Riggs GJ, Barton CM, Riding CS, O’Connell TJ, Loss SR. Field-testing effectiveness of window markers in reducing bird-window collisions.
Urban Ecosyst 2022;
26:1-11. [PMID:
36588777 PMCID:
PMC9789516 DOI:
10.1007/s11252-022-01304-w]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2022] [Indexed: 12/25/2022]
Abstract
Bird-window collisions are a major source of human-caused mortality for which there are multiple mitigation and prevention options available. Despite growing availability of products designed to reduce collisions (e.g., glass with etched patterns or markers and films adhered over existing glass), few replicated field tests have been conducted to assess their effectiveness after installation on glass. We conducted a field study to evaluate the effectiveness of a commercially marketed product (Feather Friendly® markers) in reducing bird-window collisions at glass-walled bus shelters in Stillwater, Oklahoma, USA. This study included a before-after control-impact (BACI) analysis comparing numbers of collisions at 18 bus shelters in both pre-treatment (2016) and post-treatment (2020) periods, and an analysis comparing 18 treated and 18 untreated shelters during 2020. For the BACI analysis, collisions were significantly reduced between 2016 and 2020 at shelters treated with the Feather Friendly® markers even though collisions increased at shelters that remained untreated. For the 2020 analysis, there were significantly fewer collisions at treated than untreated shelters. Relative to a baseline study in 2016, we estimated that treating half of Stillwater's bus shelters resulted in a 64% reduction in total annual bird collisions. Together, these analyses provide a rigorous field test of the effectiveness of this treatment option in reducing bird-window collisions. Our research provides a model for similar studies at both bus shelters and buildings to evaluate and compare products designed to reduce bird-window collisions, and therefore, contribute to reducing this major mortality source affecting bird populations.
Supplementary Information
The online version contains supplementary material available at 10.1007/s11252-022-01304-w.
Collapse