1
|
Vaikkathillam P, Sajeevan A, Mohan S, Solomon AP, Rajan PP, S M, Kumar P, Thomas S. Genomic analysis of colistin and carbapenem resistant Klebsiella pneumoniae GC29. Microb Pathog 2024; 199:107220. [PMID: 39667638 DOI: 10.1016/j.micpath.2024.107220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 11/23/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
OBJECTIVES This study aims to sequence and analyze a clinical strain of Klebsiella pneumoniae (GC29) focusing on its antibiotic resistance profiles, virulence traits, and evolutionary lineage. The goal is to provide insights into the challenges of combating multi-drug resistant K. pneumoniae and emphasize the necessity for targeted strategies to address this public health threat. METHODS Antibiotic resistance profiles of GC29 were determined using disc diffusion assays and MICs according to CLSI guidelines. Genomic analysis was performed to detect antimicrobial resistance and virulence-associated genes. The evolutionary lineage and plasmid content were evaluated through comparative genomic analysis with closely related strains. RESULTS GC29 exhibited resistance to 33 FDA-approved antibiotics across various classes including colistin and carbapenem, with high MIC values for Amikacin, Ampicillin, Erythromycin, Colistin, Cefotaxime, Cefixime, Tetracycline, and Kanamycin. Genome analysis revealed multiple antimicrobial resistance genes, including those for β-lactams, sulphonamides, trimethoprim, aminoglycosides, tetracyclines, fosfomycin, and chloramphenicol. Four unique virulence genes (allA, sciN, impF, acpXL) were identified. GC29 belonged to sequence type ∗703b and carried two plasmids, IncHI1B (317,780 bp) and ColKP3 (12,224 bp), both harboring drug-resistance genes. It clustered closely with strain BA4946, indicating genetic relatedness and shared evolutionary history, with implications for horizontal transfer of multi-drug resistance. CONCLUSIONS The study underscores GC29's significant threat due to its extensive antibiotic resistance and distinctive virulence factors. This highlights the critical need for enhanced surveillance, rigorous infection control, and innovative therapeutic strategies to address MDR K. pneumoniae effectively. The complex resistance mechanisms and virulence of this pathogen emphasize the growing public health challenge.
Collapse
Affiliation(s)
| | - Anusree Sajeevan
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be university, Thanjavur 613401, Tamil Nadu, India
| | - Suma Mohan
- Computational Biology lab, Bioinformatics Centre, School of Chemical and Biotechnology, SASTRA Deemed to be university, Thanjavur 613401, Tamil Nadu, India
| | - Adline Princy Solomon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be university, Thanjavur 613401, Tamil Nadu, India
| | - Pooja P Rajan
- Department of Zoology, Government College for Women, Thiruvananthapuram, Kerala, India
| | - Manjusree S
- Department of Microbiology, Government Medical College, Thiruvananthapuram, Kerala, India
| | - Praveen Kumar
- Department of Zoology, Government College for Women, Thiruvananthapuram, Kerala, India.
| | - Sabu Thomas
- Centre for Excellence in Microbiome, Government of Kerala, Thiruvananthapuram, Kerala, India
| |
Collapse
|
2
|
Foysal MJ, Momtaz F, Chowdhury AMMA, Tanni AA, Salauddin A, Hasan MZ, Mina SA, Sultana N, Biswas SK, Islam K, Tay A, Mannan A. Whole-Genome Analysis of Multidrug-Resistant Klebsiella pneumoniae Kp04 Reveals Distinctive Antimicrobial and Arsenic-Resistance Genomic Features: A Case Study from Bangladesh. Curr Microbiol 2024; 82:22. [PMID: 39613891 DOI: 10.1007/s00284-024-03996-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/15/2024] [Indexed: 12/01/2024]
Abstract
Multidrug-resistant bacteria, particularly extended-spectrum-beta-lactamase-producing (ESBL) bacteria, pose a significant global public health challenge. Klebsiella pneumoniae (KPN) is frequently implicated in cases of this resistance. This study aimed to investigate the presence of drug and metal resistance genes in clinical K. pneumoniae isolate Kp04 and comparative genomics of clinical KPN isolates characterized from Bangladesh. A total of 12 isolates were collected. Disk-diffusion assay showed that all five isolates were resistant to 14 out of 21 tested antibiotics and sensitive to only three-tigecycline, imipenem, and meropenem. KPN Kp04 was positive for both blaSHV and blaCTX-M ESBL genes in PCR. All five isolates produced PCR amplicons of the correct size for ampicillin (ampC), tetracycline (tetC), fluoroquinolone (qnrS), and aminoglycoside (aadA) resistance genes. The whole genome of Kp04 was sequenced using the MiSeq Platform (V3 kit, 2 × 300 cycles). We utilized different databases to detect Antibiotic-Resistant Genes (ARGs), virulence factor genes (VFGs), and genomic functional features of the Kp04 strain. Whole-genome sequencing identified 75 ESBL, virulence, and multiple drug-resistant (MDR) genes including blaSHV, tetA, oqxA, oqxB, aadA, sul1-5, and mphA in KPN Kp04 isolate. Pan-genomic analysis of 43 Bangladeshi KPN isolates showed similarities between Dhaka and Chattogram isolates regarding virulence and antibiotic-resistant genes. Our results indicate the transmission of similar virulent KPN strains in Dhaka and Chattogram. This study would provide valuable information about drug sensitivity, antibiotic, and metal resistance features of K. pneumoniae circulated among hospitalized patients in Bangladeshi megacities.
Collapse
Affiliation(s)
- Md Javed Foysal
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
| | - Farhana Momtaz
- College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - A M Masudul Azad Chowdhury
- Department of Genetic Engineering and Biotechnology, University of Chittagong, Chattogram, Bangladesh
- Laboratory of Microbial and Cancer Genomics, Biotechnology Research and Innovation Centre (BRIC), University of Chittagong, Chittagong, 4331, Bangladesh
| | - Afroza Akter Tanni
- Department of Genetic Engineering and Biotechnology, University of Chittagong, Chattogram, Bangladesh
- Next Generation Sequencing, Research and Innovation Laboratory Chattogram (NRICh), Biotechnology Research and Innovation Centre (BRIC), University of Chittagong, Chattogram, Bangladesh
| | - Asma Salauddin
- Department of Genetic Engineering and Biotechnology, University of Chittagong, Chattogram, Bangladesh
- Next Generation Sequencing, Research and Innovation Laboratory Chattogram (NRICh), Biotechnology Research and Innovation Centre (BRIC), University of Chittagong, Chattogram, Bangladesh
| | - Md Zahid Hasan
- Department of Genetic Engineering and Biotechnology, University of Chittagong, Chattogram, Bangladesh
- Laboratory of Microbial and Cancer Genomics, Biotechnology Research and Innovation Centre (BRIC), University of Chittagong, Chittagong, 4331, Bangladesh
| | - Sohana Akter Mina
- Department of Genetic Engineering and Biotechnology, University of Chittagong, Chattogram, Bangladesh
- Laboratory of Microbial and Cancer Genomics, Biotechnology Research and Innovation Centre (BRIC), University of Chittagong, Chittagong, 4331, Bangladesh
| | - Nahid Sultana
- Department of Microbiology, Chattogram Maa O Shishu Hospital, Agrabad, Chattogram, Bangladesh
| | - Sanjoy Kanti Biswas
- Department of Microbiology, Chattogram Maa O Shishu Hospital, Agrabad, Chattogram, Bangladesh
| | - Kamrul Islam
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Alfred Tay
- Helicobacter Research Laboratory, The Marshall Centre, University of Western Australia, Perth, WA, Australia
| | - Adnan Mannan
- Department of Genetic Engineering and Biotechnology, University of Chittagong, Chattogram, Bangladesh.
- Next Generation Sequencing, Research and Innovation Laboratory Chattogram (NRICh), Biotechnology Research and Innovation Centre (BRIC), University of Chittagong, Chattogram, Bangladesh.
| |
Collapse
|
3
|
Akinola OT, Dahunsi SO. Whole genome sequencing reveals antibiotic resistance pattern and virulence factors in Klebsiella quasipneumoniae subsp. Similipneumoniae from Hospital wastewater in South-West, Nigeria. Microb Pathog 2024; 197:107040. [PMID: 39427715 DOI: 10.1016/j.micpath.2024.107040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 09/22/2024] [Accepted: 10/18/2024] [Indexed: 10/22/2024]
Abstract
Klebsiella quasipneumoniae is a distinct species from K. pneumoniae, even though it is sometimes mistaken phenotypically for the latter in clinical situations. K. quasipneumoniae is a pathogen and this study aims at understanding the genomic antibiotic resistance and virulence characteristics of Klebsiella quasipneumoniae subsp. similipneumoniae (B105 strain) isolated from tertiary hospital wastewater and the potential risks associated with its environmental spread. The Illumina platform was used for whole-genome sequencing (WGS), the generated raw reads (de novo) was assembled using RAPT NCBI, while other standardized bioinformatics tools were utilized to validate and examine the landscape of the genome's antibiotic resistance and virulence factors. The K. quasipneumoniae subsp. similipneumoniae (B105 strain), belonged to sequence type 1422 and was resistant to ampicillin, amoxicillin-clavulanic acid, ceftazidime, cefepime, meropenem, tetracycline, but susceptible to gentamicin. The annotated genome acknowledged the presence of blaOKP-B-2, ompK 36, fosA5, oqxAB, virulence genes responsible for capsule formation, lipopolysaccharide, iron uptake aerobactin (iutA), salmochelins (iroE, iroN), enterobactin siderophore, efllux pump (acrA, acrB) adherence, (mrkC, mrkD, and fimD) and two plasmids replicon IncFIB(K) and IncR. The study resonates the inadequacy of conventional microbiological identification methods to distinguish K. pneumoniae and K. quasipneumoniae and at the same time heightens the importance of using a genomic platform to extol the identity of K. quasipneumoniae subsp. similipneumoniae strain. Furthermore, the peculiarities of the acquired antimicrobial resistance and virulence genes, in this strain, are a potential risk to the environment.
Collapse
Affiliation(s)
- Omowumi T Akinola
- Microbiology Programme, College of Agriculture, Engineering and Science, Bowen University, Iwo, Nigeria.
| | - Samuel Olatunde Dahunsi
- Microbiology Programme, College of Agriculture, Engineering and Science, Bowen University, Iwo, Nigeria; The Radcliffe Institute for Advanced Study, Harvard University, Cambridge, Massachusetts, USA.
| |
Collapse
|
4
|
Shaw J, Yu YW. Rapid species-level metagenome profiling and containment estimation with sylph. Nat Biotechnol 2024:10.1038/s41587-024-02412-y. [PMID: 39379646 DOI: 10.1038/s41587-024-02412-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 08/28/2024] [Indexed: 10/10/2024]
Abstract
Profiling metagenomes against databases allows for the detection and quantification of microorganisms, even at low abundances where assembly is not possible. We introduce sylph, a species-level metagenome profiler that estimates genome-to-metagenome containment average nucleotide identity (ANI) through zero-inflated Poisson k-mer statistics, enabling ANI-based taxa detection. On the Critical Assessment of Metagenome Interpretation II (CAMI2) Marine dataset, sylph was the most accurate profiling method of seven tested. For multisample profiling, sylph took >10-fold less central processing unit time compared to Kraken2 and used 30-fold less memory. Sylph's ANI estimates provided an orthogonal signal to abundance, allowing for an ANI-based metagenome-wide association study for Parkinson disease (PD) against 289,232 genomes while confirming known butyrate-PD associations at the strain level. Sylph took <1 min and 16 GB of random-access memory to profile metagenomes against 85,205 prokaryotic and 2,917,516 viral genomes, detecting 30-fold more viral sequences in the human gut compared to RefSeq. Sylph offers precise, efficient profiling with accurate containment ANI estimation even for low-coverage genomes.
Collapse
Affiliation(s)
- Jim Shaw
- Department of Mathematics, University of Toronto, Toronto, Ontario, Canada.
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
| | - Yun William Yu
- Department of Mathematics, University of Toronto, Toronto, Ontario, Canada.
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
5
|
Ammar AM, Abd El-Aziz NK, Aggour MG, Ahmad AAM, Abdelkhalek A, Muselin F, Smuleac L, Pascalau R, Attia FA. A Newly Incompatibility F Replicon Allele (FIB81) in Extensively Drug-Resistant Escherichia coli Isolated from Diseased Broilers. Int J Mol Sci 2024; 25:8347. [PMID: 39125914 PMCID: PMC11312129 DOI: 10.3390/ijms25158347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/16/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Multiple drug resistance (MDR) has gained pronounced attention among Enterobacterales. The transfer of multiple antimicrobial resistance genes, frequently carried on conjugative incompatibility F (IncF) plasmids and facilitating interspecies resistance transmission, has been linked to Salmonella spp. and E. coli in broilers. In Egypt, the growing resistance is exacerbated by the limited clinical efficacy of many antimicrobials. In this study, IncF groups were screened and characterized in drug-resistant Salmonella spp. and E. coli isolated from broilers. The antimicrobial resistance profile, PCR-based replicon typing of bacterial isolates pre- and post-plasmid curing, and IncF replicon allele sequence typing were investigated. Five isolates of E. coli (5/31; 16.13%) and Salmonella spp. (5/36; 13.89%) were pan-susceptible to the examined antimicrobial agents, and 85.07% of tested isolates were MDR and extensively drug-resistant (XDR). Twelve MDR and XDR E. coli and Salmonella spp. isolates were examined for the existence of IncF replicons (FII, FIA, and FIB). They shared resistance to ampicillin, ampicillin/sulbactam, amoxicillin/clavulanate, doxycycline, cefotaxime, and colistin. All isolates carried from one to two IncF replicons. The FII-FIA-FIB+ and FII-FIA+FIB- were the predominant replicon patterns. FIB was the most frequently detected replicon after plasmid curing. Three XDR E. coli isolates that were resistant to 12-14 antimicrobials carried a newly FIB replicon allele with four nucleotide substitutions: C99→A, G112→T, C113→T, and G114→A. These findings suggest that broilers are a significant reservoir of IncF replicons with highly divergent IncF-FIB plasmid incompatibility groups circulating among XDR Enterobacterales. Supporting these data with additional comprehensive epidemiological studies involving replicons other than the IncF can provide insights for implementing efficient policies to prevent the spreading of new replicons to humans.
Collapse
Affiliation(s)
- Ahmed M. Ammar
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt; (A.M.A.); (A.A.M.A.)
| | - Norhan K. Abd El-Aziz
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt; (A.M.A.); (A.A.M.A.)
| | | | - Adel A. M. Ahmad
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt; (A.M.A.); (A.A.M.A.)
| | - Adel Abdelkhalek
- Food Safety, Hygiene and Technology Department, Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Badr 11829, Egypt;
| | - Florin Muselin
- Department of Toxicology, Faculty of Veterinary Medicine, University of Life Sciences “King Michael I” from Timisoara, 300645 Timisoara, Romania;
| | - Laura Smuleac
- Department of Sustainable Development and Environmental Engineering, Faculty of Agriculture, University of Life Sciences “King Mihai I” from Timisoara, 300645 Timisoara, Romania;
| | - Raul Pascalau
- Department of Agricultural Technologies, Faculty of Agriculture, University of Life Sciences “ King Mihai I” from Timisoara, 300645 Timisoara, Romania
| | | |
Collapse
|
6
|
Arauz-Cabrera J, Marquez-Salazar D, Delgadillo-Valles R, Caporal-Hernandez L, Hernandez-Acevedo GN, Barrios-Villa E. Genomic Profile of a Multidrug-Resistant Klebsiella pneumoniae Strain Isolated from a Urine Specimen. Curr Microbiol 2024; 81:276. [PMID: 39023551 DOI: 10.1007/s00284-024-03802-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024]
Abstract
Klebsiella pneumoniae is an opportunistic pathogen mostly found in health care-associated infections but can also be associated with community-acquired infections and is in critical need of new antimicrobial agents for strains resistant to carbapenems. The prevalence of carbapenemase-encoding genes varies among studies. Multidrug-resistant K. pneumoniae strains can harbor several antimicrobial-resistant determinants and mobile genetic elements (MGEs), along with virulence genetic determinants in community settings. We aim to determine the genetic profile of a multidrug-resistant K. pneumoniae strain isolated from a patient with community-acquired UTI. We isolated a K. pneumoniae strain UABC-Str0120, from a urine sample of community-acquired urinary tract infection. Antimicrobial susceptibility tests and Whole-genome sequencing (WGS) were performed. The phylogenetic relationship was inferred by SNPs calling and filtering. UABC-Str0120 showed resistance toward β-lactams, combinations with β-lactamase inhibitors, and carbapenems. WGS revealed the presence of genes conferring resistance to aminoglycosides, β-lactams, carbapenems, quinolones, sulfonamides, phosphonates, phenicols, and quaternary ammonium compounds, 77 subsystems of virulence genes were identified, and an uncommon sequence type ST5889 was also determined. The sequenced strain harbors several MGEs. The UABC-Str0120 recovered from a urine sample harbors several virulence and antimicrobial resistance determinants, which assembles an endangering combination for an immunocompromised or a seemly healthy host, given its presence in a community setting.
Collapse
Affiliation(s)
- Jonathan Arauz-Cabrera
- Facultad de Medicina Mexicali, Departamento de Farmacología, Universidad Autónoma de Baja California, Humberto Torres Sanginés SN, Centro Cívico, Mexicali, Baja California, México, CP. 21000
| | - Dolores Marquez-Salazar
- Facultad de Medicina Mexicali, Departamento de Farmacología, Universidad Autónoma de Baja California, Humberto Torres Sanginés SN, Centro Cívico, Mexicali, Baja California, México, CP. 21000
| | - Ricardo Delgadillo-Valles
- Facultad de Medicina Mexicali, Departamento de Microbiología y Parasitología Clínica, Universidad Autónoma de Baja California, Humberto Torres Sanginés SN, Centro Cívico, Mexicali, Baja California, México, CP. 21000
| | - Liliana Caporal-Hernandez
- Laboratorio de Biología Molecular y Genómica, Departamento de Ciencias, Químico Biológicas y Agropecuarias, Universidad de Sonora, Universidad e Irigoyen S/N, Campus Caborca. Av., H. Caborca, Sonora, México, CP. 83621
| | - Gerson N Hernandez-Acevedo
- Facultad de Medicina Mexicali, Departamento de Microbiología y Parasitología Clínica, Universidad Autónoma de Baja California, Humberto Torres Sanginés SN, Centro Cívico, Mexicali, Baja California, México, CP. 21000
| | - Edwin Barrios-Villa
- Laboratorio de Biología Molecular y Genómica, Departamento de Ciencias, Químico Biológicas y Agropecuarias, Universidad de Sonora, Universidad e Irigoyen S/N, Campus Caborca. Av., H. Caborca, Sonora, México, CP. 83621.
| |
Collapse
|
7
|
Elgayar FA, Gouda MK, Badran AA, El Halfawy NM. Pathogenomics analysis of high-risk clone ST147 multidrug-resistant Klebsiella pneumoniae isolated from a patient in Egypt. BMC Microbiol 2024; 24:256. [PMID: 38987681 PMCID: PMC11234735 DOI: 10.1186/s12866-024-03389-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/19/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND The emergence of multi-drug-resistant Klebsiella pneumoniae (MDR-KP) represents a serious clinical health concern. Antibiotic resistance and virulence interactions play a significant role in the pathogenesis of K. pneumoniae infections. Therefore, tracking the clinical resistome and virulome through monitoring antibiotic resistance genes (ARG) and virulence factors in the bacterial genome using computational analysis tools is critical for predicting the next epidemic. METHODS In the current study, one hundred extended spectrum β-lactamase (ESBL)-producing clinical isolates were collected from Mansoura University Hospital, Egypt, in a six-month period from January to June 2022. One isolate was selected due to the high resistance phenotype, and the genetic features of MDR-KP recovered from hospitalized patient were investigated. Otherwise, the susceptibility to 25 antimicrobials was determined using the DL Antimicrobial Susceptibility Testing (AST) system. Whole genome sequencing (WGS) using Illumina NovaSeq 6000 was employed to provide genomic insights into K. pneumoniae WSF99 clinical isolate. RESULTS The isolate K. pneumoniae WSF99 was phenotypically resistant to the antibiotics under investigation via antibiotic susceptibility testing. WGS analysis revealed that WSF99 total genome length was 5.7 Mb with an estimated 5,718 protein-coding genes and a G + C content of 56.98 mol%. Additionally, the allelic profile of the WSF99 isolate was allocated to the high-risk clone ST147. Furthermore, diverse antibiotic resistance genes were determined in the genome that explain the high-level resistance phenotypes. Several β-lactamase genes, including blaCTX-M-15, blaTEM-1, blaTEM-12, blaSHV-11, blaSHV-67, and blaOXA-9, were detected in the WSF99 isolate. Moreover, a single carbapenemase gene, blaNDM-5, was predicted in the genome, positioned within a mobile cassette. In addition, other resistance genes were predicted in the genome including, aac(6')-Ib, aph(3')-VI, sul1, sul2, fosA, aadA, arr-2, qnrS1, tetA and tetC. Four plasmid replicons CoIRNAI, IncFIB(K), IncFIB(pQil), and IncR were predicted in the genome. The draft genome analysis revealed the occurrence of genetic mobile elements positioned around the ARGs, suggesting the ease of dissemination via horizontal gene transfer. CONCLUSIONS This study reports a comprehensive pathogenomic analysis of MDR-KP isolated from a hospitalized patient. These findings could be relevant for future studies investigating the diversity of antimicrobial resistance and virulence in Egypt.
Collapse
Affiliation(s)
- Fatma A Elgayar
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Moharram Bek 21511, Alexandria, Egypt
| | - Mona K Gouda
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Moharram Bek 21511, Alexandria, Egypt
| | - Alaa Aboelnour Badran
- Department of Clinical Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Nancy M El Halfawy
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Moharram Bek 21511, Alexandria, Egypt.
| |
Collapse
|
8
|
Kadkhoda H, Gholizadeh P, Ghotaslou R, Pirzadeh T, Ahangarzadeh Rezaee M, Nabizadeh E, Feizi H, Samadi Kafil H, Aghazadeh M. Prevalence of the CRISPR-cas system and its association with antibiotic resistance in clinical Klebsiella pneumoniae isolates. BMC Infect Dis 2024; 24:554. [PMID: 38831286 PMCID: PMC11149351 DOI: 10.1186/s12879-024-09451-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 05/30/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND AND OBJECTIVE(S) CRISPR-Cas is a prokaryotic adaptive immune system that protects bacteria and archaea against mobile genetic elements (MGEs) such as bacteriophages plasmids, and transposons. In this study, we aimed to assess the prevalence of the CRISPR-Cas systems and their association with antibiotic resistance in one of the most challenging bacterial pathogens, Klebsiella pneumoniae. MATERIALS AND METHODS A total of 105 K. pneumoniae isolates were collected from various clinical infections. Extended-spectrum β-lactamases (ESBLs) phenotypically were detected and the presence of ESBL, aminoglycoside-modifying enzymes (AME), and CRISPR-Cas system subtype genes were identified using PCR. Moreover, the diversity of the isolates was determined by enterobacterial repetitive intergenic consensus (ERIC)-PCR. RESULTS Phenotypically, 41.9% (44/105) of the isolates were found to be ESBL producers. A significant inverse correlation existed between the subtype I-E CRISPR-Cas system's presence and ESBL production in K. pneumoniae isolates. Additionally, the frequency of the ESBL genes blaCTX-M1 (3%), blaCTX-M9 (12.1%), blaSHV (51.5%), and blaTEM (33.3%), as well as some AME genes such as aac(3)-Iva (21.2%) and ant(2'')-Ia (3%) was significantly lower in the isolates with the subtype I-E CRISPR-Cas system in comparison to CRISPR-negative isolates. There was a significant inverse correlation between the presence of ESBL and some AME genes with subtype I-E CRISPR-Cas system. CONCLUSION The presence of the subtype I-E CRISPR-Cas system was correlated with the antibiotic-resistant gene (ARGs). The isolates with subtype I-E CRISPR-Cas system had a lower frequency of ESBL genes and some AME genes than CRISPR-negative isolates.
Collapse
Affiliation(s)
- Hiva Kadkhoda
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pourya Gholizadeh
- Digestive Disease Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Zoonoses Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Reza Ghotaslou
- Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tahereh Pirzadeh
- Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Edris Nabizadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Feizi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Microbiology, Aalinasab Hospital, Social Security Organization, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Aghazadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
9
|
Ragheb SM, Osei Sekyere J. Molecular characterization of hypermucoviscous carbapenemase-encoding Klebsiella pneumoniae isolates from an Egyptian hospital. Ann N Y Acad Sci 2024; 1535:109-120. [PMID: 38577761 DOI: 10.1111/nyas.15126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 01/16/2024] [Accepted: 02/21/2024] [Indexed: 04/06/2024]
Abstract
This study aimed to screen antibiotic resistance and virulence genes in carbapenem-resistant hypermucoviscous Klebsiella pneumoniae isolates from an Egyptian hospital. Among 38 previously confirmed carbapenem-nonsusceptible K. pneumoniae isolates, a string test identified three isolates as positive for hypermucoviscosity. Phenotypic characterization and molecular detection of carbapenemase- and virulence-encoding genes were performed. PCR-based multilocus sequence typing and phylogenetics were used to determine the clonality and global epidemiology of the strains. The coexistence of virulence and resistance genes in the isolates was analyzed statistically using a chi-square test. Three isolates showed the presence of carbapenemase-encoding genes (blaNDM, blaVIM, and blaIMP), adhesion genes (fim-H-1 and mrkD), and siderophore genes (entB); the isolates belonged to sequence types (STs) 101, 1310, and 1626. The relatedness between these sequence types and the sequence types of globally detected hypermucoviscous K. pneumoniae that also harbor carbapenemases was determined. Our analysis showed that the resistance and virulence profiles were not homogenous. Phylogenetically, different clones clustered together. There was no significant association between the presence of resistance and virulence genes in the isolates. There is a need for periodic surveillance of the healthcare settings in Egypt and globally to understand the true epidemiology of carbapenem-resistant, hypermucoviscous K. pneumoniae.
Collapse
Affiliation(s)
- Suzan Mohammed Ragheb
- Department of Microbiology and Immunology, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Cairo, Egypt
| | - John Osei Sekyere
- Department of Medical Microbiology, School of Medicine, University of Pretoria, Pretoria, South Africa
- Department of Dermatology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Institute of Biomarker Research, Medical Diagnostic Laboratories LLC, Genesis Biotechnology Group, Hamilton, New Jersey, USA
| |
Collapse
|
10
|
Corrales-Martínez J, Jaramillo K, Tadesse DA, Satán C, Villavicencio FX, Sánchez-Gavilanes L, Rivadeneira-Cueva B, Balcázar JL, Calero-Cáceres W. Genomic characterization of a WHO critical priority isolate Enterobacter kobei ST2070 harboring OXA-10, KPC-2, and CTX-M-12 recovered from a water irrigation channel in Ecuador. Heliyon 2024; 10:e26379. [PMID: 38449644 PMCID: PMC10915343 DOI: 10.1016/j.heliyon.2024.e26379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/06/2024] [Accepted: 02/12/2024] [Indexed: 03/08/2024] Open
Abstract
The discharge of untreated or partially treated wastewater can have detrimental impacts on the quality of water bodies, posing a significant threat to public health and the environment. In Ecuador, previous research indicates a high prevalence of antimicrobial resistant (AMR) bacteria in surface waters affected by human activities, including irrigation channels. In this study, we analyzed sediment samples collected from an irrigation channel utilized for agricultural purposes in northern Ecuador, using microbiological techniques and whole-genome sequencing (WGS). Our investigation revealed the first documented occurrence of E. kobei in Ecuador and the initial report of environmental E. kobei ST2070. Furthermore, we identified the coexistence of OXA-10-type class D β-lactamase and KPC-2-type class A β-lactamase in the E. kobei isolate (UTA41), representing the first report of such a phenomenon in this species. Additionally, we detected various antibiotic resistance genes in the E. kobei UTA41 isolate, including blaCTX-M-12, fosA, aac(6')-lb, sul2, msr(E), and mph(A), as well as virulence genes such as bacterial efflux pump and siderophore biosynthesis genes. We also identified two intact prophage regions (Entero_186 and Klebsi_phiKO2) in the isolate. Our study presents the first evidence of E. kobei isolate containing two carbapenemase-encoding genes in environmental samples from Latin America. This finding indicates the potential spread of critical-priority bacteria in water samples originating from anthropogenic sources, such as urban wastewater discharges and livestock facilities.
Collapse
Affiliation(s)
- Joselyn Corrales-Martínez
- UTA-RAM-One Health, Department of Food and Biotechnology Science and Engineering, Universidad Técnica de Ambato, Ambato, Ecuador
| | - Katherine Jaramillo
- Centro de Referencia Nacional de Resistencia a los Antimicrobianos RAM, Instituto Nacional de Investigación en Salud Pública “Dr. Leopoldo Izquieta Pérez” INSPI, Quito, Ecuador
- Facultad de Ciencias de la Salud, Universidad Técnica de Ambato, Ambato, Ecuador
| | - Daniel A. Tadesse
- U.S. Food &Drug Administration, Center for Veterinary Medicine, Office of Applied Science Laurel, MD 20708, USA
| | - Carolina Satán
- Centro de Referencia Nacional de Resistencia a los Antimicrobianos RAM, Instituto Nacional de Investigación en Salud Pública “Dr. Leopoldo Izquieta Pérez” INSPI, Quito, Ecuador
| | - Fernando X. Villavicencio
- Centro de Referencia Nacional de Resistencia a los Antimicrobianos RAM, Instituto Nacional de Investigación en Salud Pública “Dr. Leopoldo Izquieta Pérez” INSPI, Quito, Ecuador
- Veterinary Medicine, Eugenio Espejo Faculty of Health Sciences, Universidad UTE, Quito, Ecuador
| | - Lissette Sánchez-Gavilanes
- UTA-RAM-One Health, Department of Food and Biotechnology Science and Engineering, Universidad Técnica de Ambato, Ambato, Ecuador
| | - Brenda Rivadeneira-Cueva
- UTA-RAM-One Health, Department of Food and Biotechnology Science and Engineering, Universidad Técnica de Ambato, Ambato, Ecuador
| | - José Luis Balcázar
- Catalan Institute for Water Research (ICRA), 17003 Girona, Spain
- University of Girona, 17004 Girona, Spain
| | - William Calero-Cáceres
- UTA-RAM-One Health, Department of Food and Biotechnology Science and Engineering, Universidad Técnica de Ambato, Ambato, Ecuador
| |
Collapse
|
11
|
Hamed SM, Mohamed HO, Ashour HM, Fahmy LI. Comparative genomic analysis of strong biofilm-forming Klebsiella pneumoniae isolates uncovers novel IS Ecp1-mediated chromosomal integration of a full plasmid-like sequence. Infect Dis (Lond) 2024; 56:91-109. [PMID: 37897710 DOI: 10.1080/23744235.2023.2272624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 10/12/2023] [Indexed: 10/30/2023] Open
Abstract
BACKGROUND The goal of the current study was to elucidate the genomic background of biofilm formation in Klebsiella pneumoniae. METHODS Clinical isolates were screened for biofilm formation using the crystal violet assay. Antimicrobial resistance (AMR) profiles were assessed by disk diffusion and broth microdilution tests. Biofilm formation was correlated to virulence and resistance genes screened by PCR. Draft genomes of three isolates that form strong biofilm were generated by Illumina sequencing. RESULTS Only the siderophore-coding gene iutA was significantly associated with more pronounced biofilm formation. ST1399-KL43-O1/O2v1 and ST11-KL15-O4 were assigned to the multidrug-resistant strain K21 and the extensively drug-resistant strain K237, respectively. ST1999-KL38-O12 was assigned to K57. Correlated with CRISPR/Cas distribution, more plasmid replicons and prophage sequences were identified in K21 and K237 compared to K57. The acquired AMR genes (blaOXA-48, rmtF, aac(6')-Ib and qnrB) and (blaNDM-1, blaCTX-M, aph(3')-VI, qnrS, and aac(6')-Ib-cr) were found in K237 and K21, respectively. The latter showed a novel ISEcp1-mediated chromosomal integration of replicon type IncM1 plasmid-like structure harboring blaCTX-M-14 and aph(3')-VI that uniquely interrupted rcsC. The plasmid-mediated heavy metal resistance genes merACDEPRT and arsABCDR were spotted in K21, which also exclusively carried the acquired virulence genes mrkABCDF and the hypervirulence-associated genes iucABCD-iutA, and rmpA/A2. Pangenome analysis revealed NTUH-K2044 accessory genes most frequently shared with K21. CONCLUSIONS While less virulent to Galleria mellonella than ST1999 (K57), the strong biofilm former, multidrug-resistant, NDM-producer K. pneumoniae K21 (ST1399-KL43-O1/O2v1) carries a novel chromosomally integrated plasmid-like structure and hypervirulence-associated genes and represents a serious threat to countries in the area.
Collapse
Affiliation(s)
- Samira M Hamed
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Hend O Mohamed
- Department of Biological Control Research, Plant Protection Research Institute, Agricultural Research Center, Giza, Egypt
| | - Hossam M Ashour
- Department of Integrative Biology, College of Arts and Sciences, University of South Florida, St. Petersburg, FL, USA
| | - Lamiaa I Fahmy
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| |
Collapse
|
12
|
Salgueiro V, Manageiro V, Rosado T, Bandarra NM, Botelho MJ, Dias E, Caniça M. Snapshot of resistome, virulome and mobilome in aquaculture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:166351. [PMID: 37604365 DOI: 10.1016/j.scitotenv.2023.166351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/28/2023] [Accepted: 08/15/2023] [Indexed: 08/23/2023]
Abstract
Aquaculture environments can be hotspots for resistance genes through the surrounding environment. Our objective was to study the resistome, virulome and mobilome of Gram-negative bacteria isolated in seabream and bivalve molluscs, using a WGS approach. Sixty-six Gram-negative strains (Aeromonadaceae, Enterobacteriaceae, Hafniaceae, Morganellaceae, Pseudomonadaceae, Shewanellaceae, Vibrionaceae, and Yersiniaceae families) were selected for genomic characterization. The species and MLST were determined, and antibiotic/disinfectants/heavy metals resistance genes, virulence determinants, MGE, and pathogenicity to humans were investigated. Our study revealed new sequence-types (e.g. Aeromonas spp. ST879, ST880, ST881, ST882, ST883, ST887, ST888; Shewanella spp. ST40, ST57, ST58, ST60, ST61, ST62; Vibrio spp. ST206, ST205). >140 different genes were identified in the resistome of seabream and bivalve molluscs, encompassing genes associated with β-lactams, tetracyclines, aminoglycosides, quinolones, sulfonamides, trimethoprim, phenicols, macrolides and fosfomycin resistance. Disinfectant resistance genes qacE-type, sitABCD-type and formA-type were found. Heavy metals resistance genes mdt, acr and sil stood out as the most frequent. Most resistance genes were associated with antibiotics/disinfectants/heavy metals commonly used in aquaculture settings. We also identified 25 different genes related with increased virulence, namely associated with adherence, colonization, toxins production, red blood cell lysis, iron metabolism, escape from the immune system of the host. Furthermore, 74.2 % of the strains analysed were considered pathogenic to humans. We investigated the genetic environment of several antibiotic resistance genes, including blaTEM-1B, blaFOX-18, aph(3″)-Ib, dfrA-type, aadA1, catA1-type, tet(A)/(E), qnrB19 and sul1/2. Our analysis also focused on identifying MGE in proximity to these genes (e.g. IntI1, plasmids and TnAs), which could potentially facilitate the spread of resistance among bacteria across different environments. This study provides a comprehensive examination of the diversity of resistance genes that can be transferred to both humans and the environment, with the recognition that aquaculture and the broader environment play crucial roles as intermediaries within this complex transmission network.
Collapse
Affiliation(s)
- Vanessa Salgueiro
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal; Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, University of Porto, Porto, Portugal; AL4AnimalS, Associate Laboratory for Animal and Veterinary Sciences, Portugal
| | - Vera Manageiro
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal; Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, University of Porto, Porto, Portugal; AL4AnimalS, Associate Laboratory for Animal and Veterinary Sciences, Portugal
| | - Tânia Rosado
- Laboratory of Biology and Ecotoxicology, Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
| | - Narcisa M Bandarra
- Division of Aquaculture, Upgrading and Bioprospecting, Portuguese Institute for the Sea and Atmosphere, IPMA, Lisbon, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto, Matosinhos, Portugal
| | - Maria João Botelho
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto, Matosinhos, Portugal; Division of Oceanography and Marine Environment, Portuguese Institute for the Sea and Atmosphere, Lisbon, Portugal
| | - Elsa Dias
- Laboratory of Biology and Ecotoxicology, Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
| | - Manuela Caniça
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal; Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, University of Porto, Porto, Portugal; AL4AnimalS, Associate Laboratory for Animal and Veterinary Sciences, Portugal; CIISA, Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal.
| |
Collapse
|
13
|
Kedišaletše M, Phumuzile D, Angela D, Andrew W, Mae NF. Epidemiology, risk factors, and clinical outcomes of carbapenem-resistant Enterobacterales in Africa: A systematic review. J Glob Antimicrob Resist 2023; 35:297-306. [PMID: 37879456 DOI: 10.1016/j.jgar.2023.10.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/27/2023] Open
Abstract
OBJECTIVES Carbapenem-resistant Enterobacterales (CRE) commonly cause hospital-acquired infections and hospital outbreaks worldwide, with an alarming increase in Africa, necessitating review of regional CRE epidemiological trends. METHODS A systematic review was conducted using PRISMA guidelines, searching PubMed, Scopus and Web of Science databases for studies describing CRE distribution, risk factors for CRE acquisition and clinical outcome of CRE infections in Africa. RESULTS One-hundred and sixty-nine studies were included, with the majority from North Africa (92/169, 54.4%). Most studies (136/169; 80.4%) focused only on infection, with a total of 15666 CRE isolates (97.4% clinical infection, 2.6% colonisation). The leading bacterial species included Klebsiella (72.2%), Escherichia coli (13.5%), and Enterobacter (8.3%). The most frequently detected carbapenemases were NDM (43.1%) and OXA-48-like (42.9%). Sequence types were reported in 44 studies, with ST101 and ST147 most commonly reported in K. pneumoniae, and ST410, ST167 and ST38 in E. coli. Previous antibiotic use, prior hospitalisation, surgical procedures, indwelling devices, intensive care unit admission and prolonged hospital stay, were the most frequent factors associated with CRE infection/colonisation. Crude mortality for CRE infection was 37%. CONCLUSION Although K. pneumoniae and E. coli remain the most frequent CRE in Africa, observed sequence types are not the commonly reported global 'high-risk' clones. The distribution of species and carbapenemases differs across African regions, while risk factors for CRE colonisation/infection, and patient outcomes are similar to those reported globally. There are limited data on CREs from parts of Africa, highlighting the need to strengthen epidemiologic surveillance programmes in the region.
Collapse
Affiliation(s)
- Moloto Kedišaletše
- Division of Medical Microbiology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.
| | - Dube Phumuzile
- Synthetic Biology Center, NextGeneration Health, Council for Scientific and Industrial Research, Pretoria, South Africa
| | - Dramowski Angela
- Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Whitelaw Andrew
- Division of Medical Microbiology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa; National Health Laboratory Service, Tygerberg Hospital, Cape Town, South Africa
| | - Newton-Foot Mae
- Division of Medical Microbiology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa; National Health Laboratory Service, Tygerberg Hospital, Cape Town, South Africa
| |
Collapse
|
14
|
Mehrotra T, Konar D, Pragasam AK, Kumar S, Jana P, Babele P, Paul D, Purohit A, Tanwar S, Bakshi S, Das S, Verma J, Talukdar D, Narendrakumar L, Kothidar A, Karmakar SP, Chaudhuri S, Pal S, Jain K, Srikanth CV, Sankar MJ, Atmakuri K, Agarwal R, Gaind R, Ballal M, Kammili N, Bhadra RK, Ramamurthy T, Nair GB, Das B. Antimicrobial resistance heterogeneity among multidrug-resistant Gram-negative pathogens: Phenotypic, genotypic, and proteomic analysis. Proc Natl Acad Sci U S A 2023; 120:e2305465120. [PMID: 37549252 PMCID: PMC10434301 DOI: 10.1073/pnas.2305465120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/07/2023] [Indexed: 08/09/2023] Open
Abstract
Microbes evolve rapidly by modifying their genomes through mutations or through the horizontal acquisition of mobile genetic elements (MGEs) linked with fitness traits such as antimicrobial resistance (AMR), virulence, and metabolic functions. We conducted a multicentric study in India and collected different clinical samples for decoding the genome sequences of bacterial pathogens associated with sepsis, urinary tract infections, and respiratory infections to understand the functional potency associated with AMR and its dynamics. Genomic analysis identified several acquired AMR genes (ARGs) that have a pathogen-specific signature. We observed that blaCTX-M-15, blaCMY-42, blaNDM-5, and aadA(2) were prevalent in Escherichia coli, and blaTEM-1B, blaOXA-232, blaNDM-1, rmtB, and rmtC were dominant in Klebsiella pneumoniae. In contrast, Pseudomonas aeruginosa and Acinetobacter baumannii harbored blaVEB, blaVIM-2, aph(3'), strA/B, blaOXA-23, aph(3') variants, and amrA, respectively. Regardless of the type of ARG, the MGEs linked with ARGs were also pathogen-specific. The sequence type of these pathogens was identified as high-risk international clones, with only a few lineages being predominant and region-specific. Whole-cell proteome analysis of extensively drug-resistant K. pneumoniae, A. baumannii, E. coli, and P. aeruginosa strains revealed differential abundances of resistance-associated proteins in the presence and absence of different classes of antibiotics. The pathogen-specific resistance signatures and differential abundance of AMR-associated proteins identified in this study should add value to AMR diagnostics and the choice of appropriate drug combinations for successful antimicrobial therapy.
Collapse
Affiliation(s)
- Tanshi Mehrotra
- Infection and Immunology Division, Functional Genomics Laboratory, Centre for Microbial Research, Translational Health Science and Technology Institute, Faridabad121001, India
| | - Dipasri Konar
- Division of Diagnostic Laboratory, Jan Swasthya Sahyog, Ganiyari, Bilaspur495112, India
| | - Agila Kumari Pragasam
- Infection and Immunology Division, Functional Genomics Laboratory, Centre for Microbial Research, Translational Health Science and Technology Institute, Faridabad121001, India
| | - Shakti Kumar
- Infection and Immunology Division, Functional Genomics Laboratory, Centre for Microbial Research, Translational Health Science and Technology Institute, Faridabad121001, India
| | - Pradipta Jana
- Infection and Immunology Division, Functional Genomics Laboratory, Centre for Microbial Research, Translational Health Science and Technology Institute, Faridabad121001, India
| | - Prabhakar Babele
- Infection and Immunology Division, Functional Genomics Laboratory, Centre for Microbial Research, Translational Health Science and Technology Institute, Faridabad121001, India
| | - Deepjyoti Paul
- Infection and Immunology Division, Functional Genomics Laboratory, Centre for Microbial Research, Translational Health Science and Technology Institute, Faridabad121001, India
| | - Ayushi Purohit
- Infection and Immunology Division, Functional Genomics Laboratory, Centre for Microbial Research, Translational Health Science and Technology Institute, Faridabad121001, India
| | - Subhash Tanwar
- Multidisciplinary Clinical and Translational Research, Translational Health Science and Technology Institute, Faridabad121001, India
| | - Susmita Bakshi
- Infection and Immunology Division, Functional Genomics Laboratory, Centre for Microbial Research, Translational Health Science and Technology Institute, Faridabad121001, India
| | - Santanu Das
- Infection and Immunology Division, Functional Genomics Laboratory, Centre for Microbial Research, Translational Health Science and Technology Institute, Faridabad121001, India
| | - Jyoti Verma
- Infection and Immunology Division, Functional Genomics Laboratory, Centre for Microbial Research, Translational Health Science and Technology Institute, Faridabad121001, India
| | - Daizee Talukdar
- Infection and Immunology Division, Functional Genomics Laboratory, Centre for Microbial Research, Translational Health Science and Technology Institute, Faridabad121001, India
| | - Lekshmi Narendrakumar
- Infection and Immunology Division, Functional Genomics Laboratory, Centre for Microbial Research, Translational Health Science and Technology Institute, Faridabad121001, India
| | - Akanksha Kothidar
- Infection and Immunology Division, Functional Genomics Laboratory, Centre for Microbial Research, Translational Health Science and Technology Institute, Faridabad121001, India
| | - Sonali Porey Karmakar
- Infection and Immunology Division, Functional Genomics Laboratory, Centre for Microbial Research, Translational Health Science and Technology Institute, Faridabad121001, India
| | - Susmita Chaudhuri
- Multidisciplinary Clinical and Translational Research, Translational Health Science and Technology Institute, Faridabad121001, India
| | - Sujoy Pal
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi110029, India
| | - Kajal Jain
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi110029, India
| | - Chittur V. Srikanth
- Laboratory of Gut Infection and Inflammation Biology, Regional Centre for Biotechnology, Faridabad121001, India
| | - M. Jeeva Sankar
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi110029, India
| | - Krishnamohan Atmakuri
- Infection and Immunology Division, Functional Genomics Laboratory, Centre for Microbial Research, Translational Health Science and Technology Institute, Faridabad121001, India
| | - Ramesh Agarwal
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi110029, India
| | - Rajni Gaind
- Department of Microbiology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi110029, India
| | - Mamatha Ballal
- Department of Microbiology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal576104, India
| | - Nagamani Kammili
- Department of Microbiology, Pathogen Biology Division, Gandhi Medical College and Hospital, Secunderabad500003, India
| | - Rupak K. Bhadra
- Infectious Diseases and Immunology Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, Kolkata700 032, India
| | - Thandavarayan Ramamurthy
- Infection and Immunology Division, Functional Genomics Laboratory, Centre for Microbial Research, Translational Health Science and Technology Institute, Faridabad121001, India
- Division of Bacteriology, Indian Council of Medical Research-National Institute of Cholera and Enteric Diseases, Kolkata700010, India
| | - G. Balakrish Nair
- Infection and Immunology Division, Functional Genomics Laboratory, Centre for Microbial Research, Translational Health Science and Technology Institute, Faridabad121001, India
- Pathogen Biology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram695014, India
| | - Bhabatosh Das
- Infection and Immunology Division, Functional Genomics Laboratory, Centre for Microbial Research, Translational Health Science and Technology Institute, Faridabad121001, India
| |
Collapse
|
15
|
Alkompoz AK, Hamed SM, Zaid ASA, Almangour TA, Al-Agamy MH, Aboshanab KM. Correlation of CRISPR/Cas and Antimicrobial Resistance in Klebsiella pneumoniae Clinical Isolates Recovered from Patients in Egypt Compared to Global Strains. Microorganisms 2023; 11:1948. [PMID: 37630508 PMCID: PMC10459600 DOI: 10.3390/microorganisms11081948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
The CRISPR/Cas system has been long known to interfere with the acquisition of foreign genetic elements and was recommended as a tool for fighting antimicrobial resistance. The current study aimed to explore the prevalence of the CRISPR/Cas system in Klebsiella pneumoniae isolates recovered from patients in Egypt in comparison to global strains and correlate the CRISPR/Cas to susceptibility to antimicrobial agents. A total of 181 clinical isolates were PCR-screened for cas and selected antimicrobial resistance genes (ARGs). In parallel, 888 complete genome sequences were retrieved from the NCBI database for in silico analysis. CRISPR/Cas was found in 46 (25.4%) isolates, comprising 18.8% type I-E and 6.6% type I-E*. Multidrug resistance (MDR) and extensive drug resistance (XDR) were found in 73.5% and 25.4% of the isolates, respectively. More than 95% of the CRISPR/Cas-bearing isolates were MDR (65.2%) or XDR (32.6%). No significant difference was found in the susceptibility to the tested antimicrobial agents among the CRISPR/Cas-positive and -negative isolates. The same finding was obtained for the majority of the screened ARGs. Among the published genomes, 23.2% carried CRISPR/Cas, with a higher share of I-E* (12.8%). They were confined to specific sequence types (STs), most commonly ST147, ST23, ST15, and ST14. More plasmids and ARGs were carried by the CRISPR/Cas-negative group than others, but their distribution in the two groups was not significantly different. The prevalence of some ARGs, such as blaKPC, blaTEM, and rmtB, was significantly higher among the genomes of the CRISPR/Cas-negative strains. A weak, nonsignificant positive correlation was found between the number of spacers and the number of resistance plasmids and ARGs. In conclusion, the correlation between CRISPR/Cas and susceptibility to antimicrobial agents or bearing resistance plasmids and ARGs was found to be nonsignificant. Plasmid-targeting spacers might not be naturally captured by CRISPR/Cas. Spacer match analysis is recommended to provide a clearer image of the exact behavior of CRISPR/Cas towards resistance plasmids.
Collapse
Affiliation(s)
| | - Samira M. Hamed
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 6th of October, Giza 12451, Egypt;
| | - Ahmed S. Abu Zaid
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt;
| | - Thamer A. Almangour
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Mohamed H. Al-Agamy
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University, Cairo 11651, Egypt
| | - Khaled M. Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt;
| |
Collapse
|
16
|
Mazumder R, Hussain A, Bhadra B, Phelan J, Campino S, Clark TG, Mondal D. Case report: A successfully treated case of community-acquired urinary tract infection due to Klebsiella aerogenes in Bangladesh. Front Med (Lausanne) 2023; 10:1206756. [PMID: 37435536 PMCID: PMC10330784 DOI: 10.3389/fmed.2023.1206756] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 06/05/2023] [Indexed: 07/13/2023] Open
Abstract
Klebsiella aerogenes, a nosocomial pathogen, is increasingly associated with extensive drug resistance and virulence profiles. It is responsible for high morbidity and mortality. This report describes the first successfully treated case of community-acquired urinary tract infection (UTI) caused by Klebsiella aerogenes in an elderly housewife with Type-2 diabetes (T2D) from Dhaka, Bangladesh. The patient was empirically treated with intravenous ceftriaxone (500 mg/8 h). However, she did not respond to the treatment. The urine culture and sensitivity tests, coupled with bacterial whole-genome sequencing (WGS) and analysis, revealed the bacteria to be K. aerogenes which was extensively drug-resistant but was susceptible to carbapenems and polymyxins. Based on these findings, meropenem (500 mg/8 h) was administered to the patient, who then responded to the treatment and recovered successfully without having a relapse. This case raises awareness of the importance of diagnosis of not-so-common etiological agents, correct identification of the pathogens, and targeted antibiotic therapy. In conclusion, correctly identifying etiological agents of UTI using WGS approaches that are otherwise difficult to diagnose could help improve the identification of infectious agents and improve the management of infectious diseases.
Collapse
Affiliation(s)
- Razib Mazumder
- Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr, b), Dhaka, Bangladesh
| | - Arif Hussain
- Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr, b), Dhaka, Bangladesh
| | - Bithika Bhadra
- Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh
| | - Jody Phelan
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Susana Campino
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Taane G. Clark
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Dinesh Mondal
- Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr, b), Dhaka, Bangladesh
| |
Collapse
|
17
|
Zarras C, Karampatakis T, Pappa S, Iosifidis E, Vagdatli E, Roilides E, Papa A. Genetic Characterization of Carbapenem-Resistant Klebsiella pneumoniae Clinical Isolates in a Tertiary Hospital in Greece, 2018-2022. Antibiotics (Basel) 2023; 12:976. [PMID: 37370295 DOI: 10.3390/antibiotics12060976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Carbapenem-resistant Klebsiella pneumoniae (CRKP) is a serious public health issue. The study aimed to identify the antimicrobial resistance and accessory genes, the clonal relatedness, and the evolutionary dynamics of selected CRKP isolates recovered in an adult and pediatric intensive care unit of a tertiary hospital in Greece. METHODS Twenty-four CRKP isolates recovered during 2018-2022 were included in the study. Next-generation sequencing was performed using the Ion Torrent PGM Platform. The identification of the plasmid content, MLST, and antimicrobial resistance genes, as well as the comparison of multiple genome alignments and the identification of core genome single-nucleotide polymorphism sites, were performed using various bioinformatics software. RESULTS The isolates belonged to eight sequence types: 11, 15, 30, 35, 39, 307, 323, and 512. A variety of carbapenemases (KPC, VIM, NDM, and OXA-48) and resistance genes were detected. CRKP strains shared visually common genomic regions with the reference strain (NTUH-K2044). ST15, ST323, ST39, and ST11 CRKP isolates presented on average 17, 6, 16, and 866 recombined SNPs, respectively. All isolates belonging to ST15, ST323, and ST39 were classified into distinct phylogenetic branches, while ST11 isolates were assigned to a two-subclade branch. For large CRKP sets, the phylogeny seems to change approximately every seven SNPs. CONCLUSIONS The current study provides insight into the genetic characterization of CRKP isolates in the ICUs of a tertiary hospital. Our results indicate clonal dispersion of ST15, ST323, and ST39 and highly diverged ST11 isolates.
Collapse
Affiliation(s)
- Charalampos Zarras
- Department of Microbiology, Medical Faculty, School of Health Sciences, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
- Microbiology Department, Hippokration General Hospital, 546 42 Thessaloniki, Greece
| | - Theodoros Karampatakis
- Department of Microbiology, Medical Faculty, School of Health Sciences, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Styliani Pappa
- Department of Microbiology, Medical Faculty, School of Health Sciences, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Elias Iosifidis
- Infectious Disease Unit, 3rd Department of Pediatrics, Medical Faculty, School of Health Sciences, Hippokration General Hospital, 546 42 Thessaloniki, Greece
| | - Eleni Vagdatli
- Microbiology Department, Hippokration General Hospital, 546 42 Thessaloniki, Greece
| | - Emmanuel Roilides
- Infectious Disease Unit, 3rd Department of Pediatrics, Medical Faculty, School of Health Sciences, Hippokration General Hospital, 546 42 Thessaloniki, Greece
| | - Anna Papa
- Department of Microbiology, Medical Faculty, School of Health Sciences, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| |
Collapse
|
18
|
Wen LL, Kuo PY, Thuy TTD, Duong TTT, Huang YT, Hsueh PR, Chen YC, Kao CY. Genome-based characterization of conjugative IncHI1B plasmid carrying carbapenemase genes bla VIM-1, bla IMP-23, and truncated bla OXA-256in Klebsiella pneumoniae NTU107224. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 110:105420. [PMID: 36868443 DOI: 10.1016/j.meegid.2023.105420] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/17/2023] [Accepted: 02/25/2023] [Indexed: 03/05/2023]
Abstract
The wide dissemination of plasmids carrying antibiotic resistance determinants among bacteria is a severe threat to global public health. Here, we characterized an extensively drug-resistant (XDR) Klebsiella pneumoniae NTU107224 by whole genome sequencing (WGS) in combination with phenotypic tests. Broth dilution method was used to determine the minimal inhibitory concentrations (MICs) of NTU107224 to 24 antibiotics. The whole genome sequence of NTU107224 was determined by Nanopore/Illumina hybrid genome sequencing. Conjugation assay was performed to determine the transferability of plasmids in NTU107224 to recipient K. pneumoniae 1706. Larvae infection model was used to determine the effect(s) of conjugative plasmid pNTU107224-1 on bacterial virulence. Among the 24 antibiotics tested, XDR K. pneumoniae NTU107224 had low MICs only for amikacin (≤1 μg/mL), polymyxin B (0.25 μg/mL), colistin (0.25 μg/mL), eravacycline (0.25 μg/mL), cefepime/zidebactam (1 μg/mL), omadacycline (4 μg/mL), and tigecycline (0.5 μg/mL). Whole genome sequencing showed that the closed NTU107224 genome comprises a 5,076,795-bp chromosome, a 301,404-bp plasmid named pNTU107224-1, and a 78,479-bp plasmid named pNTU107224-2. IncHI1B plasmid pNTU107224-1 contained three class 1 integrons accumulated various antimicrobial resistance genes (including carbapenemase genes blaVIM-1, blaIMP-23, and truncated blaOXA-256) and the blast results suggested the dissemination of IncHI1B plasmids in China. By day 7 after infection, larvae infected with K. pneumoniae 1706 and transconjugant had 70% and 15% survival rates, respectively. We found that the conjugative plasmid pNTU107224-1 is closely related to IncHI1B plasmids disseminated in China and contributes to the virulence and antibiotic resistance of pathogens.
Collapse
Affiliation(s)
- Li-Li Wen
- Graduate Institute of Medical Laboratory Science and Biotechnology, Yuanpei University of Medical Technology, Hsinchu City, Taiwan
| | - Pei-Yun Kuo
- Institute of Microbiology and Immunology, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tran Thi Dieu Thuy
- Institute of Microbiology and Immunology, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tran Thi Thuy Duong
- Institute of Microbiology and Immunology, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Tsung Huang
- Department of Laboratory Medicine and Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Po-Ren Hsueh
- Ph.D. Program for Aging, School of Medicine, China Medical University, Taichung, Taiwan; Department of Laboratory Medicine and Internal Medicine, China Medical University Hospital, School of Medicine, China Medical University, Taichung, Taiwan
| | - Yu-Chen Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Cheng-Yen Kao
- Institute of Microbiology and Immunology, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
19
|
Abou-assy RS, Aly MM, Amasha RH, Jastaniah S, Alammari F, Shamrani M. Carbapenem Resistance Mechanisms, Carbapenemase Genes Dissemination , and Laboratory Detection Methods: A Review. INTERNATIONAL JOURNAL OF PHARMACEUTICAL RESEARCH AND ALLIED SCIENCES 2023. [DOI: 10.51847/wqutf4vfuo] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
20
|
Whole Genome Sequencing Reveals Presence of High-Risk Global Clones of Klebsiella pneumoniae Harboring Multiple Antibiotic Resistance Genes in Multiple Plasmids in Mwanza, Tanzania. Microorganisms 2022; 10:microorganisms10122396. [PMID: 36557648 PMCID: PMC9785957 DOI: 10.3390/microorganisms10122396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Klebsiella pneumoniae is an important multidrug-resistant (MDR) pathogen, causing both community- and healthcare-associated infections. The resistance is due to the continuous accumulation of multiple antibiotic-resistance-genes (ARGs) through spontaneous genomic mutations and the acquisition of conjugative plasmids. This study presents antibiotics resistance genes, plasmids replicons, and virulence genes of K. pneumoniae isolates from clinical specimens in a tertiary hospital, Mwanza, Tanzania. METHODS Whole genome sequencing (WGS) of 34 K. pneumoniae was performed, using an Illumina NextSeq 500, followed by in silco analysis. RESULTS A total of 34 extended-spectrum beta-lactamase-producing K. pneumoniae, isolated from blood samples from neonatal units were whole-genome sequenced. Of these, 28 (82.4%) had an identified sequence type (ST), with ST14 (39.3%, n = 11) being frequently identified. Moreover, 18 (52.9%) of the bacteria harbored at least one plasmid, from which a total of 25 plasmid replicons were identified with a predominance of IncFIB(K) 48.0% (n = 12). Out of 34 sequenced K. pneumoniae, 32 (94.1%) were harboring acquired antibiotic/biocides-resistance-genes (ARGs) with a predominance of blaCTX-M-15 (90.6%), followed by oqxB (87.5%), oqxA (84.4%), blaTEM-1B (84.4%) and sul2 (84.4%). Interestingly, we observed the ColRNAI plasmid-replicon (n = 1) and qacE gene (n = 4) for the first time in this setting. CONCLUSION Global high-risk clones of K. pneumoniae isolates carry multiple ARGs in multiple plasmid-replicons. Findings from this study warrant genomic-based surveillance to monitor high-risk global clones, epidemic plasmids and ARGs in low- and middle-income countries.
Collapse
|
21
|
Yang F, Wang L, Zhao Q, Wu J, Jiang L, Sheng L, Zhang L, Xue Z, Yi M. Epidemiological Features of Klebsiella pneumoniae Infection in the Hepatobiliary System of Patients in Yantai, China, Based on Clinical and Genetic Analyses. Infect Drug Resist 2022; 15:3427-3436. [PMID: 35800122 PMCID: PMC9253619 DOI: 10.2147/idr.s369988] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/23/2022] [Indexed: 12/04/2022] Open
Abstract
Purpose To investigate the epidemiological features of Klebsiella pneumoniae infection of the hepatobiliary system of patients in Yantai, China. Methods This retrospective study was conducted from January to December 2019 in Yantai Yuhuangding Hospital. Patients for whom K. pneumoniae was isolated from the hepatobiliary system were considered for inclusion. The clinical features and genetic analyses were conducted to explore the epidemiological characteristics. Results A total of 88 cases were enrolled, including 69 cases of hypervirulent K. pneumoniae (hvKP) and 19 cases of classical K. pneumoniae (cKP). Community-acquired infections, fever, liver abscess, and C-reactive protein (CRP) and procalcitonin (PCT) levels were significantly higher, while biliary tract disease was lower in the hvKP group compared with the cKP group. Among the 69 hvKP infections, 61 developed a liver abscess. Community-acquired infections, fever, and CRP and PCT levels were higher, whereas biliary tract disease and malignancy were lower in the liver abscess group compared with the non-liver abscess group. All strains were susceptible to the majority of antibiotics tested. All hvKP strains possessed the blaSHV, oqxA, oqxB and fosA resistance genes. K1 and K2 accounted for 78% of hvKP strains. K1 strains belonged to sequence types ST23 and ST700, whereas K2 strains belonged to ST65, ST86 and ST5212. K1 isolates possessed the most virulence determinants, followed by K2 and non-K1/K2 isolates. K2 isolates lacked the allS gene, which was rare in non K1/K2 isolates, but present in most K1 isolates. The mceG gene was only detected in K1 isolates. AllS and virulence determinants were significantly more prevalent in the liver abscess group than in the non-liver abscess group. Conclusion The prevalence of hvKP among K. pneumoniae infections of the hepatobiliary system is high in Yantai, China. Greater vigilance of hvKP infection is required in clinical and microbiological laboratories.
Collapse
Affiliation(s)
- Fengzhen Yang
- Department of Laboratory Medicine, Qingdao University Medical College Affiliated Yantai Yuhuangding Hospital, Yantai, People's Republic of China
| | - Lipeng Wang
- Department of Laboratory Medicine, Qingdao University Medical College Affiliated Yantai Yuhuangding Hospital, Yantai, People's Republic of China
| | - Qi Zhao
- Department of Laboratory Medicine, Qingdao University Medical College Affiliated Yantai Yuhuangding Hospital, Yantai, People's Republic of China
| | - Jinying Wu
- Department of Laboratory Medicine, Qingdao University Medical College Affiliated Yantai Yuhuangding Hospital, Yantai, People's Republic of China
| | - Lihua Jiang
- Department of Laboratory Medicine, Qingdao University Medical College Affiliated Yantai Yuhuangding Hospital, Yantai, People's Republic of China
| | - Li Sheng
- Department of Laboratory Medicine, Qingdao University Medical College Affiliated Yantai Yuhuangding Hospital, Yantai, People's Republic of China
| | - Leyan Zhang
- Department of Laboratory Medicine, Qingdao University Medical College Affiliated Yantai Yuhuangding Hospital, Yantai, People's Republic of China
| | - Zhaoping Xue
- Department of Laboratory Medicine, Qingdao University Medical College Affiliated Yantai Yuhuangding Hospital, Yantai, People's Republic of China
| | - Maoli Yi
- Department of Laboratory Medicine, Qingdao University Medical College Affiliated Yantai Yuhuangding Hospital, Yantai, People's Republic of China
| |
Collapse
|
22
|
Altayb HN, Elbadawi HS, Baothman O, Kazmi I, Alzahrani FA, Nadeem MS, Hosawi S, Chaieb K. Genomic Analysis of Multidrug-Resistant Hypervirulent (Hypermucoviscous) Klebsiella pneumoniae Strain Lacking the Hypermucoviscous Regulators (rmpA/rmpA2). Antibiotics (Basel) 2022; 11:antibiotics11050596. [PMID: 35625240 PMCID: PMC9137517 DOI: 10.3390/antibiotics11050596] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 12/28/2022] Open
Abstract
Hypervirulent K. pneumoniae (hvKP) strains possess distinct characteristics such as hypermucoviscosity, unique serotypes, and virulence factors associated with high pathogenicity. To better understand the genomic characteristics and virulence profile of the isolated hvKP strain, genomic data were compared to the genomes of the hypervirulent and typical K. pneumoniae strains. The K. pneumoniae strain was isolated from a patient with a recurrent urinary tract infection, and then the string test was used for the detection of the hypermucoviscosity phenotype. Whole-genome sequencing was conducted using Illumina, and bioinformatics analysis was performed for the prediction of the isolate resistome, virulome, and phylogenetic analysis. The isolate was identified as hypermucoviscous, type 2 (K2) capsular polysaccharide, ST14, and multidrug-resistant (MDR), showing resistance to ciprofloxacin, ceftazidime, cefotaxime, trimethoprim-sulfamethoxazole, cephalexin, and nitrofurantoin. The isolate possessed four antimicrobial resistance plasmids (pKPN3-307_type B, pECW602, pMDR, and p3K157) that carried antimicrobial resistance genes (ARGs) (blaOXA-1,blaCTX-M-15, sul2, APH(3″)-Ib, APH(6)-Id, and AAC(6′)-Ib-cr6). Moreover, two chromosomally mediated ARGs (fosA6 and SHV-28) were identified. Virulome prediction revealed the presence of 19 fimbrial proteins, one aerobactin (iutA) and two salmochelin (iroE and iroN). Four secretion systems (T6SS-I (13), T6SS-II (9), T6SS-III (12), and Sci-I T6SS (1)) were identified. Interestingly, the isolate lacked the known hypermucoviscous regulators (rmpA/rmpA2) but showed the presence of other RcsAB capsule regulators (rcsA and rcsB). This study documented the presence of a rare MDR hvKP with hypermucoviscous regulators and lacking the common capsule regulators, which needs more focus to highlight their epidemiological role.
Collapse
Affiliation(s)
- Hisham N. Altayb
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (O.B.); (I.K.); (F.A.A.); (M.S.N.); (S.H.); (K.C.)
- Centre for Artificial Intelligence in Precision Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: ; Tel.: +0096-6549087515
| | - Hana S. Elbadawi
- Microbiology and Parasitology Department, Soba University Hospital, University of Khartoum, Khartoum 11115, Sudan;
| | - Othman Baothman
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (O.B.); (I.K.); (F.A.A.); (M.S.N.); (S.H.); (K.C.)
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (O.B.); (I.K.); (F.A.A.); (M.S.N.); (S.H.); (K.C.)
| | - Faisal A. Alzahrani
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (O.B.); (I.K.); (F.A.A.); (M.S.N.); (S.H.); (K.C.)
- Centre for Artificial Intelligence in Precision Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- King Fahd Medical Research Center, Embryonic Stem Cells Unit, Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (O.B.); (I.K.); (F.A.A.); (M.S.N.); (S.H.); (K.C.)
| | - Salman Hosawi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (O.B.); (I.K.); (F.A.A.); (M.S.N.); (S.H.); (K.C.)
- Centre for Artificial Intelligence in Precision Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Kamel Chaieb
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (O.B.); (I.K.); (F.A.A.); (M.S.N.); (S.H.); (K.C.)
- Laboratory of Analysis, Treatment and Valorization of Pollutants of the Environmental and Products, Faculty of Pharmacy, University of Monastir, Monastir 5000, Tunisia
| |
Collapse
|