1
|
Oyagi S, Nakamura R, Katsuno T, Sogami T, Kawai Y, Kishimoto Y, Omori K. Local coordination of epithelial planar polarity in the maintenance and regeneration of the adult rat airway. Cell Tissue Res 2023; 394:163-175. [PMID: 37460682 DOI: 10.1007/s00441-023-03809-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/05/2023] [Indexed: 10/07/2023]
Abstract
The maintenance of planar polarity in airway multiciliated cells (MCCs) has been poorly characterized. We recently reported that the direction of ciliary beating in a surgically inverted tracheal segment remained inverted beyond the time required for the turnover of cells, without adjustment to global distal-to-proximal polarity. We hypothesized that the local maintenance of tissue-level polarity occurs via locally reproduced cells. To provide further insight regarding this hypothetical property, we performed allotransplantation of an inverted tracheal segment between wild-type (donor) and tdTomato-expressing (host) rats, with and without scratching the mucosa of the transplants. The origin of cells in the transplants was assessed using tdTomato-specific immunostaining. Ciliary movement and structures were observed by high-speed video and electron microscopy to analyze MCC orientations. Variabilities in the orientations of closely and distantly located MCCs were analyzed to evaluate the local- and broad-scale coordination of polarity, respectively. The epithelium was maintained by donor-derived cells in the non-scratched inverted transplant over 6 months, beyond one cycle of turnover. The inverted orientation of MCCs was also maintained throughout the non-scratched transplant. MCCs regenerated in the scratched transplant were derived from the host and exhibited diverse orientations across the transplant. However, the orientations of adjacent regenerated MCCs were often coordinated, indicating that airway MCCs can locally coordinate their orientations. A steady-state airway may maintain MCC orientation by locally reproducing MCCs via the local coordination of polarity. This local coordination enables the formation and maintenance of tissue-level polarity in small regions after mucosal injury.
Collapse
Affiliation(s)
- Seiji Oyagi
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Min-iren Chuo Hospital, Kyoto, Japan
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Ryosuke Nakamura
- Department of Rehabilitation Medicine, New York University Grossman School of Medicine, New York, USA
| | - Tatsuya Katsuno
- Center of Anatomical, Pathological and Forensic Medical Researches, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tohru Sogami
- Department of Otolaryngology-Head and Neck Surgery, SOSEIKAI hospital, Kyoto, Japan
| | - Yoshitaka Kawai
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Yo Kishimoto
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Koichi Omori
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| |
Collapse
|
2
|
Kunimoto K, Weiner AT, Axelrod JD, Vladar EK. Distinct overlapping functions for Prickle1 and Prickle2 in the polarization of the airway epithelium. Front Cell Dev Biol 2022; 10:976182. [PMID: 36176272 PMCID: PMC9513604 DOI: 10.3389/fcell.2022.976182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Planar cell polarity (PCP) signaling polarizes cells within the plane of an epithelium. In the airways, planar cell polarity signaling orients the directional beating of motile cilia required for effective mucociliary clearance. The planar cell polarity signaling mechanism is best understood from work in Drosophila, where it has been shown to both coordinate the axis of polarity between cells and to direct the morphological manifestations of polarization within cells. The ‘core’ planar cell polarity signaling mechanism comprises two protein complexes that segregate to opposite sides of each cell and interact with the opposite complex in neighboring cells. Proper subcellular localization of core planar cell polarity proteins correlates with, and is almost certainly responsible for, their ability to direct polarization. This mechanism is highly conserved from Drosophila to vertebrates, though for most of the core genes, mammals have multiple paralogs whereas Drosophila has only one. In the mouse airway epithelium, the core protein Prickle2 segregates asymmetrically, as is characteristic for core proteins, but is only present in multiciliated cells and is absent from other cell types. Furthermore, Prickle2 mutant mice show only modest ciliary polarity defects. These observations suggest that other Prickle paralogs might contribute to polarization. Here, we show that Prickle1 segregates asymmetrically in multiciliated and nonciliated airway epithelial cell types, that compared to Prickle2, Prickle1 has different spatial and temporal expression dynamics and a stronger ciliary polarity phenotype, and that Prickle1 and Prickle2 mutants genetically interact. We propose distinct and partially overlapping functions for the Prickle paralogs in polarization of the airway epithelium.
Collapse
Affiliation(s)
- Koshi Kunimoto
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - Alexis T. Weiner
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - Jeffrey D. Axelrod
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - Eszter K. Vladar
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, United States
- *Correspondence: Eszter K. Vladar,
| |
Collapse
|
3
|
Ueda A, O'Harrow TCDG, Xing X, Ehaideb S, Manak JR, Wu CF. Abnormal larval neuromuscular junction morphology and physiology in Drosophila prickle isoform mutants with known axonal transport defects and adult seizure behavior. J Neurogenet 2022; 36:65-73. [PMID: 35775303 DOI: 10.1080/01677063.2022.2093353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Previous studies have demonstrated the striking mutational effects of the Drosophila planar cell polarity gene prickle (pk) on larval motor axon microtubule-mediated vesicular transport and on adult epileptic behavior associated with neuronal circuit hyperexcitability. Mutant alleles of the prickle-prickle (pkpk) and prickle-spiny-legs (pksple) isoforms (hereafter referred to as pk and sple alleles, respectively) exhibit differential phenotypes. While both pk and sple affect larval motor axon transport, only sple confers motor circuit and behavior hyperexcitability. However, mutations in the two isoforms apparently counteract to ameliorate adult motor circuit and behavioral hyperexcitability in heteroallelic pkpk/pksple flies. We have further investigated the consequences of altered axonal transport in the development and function of the larval neuromuscular junction (NMJ). We uncovered robust dominant phenotypes in both pk and sple alleles, including synaptic terminal overgrowth (as revealed by anti-HRP and -Dlg immunostaining) and poor vesicle release synchronicity (as indicated by synaptic bouton focal recording). However, we observed recessive alteration of synaptic transmission only in pk/pk larvae, i.e. increased excitatory junctional potential (EJP) amplitude in pk/pk but not in pk/+ or sple/sple. Interestingly, for motor terminal excitability sustained by presynaptic Ca2+ channels, both pk and sple exerted strong effects to produce prolonged depolarization. Notably, only sple acted dominantly whereas pk/+ appeared normal, but was able to suppress the sple phenotypes, i.e. pk/sple appeared normal. Our observations contrast the differential roles of the pk and sple isoforms and highlight their distinct, variable phenotypic expression in the various structural and functional aspects of the larval NMJ.
Collapse
Affiliation(s)
- Atsushi Ueda
- Department of Biology, University of Iowa, Iowa City, IA, USA
| | | | - Xiaomin Xing
- Department of Biology, University of Iowa, Iowa City, IA, USA
| | - Salleh Ehaideb
- Department of Biology, University of Iowa, Iowa City, IA, USA.,Genetics Ph.D. Program, University of Iowa, Iowa City, IA, USA
| | - J Robert Manak
- Department of Biology, University of Iowa, Iowa City, IA, USA.,Genetics Ph.D. Program, University of Iowa, Iowa City, IA, USA.,Department of Pediatrics, University of Iowa, Iowa City, IA, USA.,Neuroscience Ph.D. Program, University of Iowa, Iowa City, IA, USA
| | - Chun-Fang Wu
- Department of Biology, University of Iowa, Iowa City, IA, USA.,Genetics Ph.D. Program, University of Iowa, Iowa City, IA, USA.,Neuroscience Ph.D. Program, University of Iowa, Iowa City, IA, USA
| |
Collapse
|