1
|
Firouzi V, Seyfarth A, Song S, von Stryk O, Ahmad Sharbafi M. Biomechanical models in the lower-limb exoskeletons development: a review. J Neuroeng Rehabil 2025; 22:12. [PMID: 39856714 PMCID: PMC11761726 DOI: 10.1186/s12984-025-01556-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Lower limb exoskeletons serve multiple purposes, like supporting and augmenting movement. Biomechanical models are practical tools to understand human movement, and motor control. This paper provides an overview of these models and a comprehensive review of the current applications of them in assistive device development. It also critically analyzes the existing literature to identify research gaps and suggest future directions. Biomechanical models can be broadly classified as conceptual and detailed models and can be used for the design, control, and assessment of exoskeletons. Also, these models can estimate unmeasurable or hard-to-measure variables, which is also useful within the aforementioned applications. We identified the validation of simulation studies and the enhancement of the accuracy and fidelity of biomechanical models as key future research areas for advancing the development of assistive devices. Additionally, we suggest using exoskeletons as a tool to validate and refine these models. We also emphasize the exploration of model-based design and control approaches for exoskeletons targeting pathological gait, and utilizing biomechanical models for diverse design objectives of exoskeletons. In addition, increasing the availability of open source resources accelerates the advancement of the exoskeleton and biomechanical models. Although biomechanical models are widely applied to improve movement assistance and rehabilitation, their full potential in developing human-compatible exoskeletons remains underexplored and requires further investigation. This review aims to reveal existing needs and cranks new perspectives for developing more effective exoskeletons based on biomechanical models.
Collapse
Affiliation(s)
- Vahid Firouzi
- Department of Computer Science, TU Darmstadt, Darmstadt , Germany.
- Institute of Sport Science, TU Darmstadt, Darmstadt , Germany.
| | - Andre Seyfarth
- Institute of Sport Science, TU Darmstadt, Darmstadt , Germany
| | - Seungmoon Song
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, USA
| | - Oskar von Stryk
- Department of Computer Science, TU Darmstadt, Darmstadt , Germany
| | | |
Collapse
|
2
|
Buchmann A, Kiss B, Badri-Spröwitz A, Renjewski D. How knee muscles and ground reaction forces shape knee buckling and ankle push-off in neuromuscular simulations of human walking. Sci Rep 2025; 15:2249. [PMID: 39824888 PMCID: PMC11742656 DOI: 10.1038/s41598-025-86147-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/08/2025] [Indexed: 01/20/2025] Open
Abstract
Ankle push-off is important for efficient, human-like walking, and many prosthetic devices mimic push-off using motors or elastic elements. The knee is extended throughout the stance phase and begins to buckle just before push-off, with timing being crucial. However, the exact mechanisms behind this buckling are still unclear. We use a predictive neuromuscular simulation to investigate whether active muscles are required for knee buckling and to what extent ground reaction forces (GRFs) drive it. In a systematic parameter search, we tested how long the knee muscles vastus (VAS), gastrocnemius (GAS), and hamstrings could be deactivated while maintaining a stable gait with impulsive push-off. VAS deactivation up to 35% of the gait cycle resulted in a dynamic gait with increased ankle peak power. GAS deactivation up to 20% of the gait cycle was detrimental to gait efficiency and showed reduced ankle peak power. At the start of knee buckling, the GRF vector is positioned near the knee joint's neutral axis, assisting in knee flexion. However, this mechanism is likely not enough to drive knee flexion independently. Our findings contribute to the biomechanical understanding of ankle push-off, with applications in prosthetic and bipedal robotic design, and fundamental research on human gait mechanics.
Collapse
Affiliation(s)
- Alexandra Buchmann
- Chair of Applied Mechanics, Technical University of Munich, Garching, 85748, Germany.
| | - Bernadett Kiss
- Dynamic Locomotion Group, Max-Plank-Institute for Intelligent Systems, Stuttgart, 70569, Germany
| | - Alexander Badri-Spröwitz
- Dynamic Locomotion Group, Max-Plank-Institute for Intelligent Systems, Stuttgart, 70569, Germany
- Department of Mechanical Engineering, KU Leuven, Leuven, 3001, Belgium
| | - Daniel Renjewski
- Chair of Applied Mechanics, Technical University of Munich, Garching, 85748, Germany
| |
Collapse
|
3
|
Mahmoudi A, Khosrotabar M, Gramann K, Rinderknecht S, Sharbafi MA. Using passive BCI for personalization of assistive wearable devices: a proof-of-concept study. IEEE Trans Neural Syst Rehabil Eng 2025; PP:476-487. [PMID: 40030934 DOI: 10.1109/tnsre.2025.3530154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Assistive wearable devices can significantly enhance the quality of life for individuals with movement impairments, aid the rehabilitation process, and augment movement abilities of healthy users. However, personalizing the assistance to individual preferences and needs remains a challenge. Brain-Computer Interface (BCI) offers a promising solution for this personalization problem. The overarching goal of this study is to investigate the feasibility of utilizing passive BCI technology to personalize the assistance provided by a knee exoskeleton. Participants performed seated knee flexion-extension tasks while wearing a one-degree-of-freedom knee exoskeleton with varying levels of applied force. Their brain activities were recorded throughout the movements using electroencephalography (EEG). EEG spectral bands from several brain regions were compared between the conditions with the lowest and highest exoskeleton forces to identify statistically significant changes. A Naive Bayes classifier was trained on these spectral features to distinguish between the two conditions. Statistical analysis revealed significant increases in δ and θ activity and decreases in α and β activity in the frontal, motor, and occipital cortices. These changes suggest heightened attention, concentration, and motor engagement when the task became more difficult. The trained Naive Bayes classifier achieved an average accuracy of approximately 72% in distinguishing between the two conditions. The outcomes of our study demonstrate the potential of passive BCI in personalizing assistance provided by wearable devices. Future research should further explore integrating passive BCI into assistive wearable devices to enhance user experience.
Collapse
|
4
|
Srisuchinnawong A, Akkawutvanich C, Manoonpong P. Adaptive Modular Neural Control for Online Gait Synchronization and Adaptation of an Assistive Lower-Limb Exoskeleton. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:12449-12458. [PMID: 37027271 DOI: 10.1109/tnnls.2023.3263044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Gait synchronization has attracted significant attention in research on assistive lower-limb exoskeletons because it can circumvent conflicting movements and improve the assistance performance. This study proposes an adaptive modular neural control (AMNC) for online gait synchronization and the adaptation of a lower-limb exoskeleton. The AMNC comprises several distributed and interpretable neural modules that interact with each other to effectively exploit neural dynamics and adopt feedback signals to quickly reduce the tracking error, thereby smoothly synchronizing the exoskeleton movement with the user's movement on the fly. Taking state-of-the-art control as the benchmark, the proposed AMNC provides further improvements in the locomotion phase, frequency, and shape adaptation. Accordingly, under the physical interaction between the user and the exoskeleton, the control can reduce the optimized tracking error and unseen interaction torque by up to 80% and 30%, respectively. Accordingly, this study contributes to the advancement of exoskeleton and wearable robotics research in gait assistance for the next generation of personalized healthcare.
Collapse
|
5
|
Mahdian ZS, Wang H, Refai MIM, Durandau G, Sartori M, MacLean MK. Tapping Into Skeletal Muscle Biomechanics for Design and Control of Lower Limb Exoskeletons: A Narrative Review. J Appl Biomech 2023; 39:318-333. [PMID: 37751903 DOI: 10.1123/jab.2023-0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/11/2023] [Accepted: 08/18/2023] [Indexed: 09/28/2023]
Abstract
Lower limb exoskeletons and exosuits ("exos") are traditionally designed with a strong focus on mechatronics and actuation, whereas the "human side" is often disregarded or minimally modeled. Muscle biomechanics principles and skeletal muscle response to robot-delivered loads should be incorporated in design/control of exos. In this narrative review, we summarize the advances in literature with respect to the fusion of muscle biomechanics and lower limb exoskeletons. We report methods to measure muscle biomechanics directly and indirectly and summarize the studies that have incorporated muscle measures for improved design and control of intuitive lower limb exos. Finally, we delve into articles that have studied how the human-exo interaction influences muscle biomechanics during locomotion. To support neurorehabilitation and facilitate everyday use of wearable assistive technologies, we believe that future studies should investigate and predict how exoskeleton assistance strategies would structurally remodel skeletal muscle over time. Real-time mapping of the neuromechanical origin and generation of muscle force resulting in joint torques should be combined with musculoskeletal models to address time-varying parameters such as adaptation to exos and fatigue. Development of smarter predictive controllers that steer rather than assist biological components could result in a synchronized human-machine system that optimizes the biological and electromechanical performance of the combined system.
Collapse
Affiliation(s)
- Zahra S Mahdian
- Department of Biomechanical Engineering, University of Twente, Enschede, the Netherlands
| | - Huawei Wang
- Department of Biomechanical Engineering, University of Twente, Enschede, the Netherlands
| | | | - Guillaume Durandau
- Department of Mechanical Engineering, McGill University, Montreal, QC, Canada
| | - Massimo Sartori
- Department of Biomechanical Engineering, University of Twente, Enschede, the Netherlands
| | - Mhairi K MacLean
- Department of Biomechanical Engineering, University of Twente, Enschede, the Netherlands
| |
Collapse
|
6
|
Stingel JP, Hicks JL, Uhlrich SD, Delp SL. Simulating Muscle-Level Energetic Cost Savings When Humans Run with a Passive Assistive Device. IEEE Robot Autom Lett 2023; 8:6267-6274. [PMID: 37745177 PMCID: PMC10512759 DOI: 10.1109/lra.2023.3303094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Connecting the legs with a spring attached to the shoelaces, called an exotendon, can reduce the energetic cost of running, but how the exotendon reduces the energetic burden of individual muscles remains unknown. We generated muscle-driven simulations of seven individuals running with and without the exotendon to discern whether savings occurred during the stance phase or the swing phase, and to identify which muscles contributed to energy savings. We computed differences in muscle-level energy consumption, muscle activations, and changes in muscle-fiber velocity and force between running with and without the exotendon. The seven of nine participants who reduced energy cost when running with the exotendon reduced their measured energy expenditure rate by 0.9 W/kg (8.3%). Simulations predicted a 1.4 W/kg (12.0%) reduction in the average rate of energy expenditure and correctly identified that the exotendon reduced rates of energy expenditure for all seven individuals. Simulations showed most of the savings occurred during stance (1.5 W/kg), though the rate of energy expenditure was also reduced during swing (0.3 W/kg). The energetic savings were distributed across the quadriceps, hip flexor, hip abductor, hamstring, hip adductor, and hip extensor muscle groups, whereas no changes were observed in the plantarflexor or dorsiflexor muscles. Energetic savings were facilitated by reductions in the rate of mechanical work performed by muscles and their estimated rate of heat production. By modeling muscle-level energetics, this simulation framework accurately captured measured changes in whole-body energetics when using an assistive device. This is a useful first step towards using simulation to accelerate device design by predicting how humans will interact with assistive devices that have yet to be built.
Collapse
Affiliation(s)
- Jon P Stingel
- Mechanical Engineering Department, Stanford University, Stanford, CA 94305
| | - Jennifer L Hicks
- Bioengineering Department, Stanford University, Stanford, CA 94305 USA
| | - Scott D Uhlrich
- Bioengineering Department, Stanford University, Stanford, CA 94305 USA
| | - Scott L Delp
- Departments of Mechanical Engineering, Bioengineering, and Orthopaedic Surgery, Stanford University, Stanford, CA 94305 USA
| |
Collapse
|
7
|
Mosconi D, Bo APL, Siqueira AAG. Predictive Simulations with OpenSim Moco to Investigate the Interaction Between Human and Assistive Exoskeleton. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38082907 DOI: 10.1109/embc40787.2023.10340617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
The purpose of this work was to investigate the interaction between human and lower limbs assistive exoskeleton under different levels of assistance, by using computational simulations. To this, a human-exoskeleton interaction model was used and three predictive simulations were carried out with the OpenSim Moco. The results proved that the increase in the level of robot assistance causes a reduction in human effort. In addition, it was possible to verify the RMS torque of both the robot and the human, as well as the muscle activations, for the different levels of assistance simulated. For future work, we intend to run predictive simulations with more complex movements, such as gait free and with obstacles, in addition to using models that can represent a human being with muscle weakness on one side of the body (hemiparesis).
Collapse
|
8
|
Uhlrich SD, Uchida TK, Lee MR, Delp SL. Ten steps to becoming a musculoskeletal simulation expert: A half-century of progress and outlook for the future. J Biomech 2023; 154:111623. [PMID: 37210923 PMCID: PMC10544733 DOI: 10.1016/j.jbiomech.2023.111623] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/05/2023] [Indexed: 05/23/2023]
Abstract
Over the past half-century, musculoskeletal simulations have deepened our knowledge of human and animal movement. This article outlines ten steps to becoming a musculoskeletal simulation expert so you can contribute to the next half-century of technical innovation and scientific discovery. We advocate looking to the past, present, and future to harness the power of simulations that seek to understand and improve mobility. Instead of presenting a comprehensive literature review, we articulate a set of ideas intended to help researchers use simulations effectively and responsibly by understanding the work on which today's musculoskeletal simulations are built, following established modeling and simulation principles, and branching out in new directions.
Collapse
Affiliation(s)
- Scott D Uhlrich
- Department of Bioengineering, Stanford University, 318 Campus Drive, Stanford, CA 94305, USA.
| | - Thomas K Uchida
- Department of Mechanical Engineering, University of Ottawa, 161 Louis-Pasteur, Ottawa, ON K1N 6N5, Canada.
| | - Marissa R Lee
- Department of Mechanical Engineering, Stanford University, 318 Campus Drive, Stanford, CA 94305, USA.
| | - Scott L Delp
- Department of Bioengineering, Stanford University, 318 Campus Drive, Stanford, CA 94305, USA; Department of Mechanical Engineering, Stanford University, 318 Campus Drive, Stanford, CA 94305, USA; Department of Orthopaedic Surgery, Stanford University, 318 Campus Drive, Stanford, CA 94305, USA.
| |
Collapse
|
9
|
Stingel JP, Hicks JL, Uhlrich SD, Delp SL. How Connecting the Legs with a Spring Improves Human Running Economy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.03.535498. [PMID: 37066206 PMCID: PMC10104051 DOI: 10.1101/2023.04.03.535498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Connecting the legs with a spring attached to the shoelaces reduces the energy cost of running, but how the spring reduces the energy burden of individual muscles remains unknown. We generated muscle-driven simulations of seven individuals running with and without the spring to discern whether savings occurred during the stance phase or the swing phase, and to identify which muscles contributed to energy savings. We computed differences in muscle-level energy consumption, muscle activations, and changes in muscle-fiber velocity and force between running with and without the spring. Across participants, running with the spring reduced the measured rate of energy expenditure by 0.9 W/kg (8.3%). Simulations predicted a 1.4 W/kg (12.0%) reduction in the average rate of energy expenditure and correctly identified that the spring reduced rates of energy expenditure for all participants. Simulations showed most of the savings occurred during stance (1.5 W/kg), though the rate of energy expenditure was also reduced during swing (0.3 W/kg). The energetic savings were distributed across the quadriceps, hip flexor, hip abductor, hamstring, hip adductor, and hip extensor muscle groups, whereas no changes in the rate of energy expenditure were observed in the plantarflexor or dorsiflexor muscles. Energetic savings were facilitated by reductions in the rate of mechanical work performed by muscles and their estimated rate of heat production. The simulations provide insight into muscle-level changes that occur when utilizing an assistive device and the mechanisms by which a spring connecting the legs improves running economy.
Collapse
Affiliation(s)
- Jon P Stingel
- Mechanical Engineering Department, Stanford University Stanford, CA 94305 USA
| | - Jennifer L Hicks
- Bioengineering Department, Stanford University, Stanford, CA 94305 USA
| | - Scott D Uhlrich
- Bioengineering Department, Stanford University, Stanford, CA 94305 USA
| | - Scott L Delp
- Departments of Mechanical Engineering, Bioengineering, and Orthopaedic Surgery, Stanford University, Stanford, CA 94305 USA
| |
Collapse
|
10
|
Chandran VD, Nam S, Hexner D, Bauman WA, Pal S. Comparison of the dynamics of exoskeletal-assisted and unassisted locomotion in an FDA-approved lower extremity device: Controlled experiments and development of a subject-specific virtual simulator. PLoS One 2023; 18:e0270078. [PMID: 36763637 PMCID: PMC9916583 DOI: 10.1371/journal.pone.0270078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 01/25/2023] [Indexed: 02/12/2023] Open
Abstract
Robotic exoskeletons have considerable, but largely untapped, potential to restore mobility in individuals with neurological disorders, and other conditions that result in partial or complete immobilization. The growing demand for these devices necessitates the development of technology to characterize the human-robot system during exoskeletal-assisted locomotion (EAL) and accelerate robot design refinements. The goal of this study was to combine controlled experiments with computational modeling to build a virtual simulator of EAL. The first objective was to acquire a minimum empirical dataset comprising human-robot kinematics, ground reaction forces, and electromyography during exoskeletal-assisted and unassisted locomotion from an able-bodied participant. The second objective was to quantify the dynamics of the human-robot system using a subject-specific virtual simulator reproducing EAL compared to the dynamics of normal gait. We trained an able-bodied participant to ambulate independently in a Food and Drug Administration-approved exoskeleton, the ReWalk P6.0 (ReWalk Robotics, Yoknaem, Israel). We analyzed the motion of the participant during exoskeletal-assisted and unassisted walking, sit-to-stand, and stand-to-sit maneuvers, with simultaneous measurements of (i) three-dimensional marker trajectories, (ii) ground reaction forces, (iii) electromyography, and (iv) exoskeleton encoder data. We created a virtual simulator in OpenSim, comprising a whole-body musculoskeletal model and a full-scale exoskeleton model, to determine the joint kinematics and moments during exoskeletal-assisted and unassisted maneuvers. Mean peak knee flexion angles of the human subject during exoskeletal-assisted walking were 50.1° ± 0.6° (left) and 52.6° ± 0.7° (right), compared to 68.6° ± 0.3° (left) and 70.7° ± 1.1° (right) during unassisted walking. Mean peak knee extension moments during exoskeletal-assisted walking were 0.10 ± 0.10 Nm/kg (left) and 0.22 ± 0.11 Nm/kg (right), compared to 0.64 ± 0.07 Nm/kg (left) and 0.73 ± 0.10 Nm/kg (right) during unassisted walking. This work provides a foundation for parametric studies to characterize the effects of human and robot design variables, and predictive modeling to optimize human-robot interaction during EAL.
Collapse
Affiliation(s)
- Vishnu D. Chandran
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, United States of America
| | - Sanghyun Nam
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, United States of America
| | | | - William A. Bauman
- James J. Peters Veterans Affairs Medical Center, Bronx, New York, United States of America
- Department of Medicine and Rehabilitation & Human Performance, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Saikat Pal
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, United States of America
- Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, New Jersey, United States of America
| |
Collapse
|
11
|
Scherb D, Wartzack S, Miehling J. Modelling the interaction between wearable assistive devices and digital human models-A systematic review. Front Bioeng Biotechnol 2023; 10:1044275. [PMID: 36704313 PMCID: PMC9872199 DOI: 10.3389/fbioe.2022.1044275] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/21/2022] [Indexed: 01/11/2023] Open
Abstract
Exoskeletons, orthoses, exosuits, assisting robots and such devices referred to as wearable assistive devices are devices designed to augment or protect the human body by applying and transmitting force. Due to the problems concerning cost- and time-consuming user tests, in addition to the possibility to test different configurations of a device, the avoidance of a prototype and many more advantages, digital human models become more and more popular for evaluating the effects of wearable assistive devices on humans. The key indicator for the efficiency of assistance is the interface between device and human, consisting mainly of the soft biological tissue. However, the soft biological tissue is mostly missing in digital human models due to their rigid body dynamics. Therefore, this systematic review aims to identify interaction modelling approaches between wearable assistive devices and digital human models and especially to study how the soft biological tissue is considered in the simulation. The review revealed four interaction modelling approaches, which differ in their accuracy to recreate the occurring interactions in reality. Furthermore, within these approaches there are some incorporating the appearing relative motion between device and human body due to the soft biological tissue in the simulation. The influence of the soft biological tissue on the force transmission due to energy absorption on the other side is not considered in any publication yet. Therefore, the development of an approach to integrate the viscoelastic behaviour of soft biological tissue in the digital human models could improve the design of the wearable assistive devices and thus increase its efficiency and efficacy.
Collapse
Affiliation(s)
- David Scherb
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Engineering Design, Erlangen, Germany
| | | | | |
Collapse
|
12
|
Franks PW, Bryan GM, Reyes R, O'Donovan MP, Gregorczyk KN, Collins SH. The Effects of Incline Level on Optimized Lower-Limb Exoskeleton Assistance: a Case Series. IEEE Trans Neural Syst Rehabil Eng 2022; 30:2494-2505. [PMID: 35930513 DOI: 10.1109/tnsre.2022.3196665] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
For exoskeletons to be successful in real-world settings, they will need to be effective across a variety of terrains, including on inclines. While some single-joint exoskeletons have assisted incline walking, recent successes in level-ground assistance suggest that greater improvements may be possible by optimizing assistance of the whole leg. To understand how exoskeleton assistance should change with incline, we used human-in-the-loop optimization to find whole-leg exoskeleton assistance torques that minimized metabolic cost on a range of grades. We optimized assistance for three able-bodied, expert participants on 5 degree, 10 degree, and 15 degree inclines using a hip-knee-ankle exoskeleton emulator. For all assisted conditions, the cost of transport was reduced by at least 50% relative to walking in the device with no assistance, which is a large improvement to walking comparable to the benefits of whole-leg assistance on level-ground (N = 3). Optimized extension torque magnitudes and exoskeleton power increased with incline. Hip extension, knee extension and ankle plantarflexion often grew as large as allowed by comfort-based limits. Applied powers on steep inclines were double the powers applied during level-ground walking, indicating that greater exoskeleton power may be optimal in scenarios where biological powers and costs are higher. Future exoskeleton devices could deliver large improvements in walking performance across a range of inclines if they have sufficient torque and power capabilities.
Collapse
|
13
|
Noei V, Lakany H. Analysis of movement of an elbow joint with a wearable robotic exoskeleton Using OpenSim software. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:4342-4345. [PMID: 36086238 DOI: 10.1109/embc48229.2022.9871441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Human body movement occurs as a result of a coordinated effort between the skeleton, muscles, tendons, ligaments, cartilage, and other connective tissue. The study of movement is crucial in the treatment of some neurological and musculoskeletal diseases. The advancement of science and technology has led to the development of musculoskeletal model simulation software such as OpenSim that plays a very significant role in tackling complex bioengineering challenges and assists in our understanding of human movement. Such biomechanical models of musculoskeletal systems may also facilitate medical decision-making. Through fast and accurate calculations, OpenSim modelling enables prediction and visualisation of motion problems. OpenSim has been used in many studies to investigate and assess movements of the upper limb under various scenarios. This work investigates elbow movement of a paretic arm wearing a myoelectric robotic exoskeleton. The simulation focuses on the exoskeleton elbow joint with one degree of freedom for individuals that we have developed to support and rehabilitate a weakened/paretic arm due to a spinal cord injury for example. Accordingly, it simulates the kinematic characteristics of the human arm whilst the exoskeleton assists the arm flexion/extension to maximise its range of motion. To obtain the motion data required for this study, a forward dynamics method must be implemented. Firstly, inverse kinematics is applied to the joint angles, and then, the torque and force required for angular motion of the elbow joint are calculated using forward dynamics. The results show that the muscle forces required to generate an elbow flexion are considerably less when the exoskeleton is worn. Clinical Relevance--- The exoskeleton assists patients to extend and flex their arm, thus supporting rehabilitation and arm function during activities of daily living. Exoskeleton movement is derived from residual myoelectric signals extracted from the patient's arm muscles. Modelling the dynamics and kinematics of the arm with the exoskeleton can reveal and predict any movement issues that need to be addressed.
Collapse
|