1
|
Cui D, Li S, Yin B, Li C, Zhang L, Li Z, Huang J. Rapid Rescue of Goose Astrovirus Genome via Red/ET Assembly. FOOD AND ENVIRONMENTAL VIROLOGY 2024; 16:297-306. [PMID: 38582780 DOI: 10.1007/s12560-024-09593-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 02/28/2024] [Indexed: 04/08/2024]
Abstract
The host-specific infection of Avian Astrovirus (AAstVs) has posed significant challenges to the poultry industry, resulting in substantial economic losses. However, few reports exist on the functional consequences of genome diversity, cross-species infectivity and mechanisms governing virus replication of AAstVs, making it difficult to develop measures to control astrovirus transmission. Reverse genetics technique can be used to study the function of viruses at the molecular level, as well as investigating pathogenic mechanisms and guide vaccine development and disease treatment. Herein, the reverse genetics technique of goose astrovirus GAstV/JS2019 strain was developed based on use of a reconstructed vector including CMV promotor, hammerhead ribozyme (HamRz), hepatitis delta virus ribozyme (HdvRz), and SV40 tail, then the cloned viral genome fragments were connected using Red/ET recombineering. The recombinant rGAstV-JS2019 was readily rescued by transfected the infectious clone plasmid into LMH cells. Importantly, the rescued rGAstV/JS2019 exhibited similar growth kinetics comparable to those of the parental GAstV/JS2019 isolate in cultured cells. Our research results provide an alternative and more effective reverse genetic tool for a detailed understanding of viral replication, pathogenic mechanisms, and molecular mechanisms of evolution.
Collapse
Affiliation(s)
- Daqing Cui
- School of Life Sciences, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin, 300072, China
| | - Shujun Li
- School of Life Sciences, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin, 300072, China
| | - Boxuan Yin
- School of Life Sciences, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin, 300072, China
| | - Changyan Li
- School of Life Sciences, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin, 300072, China
| | - Lilin Zhang
- School of Life Sciences, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin, 300072, China
| | - Zexing Li
- School of Life Sciences, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin, 300072, China.
| | - Jinhai Huang
- School of Life Sciences, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin, 300072, China.
| |
Collapse
|
2
|
Zhou Q, Cui Y, Wang C, Wu H, Xiong H, Qi K, Liu H. Characterization of natural co-infection with goose astrovirus genotypes I and II in gout affected goslings. Avian Pathol 2024; 53:146-153. [PMID: 38088166 DOI: 10.1080/03079457.2023.2295341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/11/2023] [Indexed: 12/21/2023]
Abstract
RESEARCH HIGHLIGHTS Urate tophi were found in the kidneys, liver, spleen and lungs.IFA confirmed the co-expression of GoAstV-I and II antigens in the same kidney.
Collapse
Affiliation(s)
- Qian Zhou
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, People's Republic of China
| | - Yaqian Cui
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, People's Republic of China
| | - Chenxiao Wang
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, People's Republic of China
| | - Hanwen Wu
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, People's Republic of China
| | - Haifeng Xiong
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, People's Republic of China
| | - Kezong Qi
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, People's Republic of China
| | - Hongmei Liu
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, People's Republic of China
| |
Collapse
|
3
|
Li Y, Luo J, Shang J, Zhang F, Deng C, Feng Y, Meng G, Jiang W, Yu X, Liu H. Epidemiological investigation and pathogenicity analysis of waterfowl astroviruses in some areas of China. Front Microbiol 2024; 15:1375826. [PMID: 38529177 PMCID: PMC10961457 DOI: 10.3389/fmicb.2024.1375826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 02/26/2024] [Indexed: 03/27/2024] Open
Abstract
Waterfowl astroviruses are mainly duck astroviruses and goose astroviruses, of which duck astroviruses (DAstV-3, -4), goose astroviruses (GoAstV-1, -2) are the four new waterfowl 21 astroviruses in recent years, which can lead to enteritis, viral hepatitis, gout and reduce the growth performance of waterfowl, affecting the healthy development of the waterfowl farming industry. Since no targeted drugs or vaccines on the market, studies on the epidemiology of the virus are necessary for vaccine development. In this study, we collected 1546 waterfowl samples from 13 provinces in China for epidemiological investigation. The results showed that 260 samples (16.8%) were positive. Four species of astrovirus were detected in 13 provinces except Fujian province. Among the four sites tested, the highest positive rates were found in farms and slaughterhouses. Cross-host and mixed infection were observed in four species of waterfowl astroviruses. The whole genome of 17 isolates was sequenced and compared with published sequences. Genetic evolution and homology analysis showed that the isolated strains had high similarity to their reference sequences. To assess the pathogenicity of GoAstV, 7-day-old goslings were inoculated with GoAstV-1 and GoAstV-2 by the intramuscular route, and infected geese showed similar clinical signs, such as anorexia, depression, and weight loss. Organ damage was seen after infection, with histopathological changes in the heart, liver, spleen, kidney, and intestine, and higher viral loads in throat and anal swabs. These findings increase our understanding of the pathogenicity of GoAstV-1 and GoAstV-2 in goslings and provide more references for future research.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Hualei Liu
- China Animal Health and Epidemiology Center, Qingdao, China
| |
Collapse
|
4
|
Huang X, Hou J, Le X, Hou Y, Yang L, Li Q, Wang B, Xia X. Diversity of astroviruses in wild animals in Yunnan province, China. Virol J 2024; 21:51. [PMID: 38414022 PMCID: PMC10900740 DOI: 10.1186/s12985-024-02314-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/08/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Astroviruses (AstVs) are single-stranded RNA viruses that have been detected in a wide range of mammals and birds. They are associated with numerous interspecies transmissions and viral recombination events, posing a threat to human and animal health. METHODS We collected 1,333 samples from wild animals, including bats, rodents, wild boars, and birds, from various states and cities in the Yunnan Province, China, between 2020 and 2023 to investigate the presence of AstVs. AstVs were detected using a polymerase chain reaction targeting the RdRp gene. Finally, the Molecular Evolutionary Genetics Analysis software was used to construct the phylogenetic tree. RESULTS The overall positivity rate for AstVs was 7.12% in four species, indicating their widespread occurrence in the region. High genetic diversity among AstVs was observed in different animal species, suggesting the potential for interspecies transmission, particularly among rodents and birds. Additionally, we identified a novel AstV strain and, for the first time, provided information on the presence of bastroviruses in Yunnan, China. CONCLUSIONS The widespread distribution and high genetic diversity of AstVs, along with the observed potential for interspecies transmission, highlight the importance of further investigation and surveillance in the region. The findings emphasize the need for increased attention to AstVs and their potential impact on human and animal health in Yunnan and other regions.
Collapse
Affiliation(s)
- Xingyu Huang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500, Kunming, Yunnan, P.R. China
| | - Junjie Hou
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500, Kunming, Yunnan, P.R. China
| | - Xiang Le
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500, Kunming, Yunnan, P.R. China
| | - Yutong Hou
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500, Kunming, Yunnan, P.R. China
| | - Lingsi Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500, Kunming, Yunnan, P.R. China
| | - Qian Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500, Kunming, Yunnan, P.R. China
| | - Binghui Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500, Kunming, Yunnan, P.R. China.
| | - Xueshan Xia
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500, Kunming, Yunnan, P.R. China.
| |
Collapse
|
5
|
Han X, Yin L, Liang X, Liang H. Molecular characterization of chicken astrovirus and pathogenicity of a novel isolate in China. Front Microbiol 2023; 14:1280313. [PMID: 38149277 PMCID: PMC10751203 DOI: 10.3389/fmicb.2023.1280313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/24/2023] [Indexed: 12/28/2023] Open
Abstract
As an enteric virus, chicken astrovirus has been related to various kinds of diseases in chickens, including white chick syndrome, runting-stunting syndrome, severe kidney disease, urate deposits and visceral gout, generating economic losses in the poultry industry globally. The complete ORF2 gene of 31 CAstV isolates in six provinces of China during 2020-2022 was characterized and analyzed with the purpose of better understanding the molecular epidemiology and genetic diversity of CAstV field isolates. Phylogenetic analysis which was based on the complete ORF2 (capsid) amino acid sequence of 31 CAstV isolates and 57 reference strains indicated that 2 isolates belonged to subgroup Ai, 10 isolates belonged to subgroup Bi, 3 isolates belonged to subgroup Bii, 5 isolates belonged to subgroup Biii, 7 isolates belonged to subgroup Biv, 3 isolates belonged to subgroup Bv, and one isolate (JS202103) belonged to a new B subgroup. In addition, the novel CAstV strain JS202103 was successfully isolated in vitro, and its whole genome shared 76.9-94.3% identity with the 29 CAstV reference strains. JS202103 caused hatchability reduction, dead embryos, kidney disease and visceral gout in chicken embryos. Moreover, this is the also the initial study focusing on diverse CAstV strains including subgroups Biii, Biv, and Bv circulate in China. The current work contributes to improving our understanding of CAstV isolates in China, and it will also provide references for developing efficient measures to control this virus.
Collapse
Affiliation(s)
- Xiaofeng Han
- Wen’s Foodstuffs Group Co., Ltd., Yunfu, Guangdong, China
| | | | | | | |
Collapse
|
6
|
Bi X, Song Z, Meng F, Sun S, Du X, Yang M, Zhou D, Cheng X, Ding L, Shi H, Lang F, Luan H, Deng B, Yang L, Cheng Z. Molecular characteristics and pathogenicity of a novel chicken astrovirus variant. Vet Res 2023; 54:117. [PMID: 38066626 PMCID: PMC10709865 DOI: 10.1186/s13567-023-01250-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
It is well-established that the genetic diversity, regional prevalence, and broad host range of astroviruses significantly impact the poultry industry. In July 2022, a small-scale commercial broiler farm in China reported cases of growth retardation and a 3% mortality rate. From chickens displaying proventriculitis and pancreatitis, three chicken astroviruses (CAstV) isolates were obtained and named SDAU2022-1-3. Complete genomic sequencing and analysis revealed the unique characteristics of these isolates from known CAstV strains in ORF1a, ORF1b, and ORF2 genes, characterized by an unusually high variability. Analysis of amino acid mutations in ORF1a, ORF1b, and ORF2 indicated that the accumulation of these mutations played a pivotal role in the emergence of the variant strain. Inoculation experiments demonstrated that affected chickens exhibited liver and kidney enlargement, localized proventricular hemorrhage, and a dark reddish-brown appearance in about two-thirds of the pancreas. Histopathological examination unveiled hepatic lymphocytic infiltration, renal tubular epithelial cell swelling, along with lymphocytic proventriculitis and pancreatitis. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis indicated viremia and viral shedding at 3 days post-infection (dpi). The proventriculus displayed the highest viral loads, followed by the liver, kidney, duodenum, and pancreas. Liver parameters (AST and ALT) and kidney parameters (UA and UN) demonstrated mild damage consistent with earlier findings. While the possibility of new mutations in the ORF2 gene of CAstV causing proventriculitis and pancreatitis warrants further investigation, these findings deepen our comprehension of CAstV's pathogenicity in chickens. Additionally, they serve as valuable references for subsequent research endeavors.
Collapse
Affiliation(s)
- Xiaoqing Bi
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China
| | - Zhenrui Song
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China
| | - Fanrun Meng
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China
| | - Shiwei Sun
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China
| | - Xusheng Du
- College of Agricultural Science and Engineering, Liaocheng University, Liaocheng, 252000, China
| | - Mengzan Yang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China
| | - Defang Zhou
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China
| | - Xiangyu Cheng
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China
| | - Longying Ding
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China
| | - Hengyang Shi
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China
| | - Feng Lang
- Qingdao Yibang Bioengineering Co, Qingdao, 266000, China
| | - Huaibiao Luan
- Qingdao Yibang Bioengineering Co, Qingdao, 266000, China
| | - Bing Deng
- Agricultural and Animal Husbandry Science Research and Promotion Center of Shigatse City, Shigatse, 857000, China
| | - Liangyu Yang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650000, China
| | - Ziqiang Cheng
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China.
| |
Collapse
|
7
|
Kariithi HM, Volkening JD, Chiwanga GH, Pantin-Jackwood MJ, Msoffe PLM, Suarez DL. Genome Sequences and Characterization of Chicken Astrovirus and Avian Nephritis Virus from Tanzanian Live Bird Markets. Viruses 2023; 15:1247. [PMID: 37376547 DOI: 10.3390/v15061247] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
The enteric chicken astrovirus (CAstV) and avian nephritis virus (ANV) are the type species of the genus Avastrovirus (AAstV; Astroviridae family), capable of causing considerable production losses in poultry. Using next-generation sequencing of a cloacal swab from a backyard chicken in Tanzania, we assembled genome sequences of ANV and CAstV (6918 nt and 7318 nt in length, respectively, excluding poly(A) tails, which have a typical AAstV genome architecture (5'-UTR-ORF1a-ORF1b-ORF2-'3-UTR). They are most similar to strains ck/ANV/BR/RS/6R/15 (82.72%) and ck/CAstV/PL/G059/14 (82.23%), respectively. Phylogenetic and sequence analyses of the genomes and the three open reading frames (ORFs) grouped the Tanzanian ANV and CAstV strains with Eurasian ANV-5 and CAstV-Aii viruses, respectively. Compared to other AAstVs, the Tanzanian strains have numerous amino acid variations (substitutions, insertions and deletions) in the spike region of the capsid protein. Furthermore, CAstV-A has a 4018 nt recombinant fragment in the ORF1a/1b genomic region, predicted to be from Eurasian CAstV-Bi and Bvi parental strains. These data should inform future epidemiological studies and options for AAstV diagnostics and vaccines.
Collapse
Affiliation(s)
- Henry M Kariithi
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, USDA, Athens, GA 30605, USA
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Kaptagat Rd, Nairobi P.O. Box 57811-00200, Kenya
| | | | - Gaspar H Chiwanga
- Tanzania Veterinary Laboratory Agency, South Zone, Mtwara P.O. Box 186, Tanzania
| | - Mary J Pantin-Jackwood
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, USDA, Athens, GA 30605, USA
| | - Peter L M Msoffe
- Department of Veterinary Medicine and Public Health, Sokoine University of Agriculture, Chuo Kikuu, Morogoro P.O. Box 3000, Tanzania
| | - David L Suarez
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, USDA, Athens, GA 30605, USA
| |
Collapse
|
8
|
Detection and Characterization of Goose Astrovirus Infections in Hatcheries and Commercial Goose Flocks. Transbound Emerg Dis 2023. [DOI: 10.1155/2023/1127544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Goose astrovirus (GoAstV) has frequently been isolated in China since it was first identified as the etiological agent of visceral gout in goslings in 2017. However, the actual prevalence of GoAstV infection and its economic impact on commercial goose production remain poorly characterized. Here, virus detection and serological testing were conducted to determine the extent of GoAstV infection in commercial goose flocks. We detected GoAstV RNA in 2% (6/300) of dead-in-shell embryos and day-old hatched goslings by RT-PCR, indicating vertical transmission under natural conditions. Using a virus neutralization test, GoAstV antibodies were detected in 41.7%–61.1% of serum samples from four commercial goose flocks, indicating that infections were common. To determine the virus types circulating in the commercial flocks, we isolated 15 GoAstVs from goose tissue samples from farms located in five provinces during 2018–2022. Genomic sequence analysis showed that all sequences were corresponded to GoAstV group 2 (GoAstV-2) but were assigned into three capsid subgroups based on sequence variations in the capsid protein. Representative isolates of capsid subgroups were also antigenically evaluated using cross-neutralization tests in LMH cell cultures. The antigenic relatedness values (R) calculated using the Horsfall formula were between 62% and 86%, indicating that no significant antigenic differences exist between the isolates. Our findings indicate that GoAstV-2 viruses are an important cause of fatal gout in goose flocks, as well as hatchery contamination in China.
Collapse
|
9
|
Xu L, Jiang B, Cheng Y, He Y, Wu Z, Wang M, Jia R, Zhu D, Liu M, Zhao X, Yang Q, Wu Y, Zhang S, Huang J, Mao S, Ou X, Gao Q, Sun D, Cheng A, Chen S. Infection and innate immune mechanism of goose astrovirus. Front Microbiol 2023; 14:1121763. [PMID: 36778860 PMCID: PMC9909288 DOI: 10.3389/fmicb.2023.1121763] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/06/2023] [Indexed: 01/27/2023] Open
Abstract
Goose astrovirus (GAstV, genus Avian Astrovirus, family Astrovirus) was first discovered in 2005, but was not considered as a pathogen of gosling gout until 2016. Since then, goose astrovirus has erupted in Chinese goslings, causing at most 50% of gosling deaths. By December 2022, the disease had become epidemic and prevailed in goose farms in Jiangsu, Shandong, Anhui, Henan, Guangdong, Liaoning, Sichuan and other places in China. The disease mainly affects goslings within 3 weeks old. The typical symptoms of goose astrovirus are large deposits of urate in the viscera, joint cavity and ureter surface of infected goslings. Goose astrovirus infection can trigger high levels of iNOS, limiting goose astrovirus replication. The ORF2 domain P2 of the goose astrovirus activates the OASL protein, limiting its replication. Goose astrovirus can also activate pattern recognition receptors (RIG-I, MDA-5, TLR-3), causing an increase in MHC-Ia, MHC-Ib and CD81 mRNA, activating humoral and cellular immunity, thereby hindering virus invasion. Goose astrovirus also regulates the activation of IFNs and other antiviral proteins (Mx1, IFITM3, and PKR) in the spleens and kidneys to inhibit viral replication. The innate immune response process in goslings also activates TGF-β, which may be closely related to the immune escape of goose astrovirus. Gaining insight into the infection and innate immune mechanism of goose astrovirus can help researchers study and prevent the severe disease in goslings better.
Collapse
Affiliation(s)
- Linhua Xu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Linhua Xu, ✉
| | - Bowen Jiang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yao Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yu He
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhen Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Dekang Zhu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,*Correspondence: Anchun Cheng, ✉
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Shun Chen, ✉
| |
Collapse
|
10
|
Identification and characterization of a novel avian nephritis virus variant in chickens with enteritis in Hunan province, China. Arch Virol 2023; 168:46. [PMID: 36609583 DOI: 10.1007/s00705-022-05659-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/20/2022] [Indexed: 01/09/2023]
Abstract
Avian nephritis virus (ANV) infection is associated with diarrhea, uricosis, stunting, tubulonephrosis, interstitial nephritis, and mortality of chicken flocks, leading to economic losses in the poultry industry. In this study, an ANV strain designated as HNU-ANV-ML-2020 was identified in tissue samples collected from chickens with severe enteritis on a poultry farm in Hunan province, China, and analyzed. The genome of HNU-ANV-ML-2020 is 6943 nucleotides in length. It showed the highest sequence identity (88.1%) to ANV strain CHN/GXJL815/2017 (MN732559) from Guangxi province, China, while it showed less than 86% identity to other astrovirus (AstV) genome sequences available in the GenBank database. The capsid protein of this virus showed the highest sequence identity to ANV strains HQ330482 and HQ330498 from the UK (81.2% and 81.06%, respectively), while it showed only 73.9% identity to MN732559 and less than 80% identity to the capsid proteins of other AstVs available in GenBank. Further phylogenetic analysis demonstrated that HNU-ANV-ML-2020 belongs to group 4, together with ANV strains identified in Australia, Brazil, the UK, and the Netherlands. Furthermore, ANV strains identified in chickens in China were found to be separated into four distinct groups/genotypes, indicating substantial genetic divergence and a complex circulation pattern in China. The virus characterized in the present study is a novel ANV variant identified for the first time in Hunan province, China.
Collapse
|
11
|
Huang X, Zhou J, Hou Y, Wang R, Li Q, Wang Y, Yuan R, Chen P, Wang B, Xia X. Diversity and Genetic Characteristics of Astroviruses from Animals in Yunnan Province. Viruses 2022; 14:v14102234. [PMID: 36298789 PMCID: PMC9607396 DOI: 10.3390/v14102234] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/10/2022] [Accepted: 10/10/2022] [Indexed: 11/21/2022] Open
Abstract
Astroviruses (AstVs) are single-stranded RNA viruses, including two main genera: Mamastroviruses (MAstVs) and Avastroviruses (AAstVs). AstVs have been detected in more than 80 different mammals and birds, with the characteristics of multiple cross-species transmission and gene recombination. All these have accelerated the process of virus mutation and posed a potential threat to human beings and animal husbandry. Yunnan province is a global hotspot with rich biodiversity and abundant animal resources and an important area with significance for public health and security because it neighbors a few Southeast Asian countries. This study collected 860 samples from 13 species of animals in Yunnan province for AstVs detection. The results showed that the positive rate of AstVs was 6.05%, and its extremely high genetic diversity was observed in different animal species. Potential cross-species transmission events were also detected from rodents to birds. Therefore, AstVs, which are widely distributed with highly diverse genes and the risk of cross-species transmission to people, deserve more attention in this region.
Collapse
Affiliation(s)
- Xingyu Huang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Jiuxuan Zhou
- Yunnan Academy of Forestry and Grassland, Kunming 650201, China
| | - Yutong Hou
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Rui Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Qian Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Yixuan Wang
- Yunnan Academy of Forestry and Grassland, Kunming 650201, China
| | - Ruiling Yuan
- Yunnan Academy of Forestry and Grassland, Kunming 650201, China
| | - Peng Chen
- Yunnan Academy of Forestry and Grassland, Kunming 650201, China
| | - Binghui Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
- Correspondence: (B.W.); (X.X.)
| | - Xueshan Xia
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
- Correspondence: (B.W.); (X.X.)
| |
Collapse
|
12
|
A Review of the Emerging Poultry Visceral Gout Disease Linked to Avian Astrovirus Infection. Int J Mol Sci 2022; 23:ijms231810429. [PMID: 36142340 PMCID: PMC9499687 DOI: 10.3390/ijms231810429] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 12/02/2022] Open
Abstract
Avian astroviruses, including chicken astrovirus (CAstV), avian nephritisvirus (ANV), and goose astrovirus (GoAstV), are ubiquitous enteric RNA viruses associated with enteric disorders in avian species. Recent research has found that infection of these astroviruses usually cause visceral gout in chicken, duckling and gosling. However, the underlying mechanism remains unknown. In the current article, we review recent discoveries of genetic diversity and variation of these astroviruses, as well as pathogenesis after astrovirus infection. In addition, we discuss the relation between avian astrovirus infection and visceral gout in poultry. Our aim is to review recent discoveries about the prevention and control of the consequential visceral gout diseases in poultry, along with the attempt to reveal the possible producing process of visceral gout diseases in poultry.
Collapse
|
13
|
Kubacki J, Qi W, Fraefel C. Differential Viral Genome Diversity of Healthy and RSS-Affected Broiler Flocks. Microorganisms 2022; 10:microorganisms10061092. [PMID: 35744610 PMCID: PMC9231120 DOI: 10.3390/microorganisms10061092] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/18/2022] [Accepted: 05/23/2022] [Indexed: 01/17/2023] Open
Abstract
The intestinal virus community contributes to health and disease. Runting and stunting syndrome (RSS) is associated with enteric viruses and leads to economic losses in the poultry industry. However, many viruses that potentially cause this syndrome have also been identified in healthy animals. To determine the difference in the virome of healthy and diseased broilers, samples from 11 healthy and 17 affected broiler flocks were collected at two time points and analyzed by Next-Generation Sequencing. Virus genomes of Parvoviridae, Astroviridae, Picornaviridae, Caliciviridae, Reoviridae, Adenoviridae, Coronaviridae, and Smacoviridae were identified at various days of poultry production. De novo sequence analysis revealed 288 full or partial avian virus genomes, of which 97 belonged to the novel genus Chaphamaparvovirus. This study expands the knowledge of the diversity of enteric viruses in healthy and RSS-affected broiler flocks and questions the association of some viruses with the diseases.
Collapse
Affiliation(s)
- Jakub Kubacki
- Institute of Virology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland;
- Correspondence:
| | - Weihong Qi
- Functional Genomics Center Zurich, 8057 Zurich, Switzerland;
| | - Cornel Fraefel
- Institute of Virology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland;
| |
Collapse
|