1
|
Molika P, Leetanaporn K, Chiangjong W, Choochuen P, Navakanitworakul R. Proteomic Analysis Reveals Cadherin, Actin, and Focal Adhesion Molecule-Mediated Formation of Cervical Cancer Spheroids. Cells 2024; 13:2004. [PMID: 39682752 DOI: 10.3390/cells13232004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
Cancer spheroids are spherical, three-dimensional (3D), in vitro assemblies of cancer cells, which are gaining importance as a useful model in cancer behavior studies. Designed to simulate key features of the in vivo tumor microenvironment, spheroids offer reliable insights for drug screening and testing applications. We observed contrasting phenotypes in 3D cervical cancer (CC) cultures. Thus, in this study, we compared the proteomes of 3D and traditional two-dimensional (2D) cultures of CC cell lines, HeLa, SiHa, and C33A. When cultured in in-house poly-(2-hydroxyethyl methacrylate)-coated plates under conditions suitable for 3D spheroid formation, these CC cell lines yielded spheroids exhibiting different features. Proteomic analysis of cells cultured in 2D and 3D cultures revealed similar protein profiles but remarkable differences in the expression levels of some proteins. In SiHa and C33A cells, the upregulation of key proteins required for spheroid formation was insufficient for the formation of compact spheroids. In contrast, HeLa cells could form compact spheroids because they upregulated the proteins, including cadherin-binding, cytoskeleton, and adhesion proteins, necessary for spheroid formation during the remodeling process. Overall, this study unravels the mechanisms underlying the formation of spheroids in the commonly used CC cell lines.
Collapse
Affiliation(s)
- Piyatida Molika
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Kittinun Leetanaporn
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Wararat Chiangjong
- Pediatric Translational Research Unit, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Pongsakorn Choochuen
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Raphatphorn Navakanitworakul
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| |
Collapse
|
2
|
Chong LH, Yip AK, Farm HJ, Mahmoud LN, Zeng Y, Chiam KH. The role of cell-matrix adhesion and cell migration in breast tumor growth and progression. Front Cell Dev Biol 2024; 12:1339251. [PMID: 38374894 PMCID: PMC10875056 DOI: 10.3389/fcell.2024.1339251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/24/2024] [Indexed: 02/21/2024] Open
Abstract
During breast cancer progression, there is typically increased collagen deposition resulting in elevated extracellular matrix rigidity. This results in changes to cell-matrix adhesion and cell migration, impacting processes such as the epithelial-mesenchymal transition (EMT) and metastasis. We aim to investigate the roles of cell-matrix adhesion and cell migration on breast tumor growth and progression by studying the impacts of different types of extracellular matrices and their rigidities. We embedded MCF7 spheroids within three-dimensional (3D) collagen matrices and agarose matrices. MCF7 cells adhere to collagen but not agarose. Contrasting the results between these two matrices allows us to infer the role of cell-matrix adhesion. We found that MCF7 spheroids exhibited the fastest growth rate when embedded in a collagen matrix with a rigidity of 5.1 kPa (0.5 mg/mL collagen), whereas, for the agarose matrix, the rigidity for the fastest growth rate is 15 kPa (1.0% agarose) instead. This discrepancy is attributable to the presence of cell adhesion molecules in the collagen matrix, which initiates collagen matrix remodeling and facilitates cell migration from the tumor through the EMT. As breast tumors do not adhere to agarose matrices, it is suitable to simulate the cell-cell interactions during the early stage of breast tumor growth. We conducted further analysis to characterize the stresses exerted by the expanding spheroid on the agarose matrix. We identified two distinct MCF7 cell populations, namely, those that are non-dividing and those that are dividing, which exerted low and high expansion stresses on the agarose matrix, respectively. We confirmed this using Western blot which showed the upregulation of proliferating cell nuclear antigen, a proliferation marker, in spheroids grown in the 1.0% agarose (≈13 kPa). By treating the embedded MCF7 spheroids with an inhibitor or activator of myosin contractility, we showed that the optimum spheroids' growth can be increased or decreased, respectively. This finding suggests that tumor growth in the early stage, where cell-cell interaction is more prominent, is determined by actomyosin tension, which alters cell rounding pressure during cell division. However, when breast tumors begin generating collagen into the surrounding matrix, collagen remodeling triggers EMT to promote cell migration and invasion, ultimately leading to metastasis.
Collapse
Affiliation(s)
- Lor Huai Chong
- Bioinformatics Institute, ASTAR, Singapore, Singapore
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Ai Kia Yip
- Bioinformatics Institute, ASTAR, Singapore, Singapore
| | - Hui Jia Farm
- Bioinformatics Institute, ASTAR, Singapore, Singapore
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Lamees N. Mahmoud
- Biomedical Engineering Department, Faculty of Engineering, Helwan University, Helwan, Cairo, Egypt
| | - Yukai Zeng
- Bioinformatics Institute, ASTAR, Singapore, Singapore
| | | |
Collapse
|
3
|
Asgeirsson DO, Mehta A, Scheeder A, Li F, Wang X, Christiansen MG, Hesse N, Ward R, De Micheli AJ, Ildiz ES, Menghini S, Aceto N, Schuerle S. Magnetically controlled cyclic microscale deformation of in vitro cancer invasion models. Biomater Sci 2023; 11:7541-7555. [PMID: 37855703 DOI: 10.1039/d3bm00583f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Mechanical cues play an important role in the metastatic cascade of cancer. Three-dimensional (3D) tissue matrices with tunable stiffness have been extensively used as model systems of the tumor microenvironment for physiologically relevant studies. Tumor-associated cells actively deform these matrices, providing mechanical cues to other cancer cells residing in the tissue. Mimicking such dynamic deformation in the surrounding tumor matrix may help clarify the effect of local strain on cancer cell invasion. Remotely controlled microscale magnetic actuation of such 3D in vitro systems is a promising approach, offering a non-invasive means for in situ interrogation. Here, we investigate the influence of cyclic deformation on tumor spheroids embedded in matrices, continuously exerted for days by cell-sized anisotropic magnetic probes, referred to as μRods. Particle velocimetry analysis revealed the spatial extent of matrix deformation produced in response to a magnetic field, which was found to be on the order of 200 μm, resembling strain fields reported to originate from contracting cells. Intracellular calcium influx was observed in response to cyclic actuation, as well as an influence on cancer cell invasion from 3D spheroids, as compared to unactuated controls. Furthermore, RNA sequencing revealed subtle upregulation of certain genes associated with migration and stress, such as induced through mechanical deformation, for spheroids exposed to actuation vs. controls. Localized actuation at one side of a tumor spheroid tended to result in anisotropic invasion toward the μRods causing the deformation. In summary, our approach offers a strategy to test and control the influence of non-invasive micromechanical cues on cancer cell invasion and metastasis.
Collapse
Affiliation(s)
- Daphne O Asgeirsson
- Department of Health Sciences and Technology, Responsive Biomedical Systems Laboratory, ETH Zurich, 8093 Zurich, Switzerland.
| | - Avni Mehta
- Department of Health Sciences and Technology, Responsive Biomedical Systems Laboratory, ETH Zurich, 8093 Zurich, Switzerland.
| | - Anna Scheeder
- Department of Health Sciences and Technology, Responsive Biomedical Systems Laboratory, ETH Zurich, 8093 Zurich, Switzerland.
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, U.K
| | - Fan Li
- Department of Health Sciences and Technology, Responsive Biomedical Systems Laboratory, ETH Zurich, 8093 Zurich, Switzerland.
| | - Xiang Wang
- Department of Health Sciences and Technology, Responsive Biomedical Systems Laboratory, ETH Zurich, 8093 Zurich, Switzerland.
| | - Michael G Christiansen
- Department of Health Sciences and Technology, Responsive Biomedical Systems Laboratory, ETH Zurich, 8093 Zurich, Switzerland.
| | - Nicolas Hesse
- Department of Health Sciences and Technology, Responsive Biomedical Systems Laboratory, ETH Zurich, 8093 Zurich, Switzerland.
| | - Rachel Ward
- Department of Health Sciences and Technology, Responsive Biomedical Systems Laboratory, ETH Zurich, 8093 Zurich, Switzerland.
| | - Andrea J De Micheli
- Department of Health Sciences and Technology, Responsive Biomedical Systems Laboratory, ETH Zurich, 8093 Zurich, Switzerland.
- Department of Oncology, Children's Research Center, University Children's Hospital Zurich, Zurich 8032, Switzerland
| | - Ece Su Ildiz
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Stefano Menghini
- Department of Health Sciences and Technology, Responsive Biomedical Systems Laboratory, ETH Zurich, 8093 Zurich, Switzerland.
| | - Nicola Aceto
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Simone Schuerle
- Department of Health Sciences and Technology, Responsive Biomedical Systems Laboratory, ETH Zurich, 8093 Zurich, Switzerland.
| |
Collapse
|
4
|
Collagen-Specific Molecular Magnetic Resonance Imaging of Prostate Cancer. Int J Mol Sci 2022; 24:ijms24010711. [PMID: 36614152 PMCID: PMC9821004 DOI: 10.3390/ijms24010711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Constant interactions between tumor cells and the extracellular matrix (ECM) influence the progression of prostate cancer (PCa). One of the key components of the ECM are collagen fibers, since they are responsible for the tissue stiffness, growth, adhesion, proliferation, migration, invasion/metastasis, cell signaling, and immune recruitment of tumor cells. To explore this molecular marker in the content of PCa, we investigated two different tumor volumes (500 mm3 and 1000 mm3) of a xenograft mouse model of PCa with molecular magnetic resonance imaging (MRI) using a collagen-specific probe. For in vivo MRI evaluation, T1-weighted sequences before and after probe administration were analyzed. No significant signal difference between the two tumor volumes could be found. However, we detected a significant difference between the signal intensity of the peripheral tumor area and the central area of the tumor, at both 500 mm3 (p < 0.01, n = 16) and at 1000 mm3 (p < 0.01, n = 16). The results of our histologic analyses confirmed the in vivo studies: There was no significant difference in the amount of collagen between the two tumor volumes (p > 0.05), but within the tumor, higher collagen expression was observed in the peripheral area compared with the central area of the tumor. Laser ablation with inductively coupled plasma mass spectrometry further confirmed these results. The 1000 mm3 tumors contained 2.8 ± 1.0% collagen and the 500 mm3 tumors contained 3.2 ± 1.2% (n = 16). There was a strong correlation between the in vivo MRI data and the ex vivo histological data (y = −0.068x + 1.1; R2 = 0.74) (n = 16). The results of elemental analysis by inductively coupled plasma mass spectrometry supported the MRI data (y = 3.82x + 0.56; R2 = 0.79; n = 7). MRI with the collagen-specific probe in PCa enables differentiation between different tumor areas. This may help to differentiate tumor from healthy tissue, potentially identifying tumor areas with a specific tumor biology.
Collapse
|
5
|
Mayo LN, Kutys ML. Conversation before crossing: dissecting metastatic tumor-vascular interactions in microphysiological systems. Am J Physiol Cell Physiol 2022; 323:C1333-C1344. [PMID: 36121131 PMCID: PMC9602802 DOI: 10.1152/ajpcell.00173.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 01/12/2023]
Abstract
Tumor metastasis via the circulation requires crossing the vascular barrier twice: first, during intravasation when tumor cells disseminate from the primary site through proximal vasculature, and second, during extravasation, when tumor cells exit the circulation to form distant metastatic seeds. During these key metastatic events, chemomechanical signaling between tumor cells and endothelial cells elicits reciprocal changes in cell morphology and behavior that are necessary to breach the vessel wall. Existing experimental systems have provided a limited understanding of the diverse mechanisms underlying tumor-endothelial interactions during intravasation and extravasation. Recent advances in microphysiological systems have revolutionized the ability to generate miniaturized human tissues with tailored three-dimensional architectures, physiological cell interfaces, and precise chemical and physical microenvironments. By doing so, microphysiological systems enable experimental access to complex morphogenic processes associated with human tumor progression with unprecedented resolution and biological control. Here, we discuss recent examples in which microphysiological systems have been leveraged to reveal new mechanistic insight into cellular and molecular control systems operating at the tumor-endothelial interface during intravasation and extravasation.
Collapse
Affiliation(s)
- Lakyn N Mayo
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, California
- UCSF-UC Berkeley Joint Graduate Program in Bioengineering, University of California San Francisco, San Francisco, California
- Medical Scientist Training Program, University of California San Francisco, San Francisco, California
| | - Matthew L Kutys
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, California
- UCSF-UC Berkeley Joint Graduate Program in Bioengineering, University of California San Francisco, San Francisco, California
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| |
Collapse
|
6
|
Collagen Remodeling along Cancer Progression Providing a Novel Opportunity for Cancer Diagnosis and Treatment. Int J Mol Sci 2022; 23:ijms231810509. [PMID: 36142424 PMCID: PMC9502421 DOI: 10.3390/ijms231810509] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 12/12/2022] Open
Abstract
The extracellular matrix (ECM) is a significant factor in cancer progression. Collagens, as the main component of the ECM, are greatly remodeled alongside cancer development. More and more studies have confirmed that collagens changed from a barrier to providing assistance in cancer development. In this course, collagens cause remodeling alongside cancer progression, which in turn, promotes cancer development. The interaction between collagens and tumor cells is complex with biochemical and mechanical signals intervention through activating diverse signal pathways. As the mechanism gradually clears, it becomes a new target to find opportunities to diagnose and treat cancer. In this review, we investigated the process of collagen remodeling in cancer progression and discussed the interaction between collagens and cancer cells. Several typical effects associated with collagens were highlighted in the review, such as fibrillation in precancerous lesions, enhancing ECM stiffness, promoting angiogenesis, and guiding invasion. Then, the values of cancer diagnosis and prognosis were focused on. It is worth noting that several generated fragments in serum were reported to be able to be biomarkers for cancer diagnosis and prognosis, which is beneficial for clinic detection. At a glance, a variety of reported biomarkers were summarized. Many collagen-associated targets and drugs have been reported for cancer treatment in recent years. The new targets and related drugs were discussed in the review. The mass data were collected and classified by mechanism. Overall, the interaction of collagens and tumor cells is complicated, in which the mechanisms are not completely clear. A lot of collagen-associated biomarkers are excavated for cancer diagnosis. However, new therapeutic targets and related drugs are almost in clinical trials, with merely a few in clinical applications. So, more efforts are needed in collagens-associated studies and drug development for cancer research and treatment.
Collapse
|