1
|
Shao Q, Ren L, Ramzan M, Hussain MB, Datta R, Almoallim HS, Ansari MJ, Ehsan A. Combined effect of gallic acid and zinc ferrite nanoparticles on wheat growth and yield under salinity stress. Sci Rep 2024; 14:12854. [PMID: 38834735 DOI: 10.1038/s41598-024-63175-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 05/27/2024] [Indexed: 06/06/2024] Open
Abstract
Salinity stress significantly impacts crops, disrupting their water balance and nutrient uptake, reducing growth, yield, and overall plant health. High salinity in soil can adversely affect plants by disrupting their water balance. Excessive salt levels can lead to dehydration, hinder nutrient absorption, and damage plant cells, ultimately impairing growth and reducing crop yields. Gallic acid (GA) and zinc ferrite (ZnFNP) can effectively overcome this problem. GA can promote root growth, boost photosynthesis, and help plants absorb nutrients efficiently. However, their combined application as an amendment against drought still needs scientific justification. Zinc ferrite nanoparticles possess many beneficial properties for soil remediation and medical applications. That's why the current study used a combination of GA and ZnFNP as amendments to wheat. There were 4 treatments, i.e., 0, 10 µM GA, 15 μM GA, and 20 µM GA, without and with 5 μM ZnFNP applied in 4 replications following a completely randomized design. Results exhibited that 20 µM GA + 5 μM ZnFNP caused significant improvement in wheat shoot length (28.62%), shoot fresh weight (16.52%), shoot dry weight (11.38%), root length (3.64%), root fresh weight (14.72%), and root dry weight (9.71%) in contrast to the control. Significant enrichment in wheat chlorophyll a (19.76%), chlorophyll b (25.16%), total chlorophyll (21.35%), photosynthetic rate (12.72%), transpiration rate (10.09%), and stomatal conductance (15.25%) over the control validate the potential of 20 µM GA + 5 μM ZnFNP. Furthermore, improvement in N, P, and K concentration in grain and shoot verified the effective functioning of 20 µM GA + 5 μM ZnFNP compared to control. In conclusion, 20 µM GA + 5 μM ZnFNP can potentially improve the growth, chlorophyll contents and gas exchange attributes of wheat cultivated in salinity stress. More investigations are suggested to declare 20 µM GA + 5 μM ZnFNP as the best amendment for alleviating salinity stress in different cereal crops.
Collapse
Affiliation(s)
- Qingqin Shao
- College of Agriculture/Anhui Intelligent Crop Planting and Processing Technology Engineering Research Center, Anhui Science and Technology University, Fengyang, 233100, Anhui, China.
| | - Lantian Ren
- College of Agriculture/Anhui Intelligent Crop Planting and Processing Technology Engineering Research Center, Anhui Science and Technology University, Fengyang, 233100, Anhui, China
| | - Musarrat Ramzan
- Department of Botany, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Baqir Hussain
- Department of Soil and Environmental Sciences, MNS University of Agriculture, Multan, 60000, Punjab, Pakistan
| | - Rahul Datta
- Department of Geology and Pedology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemedelska 1, 61300, Brno, Czech Republic.
| | - Hesham S Almoallim
- Department of Oral and Maxillofacial Surgery, College of Dentistry, King Saud University, PO Box-60169, 11545, Riyadh, Saudi Arabia
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad (Mahatma Jyotiba Phule Rohilkhand University Bareilly), Moradabad, India
| | - Abdullah Ehsan
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Punjab, Pakistan.
| |
Collapse
|
2
|
Mo Q, Liu Y, Wei H, Jiang L, Wu E, Lin L, Yang Q, Yu X, Yan L, Li Y. Salt Tolerance in Machilus faberi: Elucidating Growth and Physiological Adaptations to Saline Environments. BIOLOGY 2024; 13:75. [PMID: 38392294 PMCID: PMC10886294 DOI: 10.3390/biology13020075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/08/2024] [Accepted: 01/22/2024] [Indexed: 02/24/2024]
Abstract
Adversity stress is the main environmental factor limiting plant growth and development, including salt and other stress factors. This study delves into the adaptability and salt tolerance mechanisms of Machilus faberi Hemsl, a species with potential for cultivation in salinized areas. We subjected the plants to various salt concentrations to observe their growth responses and to assess key physiological and biochemical indicators. The results revealed that under high salt concentrations (500 and 700 mmol-1/L), symptoms such as leaf yellowing, wilting, and eventual death were observed. Notably, plant height and shoot growth ceased on the 14th day of exposure. Chlorophyll content (a, b, total a + b, and the a/b ratio) initially increased but subsequently decreased under varying levels of salt stress. Similarly, the net photosynthetic rate, stomatal conductance, leaf water content, and root activity significantly declined under these conditions. Moreover, we observed an increase in malondialdehyde levels and relative conductivity, indicative of cellular damage and stress. The activity of superoxide dismutase and ascorbate peroxidase initially increased and then diminished with prolonged stress, whereas peroxidase activity consistently increased. Levels of proline and soluble protein exhibited an upward trend, contrasting with the fluctuating pattern of soluble sugars, which decreased initially but increased subsequently. In conclusion, M. faberi exhibits a degree of tolerance to salt stress, albeit with growth limitations when concentrations exceed 300 mmol-1/L. These results shed light on the plant's mechanisms of responding to salt stress and provide a theoretical foundation for its cultivation and application in salt-affected regions.
Collapse
Affiliation(s)
- Qiong Mo
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
- Hunan Botanical Garden, Changsha 410128, China
- Hunan Mid-Subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, Changsha 410005, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha 410128, China
| | - Yang Liu
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
- Hunan Mid-Subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, Changsha 410005, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha 410128, China
| | - Haohui Wei
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
- Hunan Mid-Subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, Changsha 410005, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha 410128, China
| | | | - En Wu
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
- Hunan Mid-Subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, Changsha 410005, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha 410128, China
| | - Ling Lin
- School of Economics, Hunan Agricultural University, Changsha 410128, China
| | - Qihong Yang
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
- Hunan Mid-Subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, Changsha 410005, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha 410128, China
| | - Xiaoying Yu
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
- Hunan Mid-Subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, Changsha 410005, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha 410128, China
| | - Lihong Yan
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
- Hunan Botanical Garden, Changsha 410128, China
| | - Yanlin Li
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
- Hunan Mid-Subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, Changsha 410005, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha 410128, China
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| |
Collapse
|
3
|
Zafar S, Hasnain Z, Danish S, Battaglia ML, Fahad S, Ansari MJ, Alharbi SA. Modulations of wheat growth by selenium nanoparticles under salinity stress. BMC PLANT BIOLOGY 2024; 24:35. [PMID: 38185637 PMCID: PMC10773136 DOI: 10.1186/s12870-024-04720-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 01/01/2024] [Indexed: 01/09/2024]
Abstract
Salinity stress is a prominent environmental factor that presents obstacles to the growth and development of plants. When the soil contains high salt concentrations, the roots face difficulties in absorbing water, resulting in water deficits within the plant tissues. Consequently, plants may experience inhibited growth, decreased development, and a decline in biomass accumulation. The use of nanoparticles has become a popular amendment in recent times for the alleviation of salinity stress. The study investigated the biological approach for the preparation of Se nanoparticles (NP) and their effect on the growth of wheat plants under saline conditions. The leaf extract of lemon (Citrus limon L.) was used for the green synthesis of selenium nanoparticles (Se-NPs). The synthesized NPs were characterized by X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR) and were applied foliar in the range of 0.01%, 0.05% and 0.1% on wheat plants. Results showed that 0.1% SeNP alone exhibited a significantly higher yield per plant, biomass per plant, 1000 grains weight, chlorophyll a, chlorophyll b and total chlorophyll over the SS (salt stress) control. A significant decline in MDA and H2O2 also validated the effectiveness of 0.1% SeNP over the SS control.
Collapse
Affiliation(s)
- Sara Zafar
- Botany Department, Government College University, Faisalabad, Pakistan
| | | | - Subhan Danish
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Punjab, Pakistan.
| | | | - Shah Fahad
- Department of Agronomy, Abdul Wali Khan University Mardan, Mardan, Khyber Pakhtunkhwa, 23200, Pakistan
- Department of Natural Sciences, Lebanese American University, Byblos, Lebanon
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad (MJP Rohilkhand University Bareilly), Moradabad, 244001, India
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
4
|
Bayomy HM, Alamri ES, Alharbi BM, Foudah SH, Genaidy EA, Atteya AK. Response of Moringa oleifera trees to salinity stress conditions in Tabuk region, Kingdom of Saudi Arabia. Saudi J Biol Sci 2023; 30:103810. [PMID: 37766885 PMCID: PMC10519853 DOI: 10.1016/j.sjbs.2023.103810] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/22/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
Moringa oleifera is an amazing tree with various applications. Salinity is a world major barrier to crop productivity. This study was conducted to investigate salinity and seaweed extract's effect on Moringa oleifera's growth and yields. Measurements were made of growth characteristics, fresh and dried leaf, inflorescence, mature pod and seed weight, and yield per tree, as well as chemical parameters. Seasons had no substantial effect on any of these traits. In terms of seaweed concentrations, the treatment containing 20% seaweed outperformed the treatment containing 0% seaweed in all measurements. Concerning the salinity levels, the maximum level of all studied attributes was at 18.75 mmol/L NaCl, while the level of 70.31 mmol/L NaCl has the lowest values. The interaction between salinity levels and seaweed revealed that T4 (18.75 mmol/L NaCl plus 20 % seaweed) was the highest for all traits and T9 (70.31 mmol/L NaCl plus 0 % seaweed) was the lowest for all traits except for the potassium content. Concerning potassium content, T7 (54.69 mmol/L NaCl plus 0 % seaweed) was the lowest. These findings could help to develop efficient breeding methods for Moringa oleifera in the future.
Collapse
Affiliation(s)
- Hala M. Bayomy
- Food Science and Nutrition Department, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Eman S. Alamri
- Food Science and Nutrition Department, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Basmah M. Alharbi
- Biology Department, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Shaden H. Foudah
- Food Science and Nutrition Department, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Esmail A. Genaidy
- Pomology Department, Agricultural and Biology Research Institute, National Research Centre, Giza 12622, Egypt
| | - Amira K. Atteya
- Horticulture Department, Damanhour University, Damanhour 22516, Egypt
| |
Collapse
|
5
|
Gauhar SJ, Qurashi AW, Liaqat I, Zafar U, Virk MA, Ara C, Faheem M, Mubin M. Halotolerant bacterial biofilms for desalination and water treatment: a pilot study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27411-5. [PMID: 37171730 DOI: 10.1007/s11356-023-27411-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 04/30/2023] [Indexed: 05/13/2023]
Abstract
Salinity has a significant impact on the water quality and crop yield. Physical desalination techniques were once thought to be expensive and time-consuming. Among biological techniques, halotolerant bacteria were thought to be the fastest and most effective way to reduce the salt content in brackish saltwater water. In the current study, halotolerant bacterial biofilms were used to desalinate saline water on abiotic substrates (such as sand, pebbles, glass beads, and plastic beads), and studied subsequently for the effects on Zea mays germination. Briefly, salt samples (SLT7 and SLT8) from the Khewra site in Punjab, Pakistan, as well as seawater and sea sand samples (USW1, USW3, USW6, DSW1, DSW4, SS1, and SS3) from Karachi, Sindh, Pakistan's Arabian Sea, were collected. Halotolerant bacteria were isolated and characterized. Crystal violet ring assays and capsule staining were used to estimate extracellular polymeric substance (EPS) and biofilm development, respectively. All halotolerant bacterial strains were spore formers and produced EPS and formed biofilms well. 16S rRNA gene sequencing of the best halotolerant bacteria, USW6, showed the closest (100%) similarity to Bacillus aerius strain G-07 (a novel species) (accession number ON202984). A pilot-scale experiment for desalinating the artificial water (supplemented with 1 M NaCl) using biofilm adhered abiotic beads showed declined level of NaCl from 1 M to 0.00003 M after 15 days in treated water. Also, Zea mays germination was observed in the plants using treated water compared to no growth in the non-treated saline water. Estimations of chlorophyll, total soluble sugar, and protein revealed that plants cultivated using elute collected from a desalinated pilot scale setup contained less chlorophyll (i.e., 5.994 and 116.76). Likewise, plants grown with elute had a total soluble protein and sugar content of 1.45 mg/ml and 1.3 mg/ml, respectively. Overall, in treated water plants, a minor drop in chlorophyll content, a slight increase in total soluble sugar content, and a slight increase in protein content were noted. The study concluded that biofilm-treated desalt water has the potential to significantly reduce the effects of droughts, soil salinization, and economic and environmental issues associated with agricultural drainage. The results specified the application of halotolerant bacteria biofilms (Bacillus aerius, a novel species, USW6) for water desalination to overcome the problem of water scarcity caused by global warming and the increased salinity.
Collapse
Affiliation(s)
- Sadaf Jahan Gauhar
- Department of Biology, Faculty of Basic Sciences, Lahore Garrison University, Lahore, Pakistan
| | - Aisha Waheed Qurashi
- Department of Biology, Faculty of Basic Sciences, Lahore Garrison University, Lahore, Pakistan
| | - Iram Liaqat
- Microbiology Lab, Department of Zoology, Government College University, Lahore, 54000, Pakistan.
| | - Urooj Zafar
- Department of Microbiology, University of Karachi, Karachi, Pakistan
| | - Muhammad Arshad Virk
- CVAS, University of Veterinary and Animal Sciences Lahore, Jhang Campus, Jhang, Pakistan
| | - Chaman Ara
- Department of Zoology, University of the Punjab, Lahore, Pakistan
| | - Mehwish Faheem
- Microbiology Lab, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Muhammad Mubin
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
6
|
Fiorillo A, Manai M, Visconti S, Camoni L. The Salt Tolerance-Related Protein (STRP) Is a Positive Regulator of the Response to Salt Stress in Arabidopsis thaliana. PLANTS (BASEL, SWITZERLAND) 2023; 12:1704. [PMID: 37111928 PMCID: PMC10145591 DOI: 10.3390/plants12081704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/06/2023] [Accepted: 04/17/2023] [Indexed: 06/19/2023]
Abstract
Salt stress is a major abiotic stress limiting plant survival and crop productivity. Plant adaptation to salt stress involves complex responses, including changes in gene expression, regulation of hormone signaling, and production of stress-responsive proteins. The Salt Tolerance-Related Protein (STRP) has been recently characterized as a Late Embryogenesis Abundant (LEA)-like, intrinsically disordered protein involved in plant responses to cold stress. In addition, STRP has been proposed as a mediator of salt stress response in Arabidopsis thaliana, but its role has still to be fully clarified. Here, we investigated the role of STRP in salt stress responses in A. thaliana. The protein rapidly accumulates under salt stress due to a reduction of proteasome-mediated degradation. Physiological and biochemical responses of the strp mutant and STRP-overexpressing (STRP OE) plants demonstrate that salt stress impairs seed germination and seedling development more markedly in the strp mutant than in A. thaliana wild type (wt). At the same time, the inhibitory effect is significantly reduced in STRP OE plants. Moreover, the strp mutant has a lower ability to counteract oxidative stress, cannot accumulate the osmocompatible solute proline, and does not increase abscisic acid (ABA) levels in response to salinity stress. Accordingly, the opposite effect was observed in STRP OE plants. Overall, obtained results suggest that STRP performs its protective functions by reducing the oxidative burst induced by salt stress, and plays a role in the osmotic adjustment mechanisms required to preserve cellular homeostasis. These findings propose STRP as a critical component of the response mechanisms to saline stress in A. thaliana.
Collapse
Affiliation(s)
- Anna Fiorillo
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy; (A.F.); (M.M.)
| | - Michela Manai
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy; (A.F.); (M.M.)
- Ph.D. Program in Cellular and Molecular Biology, Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Sabina Visconti
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy; (A.F.); (M.M.)
| | - Lorenzo Camoni
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy; (A.F.); (M.M.)
| |
Collapse
|
7
|
Salinity stress improves antioxidant potential by modulating physio-biochemical responses in Moringa oleifera Lam. Sci Rep 2023; 13:2895. [PMID: 36807545 PMCID: PMC9938910 DOI: 10.1038/s41598-023-29954-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 02/13/2023] [Indexed: 02/20/2023] Open
Abstract
Moringa oleifera Lam. is a common edible plant, famous for several nutritional and therapeutic benefits. This study investigates the salt -induced modulations in plant growth, physio-biochemical responses, and antioxidant performance of M. oleifera grown under 0, 50, and 100 mM NaCl concentrations. Results showed that the plant effectively managed moderate salinity (50 mM NaCl) by maintaining succulence, weight ratios, and biomass allocation patterns of both shoot and root with minimal reduction in dry biomass. However, high salinity (100 mM NaCl) remarkably declined all growth parameters. The plant accumulated more Na+ and Cl-, while less K+ under salinity as compared to the control. Consequently, osmotic potentials of both root and leaf decreased under salinity, which was corroborated by the high amount of proline and soluble sugars. Increased level of H2O2 with significantly unchanged membrane fluidity indicating its role in perceiving and managing stress at moderate salinity. In addition, increased activities of superoxide dismutase, and catalase, with increased glutathione and flavonoid contents suggest an integrated participation of both enzymatic and non-enzymatic antioxidant components in regulating ROS. On the other hand, high salinity caused an outburst of ROS indicated by high H2O2, MDA, and electrolyte leakage. As a response, moringa drastically increased the activities of all antioxidant enzymes and contents of antioxidant molecules including ascorbic acid, glutathione, total phenols, and flavonoids with high radical scavenging and reducing power capacities. However, a considerable amount of energy was used in such management resulting in a significant growth reduction at 100 mM NaCl. This study suggests that moringa effectively resisted moderate salinity by modulating physio-biochemical attributes and effectively managing ion toxicity and oxidative stress. Salt stress also enhanced the medicinal potentials of moringa by increasing the contents of antioxidant compounds including ascorbic acid, glutathione, total phenols, and flavonoids and their resulting activities. It can be grown on degraded/ saline lands and biomass of this plant can be used for edible and medicinal purposes, besides providing other benefits in a global climate change scenario.
Collapse
|
8
|
Retraction: Impact of varying levels of soil salinity on emergence, growth and biochemical attributes of four Moringa oleifera landraces. PLoS One 2022; 17:e0273535. [PMID: 36044443 PMCID: PMC9432697 DOI: 10.1371/journal.pone.0273535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
9
|
Assessment of Soil Salinity Changes under the Climate Change in the Khorezm Region, Uzbekistan. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19148794. [PMID: 35886646 PMCID: PMC9321814 DOI: 10.3390/ijerph19148794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/08/2022] [Accepted: 07/13/2022] [Indexed: 02/01/2023]
Abstract
Soil salinity negatively affects plant growth and leads to soil degradation. Saline lands result in low agricultural productivity, affecting the well-being of farmers and the economic situation in the region. The prediction of soil salinization dynamics plays a crucial role in sustainable development of agricultural regions, in preserving the ecosystems, and in improving irrigation management practices. Accurate information through monitoring and evaluating the changes in soil salinity is essential for the development of strategies for agriculture productivity and efficient soil management. As part of an ex-ante analysis, we presented a comprehensive statistical framework for predicting soil salinity dynamics using the Homogeneity test and linear regression model. The framework was operationalized in the context of the Khorezm region of Uzbekistan, which suffers from high levels of soil salinity. The soil salinity trends and levels were projected under the impact of climate change from 2021 to 2050 and 2051 to 2100. The results show that the slightly saline soils would generally decrease (from 55.4% in 2050 to 52.4% by 2100 based on the homogeneity test; from 55.9% in 2050 to 54.5% by 2100 according to the linear regression model), but moderately saline soils would increase (from 31.2% in 2050 to 32.5% by 2100 based on the homogeneity test; from 31.2% in 2050 to 32.4% by 2100 according to the linear regression model). Moreover, highly saline soils would increase (from 13.4% in 2050 to 15.1% by 2100 based on the homogeneity test; from 12.9% in 2050 to 13.1% by 2100 according to the linear regression model). The results of this study provide an understanding that soil salinity depends on climate change and help the government to better plan future management strategies for the region.
Collapse
|
10
|
Hernández-Pacheco CE, Almaraz-Abarca N, Rojas-López M, Torres-Ricario R, Ávila-Reyes JA, González-Valdez LS, Delgado-Alvarado EA, Moreno-Anguiano O, Uribe-Soto JN. Salinity generates variable chemical and biochemical responses in Physalis ixocarpa (Solanaceae) during different times of exposure. ELECTRON J BIOTECHN 2022. [DOI: 10.1016/j.ejbt.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|