simulating and Information Processing of Bio-Macromolecules of Shenyang, Shenyang, China
- School of Life Science, Liaoning University, Shenyang, China
| | - Yue Sun
- School of Pharmaceutical Sciences, Liaoning University, Shenyang, China
| | - Man Zhang
- School of Life Science, Liaoning University, Shenyang, China
| | - Hui Zhang
- School of Life Science, Liaoning University, Shenyang, China
| | - Zhikui Liu
- Liaoning Huikang Testing and Evaluation Technology Co., Shenyang, China
| | - Jian Zhao
- Key Laboratory for Computer Simulating and Information Processing of Bio-Macromolecules of Shenyang, Shenyang, China
- School of Life Science, Liaoning University, Shenyang, China
| | - Hongsheng Liu
- School of Pharmaceutical Sciences, Liaoning University, Shenyang, China
- Key Laboratory of Computational Simulation and Information Processing of Biomacromolecules of Liaoning Province, Shenyang, China
- Engineering Laboratory for Molecular Simulation and Designing of Drug Molecules of Liaoning, Shenyang, China
- Key Laboratory for Computer Simulating and Information Processing of Bio-Macromolecules of Shenyang, Shenyang, China
| |
Collapse
|
2
|
Abstract
Clostridioides difficile spores are the infective form for this endospore-forming organism. The vegetative cells are intolerant to oxygen and poor competitors with a healthy gut microbiota. Therefore, in order for C. difficile to establish infection, the spores have to germinate in an environment that supports vegetative growth. To initiate germination, C. difficile uses Csp-type germinant receptors that consist of the CspC and CspA pseudoproteases as the bile acid and cogerminant receptors, respectively. CspB is a subtilisin-like protease that cleaves the inhibitory propeptide from the pro-SleC cortex lytic enzyme, thereby activating it and initiating cortex degradation. Though several locations have been proposed for where these proteins reside within the spore (i.e., spore coat, outer spore membrane, cortex, and inner spore membrane), these have been based, mostly, on hypotheses or prior data in Clostridium perfringens. In this study, we visualized the germination and outgrowth process using transmission electron microscopy (TEM) and scanning electron microscopy (SEM) and used immunogold labeling to visualize key germination regulators. These analyses localize these key regulators to the spore cortex region for the first time. IMPORTANCE Germination by C. difficile spores is the first step in the establishment of potentially life-threatening C. difficile infection (CDI). A deeper understanding of the mechanism by which spores germinate may provide insight for how to either prevent spore germination into a disease-causing vegetative form or trigger germination prematurely when the spore is either in the outside environment or in a host environment that does not support the establishment of colonization/disease.
Collapse
|