1
|
Zhang Y, Arzaghi H, Ma Z, Roye Y, Musah S. Epigenetics of Hypertensive Nephropathy. Biomedicines 2024; 12:2622. [PMID: 39595187 PMCID: PMC11591919 DOI: 10.3390/biomedicines12112622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/05/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Hypertensive nephropathy (HN) is a leading cause of chronic kidney disease (CKD) and end-stage renal disease (ESRD), contributing to significant morbidity, mortality, and rising healthcare costs. In this review article, we explore the role of epigenetic mechanisms in HN progression and their potential therapeutic implications. We begin by examining key epigenetic modifications-DNA methylation, histone modifications, and non-coding RNAs-observed in kidney disease. Next, we discuss the underlying pathophysiology of HN and highlight current in vitro and in vivo models used to study the condition. Finally, we compare various types of HN-induced renal injury and their associated epigenetic mechanisms with those observed in other kidney injury models, drawing inferences on potential epigenetic therapies for HN. The information gathered in this work indicate that epigenetic mechanisms can drive the progression of HN by regulating key molecular signaling pathways involved in renal damage and fibrosis. The limitations of Renin-Angiotensin-Aldosterone System (RAAS) inhibitors underscore the need for alternative treatments targeting epigenetic pathways. This review emphasizes the importance of further research into the epigenetic regulation of HN to develop more effective therapies and preventive strategies. Identifying novel epigenetic markers could provide new therapeutic opportunities for managing CKD and reducing the burden of ESRD.
Collapse
Affiliation(s)
- Yize Zhang
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - Hamidreza Arzaghi
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - Zhehan Ma
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - Yasmin Roye
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - Samira Musah
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
- Center for Biomolecular and Tissue Engineering, Duke University, Durham, NC 27708, USA
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
- Affiliate Faculty of the Developmental and Stem Cell Biology Program, Duke Regeneration Center, and Duke MEDx Initiative, Duke University, Durham, NC 27710, USA
| |
Collapse
|
2
|
Pan Y, Yang Z, Wei M, Gan Y, Liu M, Zou W. Hypertensive Nephropathy Changes the Expression of Drug-Metabolizing Enzymes and Transporters in Spontaneously Hypertensive Rat Liver and Kidney. Eur J Drug Metab Pharmacokinet 2024:10.1007/s13318-024-00923-2. [PMID: 39522097 DOI: 10.1007/s13318-024-00923-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND AND OBJECTIVES Hypertensive nephropathy (HN) has become one of the main causes of end-stage renal disease. Drug combination therapy is a common clinical treatment for HN. However, the impact of HN on drug-metabolizing enzymes and transporters, which may lead to drug-drug interactions (DDIs) and even trigger toxic side effects, remains unclear. The aim of this study was to investigate changes in major drug-metabolizing enzymes and transporters in the liver and kidney of HN rats to improve the scientific foundations for the clinical treatment of HN. METHODS Spontaneously hypertensive rats (SHRs) were used as an animal HN model because their hypertension is similar to that of humans. Wistar-Kyoto rats (WKYs) were used as the control group. Body weight, blood pressure, hematoxylin-eosin (HE) staining and biochemical analysis were performed to evaluate whether the HN model was successfully constructed. Quantitative real-time polymerase chain reaction (PCR) and western blotting were used to evaluate the mRNA and protein expression of drug-metabolizing enzymes, transporters and related nuclear transcription factors. RESULTS In HN rats, the mRNA expression of the drug-metabolizing enzymes cytochrome P450 (Cyp) 2b1, Cyp2c11, Cyp3a1 and Cyp7a1 was significantly upregulated. The protein level of CYP3A1 was consistent with its mRNA expression. Interestingly, the mRNA expression of the hepatic transporters organic cation transporter (Oct) 1, Oct2, organic anion transporter (Oat) 1, Oat2, multidrug resistant protein (Mrp) 2, multidrug resistance (Mdr) 1, organic anion transporting polypeptide (Oatp) 1b2 and na+/taurocholate cotransporting polypeptide (Ntcp) was also markedly upregulated. This may be directly influenced by the upregulation of the expression of the nuclear receptors farnesoid X receptor (Fxr), pregnane X receptor (Pxr), liver X-activated receptor (Lxr) and constitutive androstane receptor (Car). In the kidney of HN rats, the mRNA level of the drug-metabolizing enzyme Cyp2b1 significantly increased, while levels of Cyp1a1, Cyp2c11, Cyp3a1 and Cyp3a2 did not significantly change. The mRNA expression of the transporters multidrug and toxin extrusion (Mate) 1 and Mrp2 was obviously increased but was markedly depressed for peptide transporters (Pept) 1 and Pept2. These changes may be related to the cross effects of Pxr, Fxr and Car in kidney. CONCLUSION HN pathological status can alter the expression of drug-metabolizing enzymes and transporters in the liver and kidney to varying degrees, thus affecting the disposition of substrate drugs in vivo. This suggests that to avoid potential risks, caution should be exercised when administering combination therapy for HN treatment.
Collapse
Affiliation(s)
- Yueqing Pan
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1023 Shatai South Road, Baiyun District, Guangzhou, 510515, Guangdong, China
| | - Zhuan Yang
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1023 Shatai South Road, Baiyun District, Guangzhou, 510515, Guangdong, China
| | - Minlong Wei
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1023 Shatai South Road, Baiyun District, Guangzhou, 510515, Guangdong, China
| | - Yulin Gan
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1023 Shatai South Road, Baiyun District, Guangzhou, 510515, Guangdong, China
| | - Menghua Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1023 Shatai South Road, Baiyun District, Guangzhou, 510515, Guangdong, China.
| | - Wei Zou
- Changsha Research and Development Center on Obstetric and Gynecologic Traditional Chinese Medicine Preparation, NHC Key Laboratory of Birth Defects Research, Prevention and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, No. 53 Xiangchun Road, Kaifu District, Changsha, 410008, Hunan, China.
| |
Collapse
|
3
|
Miao J, Zhu H, Wang J, Chen J, Han F, Lin W. Experimental models for preclinical research in kidney disease. Zool Res 2024; 45:1161-1174. [PMID: 39257378 PMCID: PMC11491777 DOI: 10.24272/j.issn.2095-8137.2024.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 06/04/2024] [Indexed: 09/12/2024] Open
Abstract
Acute kidney injury (AKI) and chronic kidney disease (CKD) are significant public health issues associated with a long-term increase in mortality risk, resulting from various etiologies including renal ischemia, sepsis, drug toxicity, and diabetes mellitus. Numerous preclinical models have been developed to deepen our understanding of the pathophysiological mechanisms and therapeutic approaches for kidney diseases. Among these, rodent models have proven to be powerful tools in the discovery of novel therapeutics, while the development of kidney organoids has emerged as a promising advancement in the field. This review provides a comprehensive analysis of the construction methodologies, underlying biological mechanisms, and recent therapeutic developments across different AKI and CKD models. Additionally, this review summarizes the advantages, limitations, and challenges inherent in these preclinical models, thereby contributing robust evidence to support the development of effective therapeutic strategies.
Collapse
Affiliation(s)
- Jin Miao
- Kidney Disease Center, First Affiliated Hospital, Zhejiang University School of Medicine
- Institute of Nephrology, Zhejiang University
- Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, Zhejiang 310003, China
| | - Huanhuan Zhu
- Kidney Disease Center, First Affiliated Hospital, Zhejiang University School of Medicine
- Institute of Nephrology, Zhejiang University
- Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, Zhejiang 310003, China
| | - Junni Wang
- Kidney Disease Center, First Affiliated Hospital, Zhejiang University School of Medicine
- Institute of Nephrology, Zhejiang University
- Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, Zhejiang 310003, China
| | - Jianghua Chen
- Kidney Disease Center, First Affiliated Hospital, Zhejiang University School of Medicine
- Institute of Nephrology, Zhejiang University
- Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, Zhejiang 310003, China
| | - Fei Han
- Kidney Disease Center, First Affiliated Hospital, Zhejiang University School of Medicine
- Institute of Nephrology, Zhejiang University
- Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, Zhejiang 310003, China. E-mail:
| | - Weiqiang Lin
- Department of Nephrology, Center for Regeneration and Aging Medicine, Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang 322000, China. E-mail:
| |
Collapse
|
4
|
Balbotkina EV, Karavashkina TA, Seliverstova EV, Kutina AV. Microalbuminuria in Rats Treated with D-Nitroarginine Methyl Ether. Bull Exp Biol Med 2024; 176:437-441. [PMID: 38491255 DOI: 10.1007/s10517-024-06042-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Indexed: 03/18/2024]
Abstract
Microalbuminuria is an early symptom and prognostic marker of the progression of renal pathology. The analysis of the role of anionic components of the renal glomeruli in the albumin retention and the development of a model of minimal changes in the glomerular filter leading to the appearance of microalbuminuria are relevant. The effect of organic cations D-arginine methyl esters (D-AME) and D-nitroarginine (D-NAME) on the excretion of albumin by the kidneys in rats was studied. D-AME had no effect on urinary albumin excretion in rats. D-NAME caused microalbuminuria, which persisted for more than a day and sharply increased after injection of vasopressin. The number of anionic sites labeled with polyethyleneimine decreased in the structures of the glomerular filter. D-NAME-induced microalbuminuria can later serve as a model for studying nephroprotective or damaging factors.
Collapse
Affiliation(s)
- E V Balbotkina
- I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - T A Karavashkina
- I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - E V Seliverstova
- I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - A V Kutina
- I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia.
| |
Collapse
|
5
|
Gutsol AA, Hale TM, Thibodeau JF, Holterman CE, Nasrallah R, Correa JWN, Touyz RM, Kennedy CRJ, Burger D, Hébert RL, Burns KD. Comparative Analysis of Hypertensive Tubulopathy in Animal Models of Hypertension and Its Relevance to Human Pathology. Toxicol Pathol 2023; 51:160-175. [PMID: 37632371 DOI: 10.1177/01926233231191128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2023]
Abstract
Assessment of hypertensive tubulopathy for more than fifty animal models of hypertension in experimental pathology employs criteria that do not correspond to lesional descriptors for tubular lesions in clinical pathology. We provide a critical appraisal of experimental hypertension with the same approach used to estimate hypertensive renal tubulopathy in humans. Four models with different pathogenesis of hypertension were analyzed-chronic angiotensin (Ang) II-infused and renin-overexpressing (TTRhRen) mice, spontaneously hypertensive (SHR), and Goldblatt two-kidney one-clip (2K1C) rats. Mouse models, SHR, and the nonclipped kidney in 2K1C rats had no regular signs of hypertensive tubulopathy. Histopathology in animals was mild and limited to variations in the volume density of tubular lumen and epithelium, interstitial space, and interstitial collagen. Affected kidneys in animals demonstrated lesion values that are significantly different compared with healthy controls but correspond to mild damage if compared with hypertensive humans. The most substantial human-like hypertensive tubulopathy was detected in the clipped kidney of 2K1C rats. For the first time, our study demonstrated the regular presence of chronic progressive nephropathy (CPN) in relatively young mice and rats with induced hypertension. Because CPN may confound the assessment of rodent models of hypertension, proliferative markers should be used to verify nonhypertensive tubulopathy.
Collapse
Affiliation(s)
- Alex A Gutsol
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Taben M Hale
- The University of Arizona, Phoenix, Arizona, USA
| | | | | | | | | | | | - Chris R J Kennedy
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- University of Ottawa, Ottawa, Ontario, Canada
| | - Dylan Burger
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- University of Ottawa, Ottawa, Ontario, Canada
| | - Richard L Hébert
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- University of Ottawa, Ottawa, Ontario, Canada
| | - Kevin D Burns
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
6
|
Norambuena-Soto I, Lopez-Crisosto C, Martinez-Bilbao J, Hernandez-Fuentes C, Parra V, Lavandero S, Chiong M. Angiotensin-(1-9) in hypertension. Biochem Pharmacol 2022; 203:115183. [PMID: 35870482 DOI: 10.1016/j.bcp.2022.115183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 11/02/2022]
Abstract
Angiotensin-(1-9) [Ang-(1-9)] is a peptide of the non-canonical renin-angiotensin system (RAS) synthesized from angiotensin I by the monopeptidase angiotensin-converting enzyme type 2 (ACE2). Using osmotic minipumps, infusion of Ang-(1-9) consistently reduces blood pressure in several rat hypertension models. In these animals, hypertension-induced end-organ damage is also decreased. Several pieces of evidence suggest that Ang-(1-9) is the endogenous ligand that binds and activates the type-2 angiotensin II receptor (AT2R). Activation of AT2R triggers different tissue-specific signaling pathways. This phenomenon could be explained by the ability of AT2R to form different heterodimers with other G protein-coupled receptors. Because of the antihypertensive and protective effects of AT2R activation by Ang-(1-9), associated with a short half-life of RAS peptides, several synthetic AT2R agonists have been synthesized and assayed. Some of them, particularly CGP42112, C21 and novokinin, have demonstrated antihypertensive properties. Only two synthetic AT2R agonists, C21 and LP2-3, have been tested in clinical trials, but none of them like an antihypertensive. Therefore, Ang-(1-9) is a promising antihypertensive drug that reduces hypertension-induced end-organ damage. However, further research is required to translate this finding successfully to the clinic.
Collapse
Affiliation(s)
- Ignacio Norambuena-Soto
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago, Chile
| | - Camila Lopez-Crisosto
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago, Chile
| | - Javiera Martinez-Bilbao
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago, Chile
| | - Carolina Hernandez-Fuentes
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago, Chile
| | - Valentina Parra
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago, Chile; Network for the Study of High-lethality Cardiopulmonary Diseases (REECPAL), Universidad de Chile, Santiago, Chile
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago, Chile; Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mario Chiong
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago, Chile.
| |
Collapse
|
7
|
Moreno KGT, Marques AAM, da Silva GP, Lourençone BR, Fortini CS, Leite PRT, dos Santos AC, Souza RIC, da Siva LI, Gasparotto Junior A. A New Approach for the Development of Multiple Cardiovascular Risk Factors in Two Rat Models of Hypertension. Pharmaceuticals (Basel) 2022; 15:ph15070853. [PMID: 35890152 PMCID: PMC9318210 DOI: 10.3390/ph15070853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 01/21/2023] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death among non-communicable diseases. There is a lack of valid animal models that mimic associations among multiple cardiovascular risk factors in humans. The present study developed an animal model that uses multiple cardiovascular risk factors—namely, hypertension, hypothyroidism, and a high-fat diet (HFD). Two models of hypertension were used: renovascular hypertension (two-kidney, one clip [2K1C]) and spontaneously hypertensive rats (SHRs). The naive group was composed of normotensive rats. Twelve weeks after surgery to induce renovascular hypertension, rats in the 2K1C and SHR groups underwent thyroidectomy. The HFD was then implemented for 6 weeks. Renal function, serum redox status, biochemical CVD markers, electrocardiographic profile, blood pressure, mesenteric vascular bed reactivity, histopathology, and morphometry were investigated. Both experimental models induced dyslipidemia, renal function impairment, and hepatic steatosis, accompanied by higher levels of different inflammatory markers and serum oxidative stress. These alterations contributed to end-organ damage in all hypertensive rats. Our findings corroborate a viable alternative model that involves multiple cardiovascular risk factors and resembles conditions that are seen in humans. Both models mimicked CVD, but our data show that SHRs exhibit more significant pathophysiological changes.
Collapse
Affiliation(s)
- Karyne Garcia Tafarelo Moreno
- Laboratory of Cardiovascular Pharmacology (LaFAC), Faculty of Health Sciences, Federal University of Grande Dourados, Dourados 79825-070, Brazil; (K.G.T.M.); (A.A.M.M.); (G.P.d.S.); (B.R.L.); (C.S.F.); (P.R.T.L.)
| | - Aline Aparecida Macedo Marques
- Laboratory of Cardiovascular Pharmacology (LaFAC), Faculty of Health Sciences, Federal University of Grande Dourados, Dourados 79825-070, Brazil; (K.G.T.M.); (A.A.M.M.); (G.P.d.S.); (B.R.L.); (C.S.F.); (P.R.T.L.)
| | - Gabriela Pereira da Silva
- Laboratory of Cardiovascular Pharmacology (LaFAC), Faculty of Health Sciences, Federal University of Grande Dourados, Dourados 79825-070, Brazil; (K.G.T.M.); (A.A.M.M.); (G.P.d.S.); (B.R.L.); (C.S.F.); (P.R.T.L.)
| | - Bethânia Rosa Lourençone
- Laboratory of Cardiovascular Pharmacology (LaFAC), Faculty of Health Sciences, Federal University of Grande Dourados, Dourados 79825-070, Brazil; (K.G.T.M.); (A.A.M.M.); (G.P.d.S.); (B.R.L.); (C.S.F.); (P.R.T.L.)
| | - Clara Soligo Fortini
- Laboratory of Cardiovascular Pharmacology (LaFAC), Faculty of Health Sciences, Federal University of Grande Dourados, Dourados 79825-070, Brazil; (K.G.T.M.); (A.A.M.M.); (G.P.d.S.); (B.R.L.); (C.S.F.); (P.R.T.L.)
| | - Patrícia Regina Terço Leite
- Laboratory of Cardiovascular Pharmacology (LaFAC), Faculty of Health Sciences, Federal University of Grande Dourados, Dourados 79825-070, Brazil; (K.G.T.M.); (A.A.M.M.); (G.P.d.S.); (B.R.L.); (C.S.F.); (P.R.T.L.)
| | - Ariany Carvalho dos Santos
- Laboratory of Histopathology, Faculty of Health Sciences, Federal University of Grande Dourados, Dourados 79825-070, Brazil; (A.C.d.S.); (R.I.C.S.)
| | - Roosevelt Isaías Carvalho Souza
- Laboratory of Histopathology, Faculty of Health Sciences, Federal University of Grande Dourados, Dourados 79825-070, Brazil; (A.C.d.S.); (R.I.C.S.)
| | - Leila Isabel da Siva
- Post-Graduate Program in Biotechnology Applied to Agriculture, Paranaense University, Umuarama 87502-210, Brazil;
| | - Arquimedes Gasparotto Junior
- Laboratory of Cardiovascular Pharmacology (LaFAC), Faculty of Health Sciences, Federal University of Grande Dourados, Dourados 79825-070, Brazil; (K.G.T.M.); (A.A.M.M.); (G.P.d.S.); (B.R.L.); (C.S.F.); (P.R.T.L.)
- Correspondence: ; Tel.: +55-(67)-3410-2333; Fax: +55-(67)-3410-2321
| |
Collapse
|