1
|
Falanga AP, Massaro M, Borbone N, Notarbartolo M, Piccialli G, Liotta LF, Sanchez-Espejo R, Viseras Iborra C, Raymo FM, Oliviero G, Riela S. Carrier capability of halloysite nanotubes for the intracellular delivery of antisense PNA targeting mRNA of neuroglobin gene. J Colloid Interface Sci 2024; 663:9-20. [PMID: 38387188 DOI: 10.1016/j.jcis.2024.02.136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/28/2023] [Accepted: 02/17/2024] [Indexed: 02/24/2024]
Abstract
Peptide nucleic acid (PNA) is a DNA mimic that shows good stability against nucleases and proteases, forming strongly recognized complementary strands of DNA and RNA. However, due to its feeble ability to cross the cellular membrane, PNA activity and its targeting gene action is limited. Halloysite nanotubes (HNTs) are a natural and low-cost aluminosilicate clay. Because of their peculiar ability to cross cellular membrane, HNTs represent a valuable candidate for delivering genetic materials into cells. Herein, two differently charged 12-mer PNAs capable of recognizing as molecular target a 12-mer DNA molecule mimicking a purine-rich tract of neuroglobin were synthetized and loaded onto HNTs by electrostatic attraction interactions. After characterization, the kinetic release was also assessed in media mimicking physiological conditions. Resonance light scattering measurements assessed their ability to bind complementary single-stranded DNA. Furthermore, their intracellular delivery was assessed by confocal laser scanning microscopy on living MCF-7 cells incubated with fluorescence isothiocyanate (FITC)-PNA and HNTs labeled with a probe. The nanomaterials were found to cross cellular membrane and cell nuclei efficiently. Finally, it is worth mentioning that the HNTs/PNA can reduce the level of neuroglobin gene expression, as shown by reverse transcription-quantitative polymerase chain reaction and western blotting analysis.
Collapse
Affiliation(s)
- Andrea P Falanga
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| | - Marina Massaro
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Nicola Borbone
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy.
| | - Monica Notarbartolo
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Gennaro Piccialli
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| | - Leonarda F Liotta
- Istituto per lo Studio dei Materiali Nanostrutturati (ISMN)-CNR, Via Ugo La Malfa 153, Palermo 90146, Italy
| | - Rita Sanchez-Espejo
- University of Granada, Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, 18071 Granada, Spain
| | - Cesar Viseras Iborra
- University of Granada, Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, 18071 Granada, Spain; Andalusian Institute of Earth Sciences, CSIC-UGR, 18100 Armilla, Granada, Spain
| | - Françisco M Raymo
- Laboratory for Molecular Photonics, Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables 33146-0431, FL, United States
| | - Giorgia Oliviero
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Via Sergio Pansini 5, 80131 Napoli, Italy
| | - Serena Riela
- Dipartimento di Scienze Chimiche, Viale Andrea Doria 6, 95125 Catania, Italy.
| |
Collapse
|
2
|
Falanga AP, Lupia A, Tripodi L, Morgillo CM, Moraca F, Roviello GN, Catalanotti B, Amato J, Pastore L, Cerullo V, D'Errico S, Piccialli G, Oliviero G, Borbone N. Exploring the DNA 2-PNA heterotriplex formation in targeting the Bcl-2 gene promoter: A structural insight by physico-chemical and microsecond-scale MD investigation. Heliyon 2024; 10:e24599. [PMID: 38317891 PMCID: PMC10839560 DOI: 10.1016/j.heliyon.2024.e24599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 01/04/2024] [Accepted: 01/10/2024] [Indexed: 02/07/2024] Open
Abstract
Peptide Nucleic Acids (PNAs) represent a promising tool for gene modulation in anticancer treatment. The uncharged peptidyl backbone and the resistance to chemical and enzymatic degradation make PNAs highly advantageous to form stable hybrid complexes with complementary DNA and RNA strands, providing higher stability than the corresponding natural analogues. Our and other groups' research has successfully shown that tailored PNA sequences can effectively downregulate the expression of human oncogenes using antigene, antisense, or anti-miRNA approaches. Specifically, we identified a seven bases-long PNA sequence, complementary to the longer loop of the main G-quadruplex structure formed by the bcl2midG4 promoter sequence, capable of downregulating the expression of the antiapoptotic Bcl-2 protein and enhancing the anticancer activity of an oncolytic adenovirus. Here, we extended the length of the PNA probe with the aim of including the double-stranded Bcl-2 promoter among the targets of the PNA probe. Our investigation primarily focused on the structural aspects of the resulting DNA2-PNA heterotriplex that were determined by employing conventional and accelerated microsecond-scale molecular dynamics simulations and chemical-physical analysis. Additionally, we conducted preliminary biological experiments using cytotoxicity assays on human A549 and MDA-MB-436 adenocarcinoma cell lines, employing the oncolytic adenovirus delivery strategy.
Collapse
Affiliation(s)
- Andrea P. Falanga
- Dipartimento di Farmacia, Università Degli Studi di Napoli Federico II, Naples, 80131, Italy
| | - Antonio Lupia
- Dipartimento di Farmacia, Università Degli Studi di Napoli Federico II, Naples, 80131, Italy
| | - Lorella Tripodi
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Degli Studi di Napoli Federico II, Naples, 80131, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore S.c.a.r.l., Naples, 80145, Italy
| | - Carmine M. Morgillo
- Dipartimento di Farmacia, Università Degli Studi di Napoli Federico II, Naples, 80131, Italy
| | - Federica Moraca
- Dipartimento di Farmacia, Università Degli Studi di Napoli Federico II, Naples, 80131, Italy
| | - Giovanni N. Roviello
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale Delle Ricerche, Naples, 80131, Italy
| | - Bruno Catalanotti
- Dipartimento di Farmacia, Università Degli Studi di Napoli Federico II, Naples, 80131, Italy
| | - Jussara Amato
- Dipartimento di Farmacia, Università Degli Studi di Napoli Federico II, Naples, 80131, Italy
| | - Lucio Pastore
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Degli Studi di Napoli Federico II, Naples, 80131, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore S.c.a.r.l., Naples, 80145, Italy
| | - Vincenzo Cerullo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Degli Studi di Napoli Federico II, Naples, 80131, Italy
- ImmunoViroTherapy Lab (IVT), Drug Research Program (DRP), Faculty of Pharmacy, University of Helsinki, 00100, Helsinki, Finland
| | - Stefano D'Errico
- Dipartimento di Farmacia, Università Degli Studi di Napoli Federico II, Naples, 80131, Italy
| | - Gennaro Piccialli
- Dipartimento di Farmacia, Università Degli Studi di Napoli Federico II, Naples, 80131, Italy
| | - Giorgia Oliviero
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Degli Studi di Napoli Federico II, Naples, 80131, Italy
| | - Nicola Borbone
- Dipartimento di Farmacia, Università Degli Studi di Napoli Federico II, Naples, 80131, Italy
| |
Collapse
|
3
|
Gasparello J, Papi C, Zurlo M, Volpi S, Gambari R, Corradini R, Casnati A, Sansone F, Finotti A. Cationic Calix[4]arene Vectors to Efficiently Deliver AntimiRNA Peptide Nucleic Acids (PNAs) and miRNA Mimics. Pharmaceutics 2023; 15:2121. [PMID: 37631335 PMCID: PMC10460053 DOI: 10.3390/pharmaceutics15082121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
One of the most appealing approaches for regulating gene expression, named the "microRNA therapeutic" method, is based on the regulation of the activity of microRNAs (miRNAs), the intracellular levels of which are dysregulated in many diseases, including cancer. This can be achieved by miRNA inhibition with antimiRNA molecules in the case of overexpressed microRNAs, or by using miRNA-mimics to restore downregulated microRNAs that are associated with the target disease. The development of new efficient, low-toxic, and targeted vectors of such molecules represents a key topic in the field of the pharmacological modulation of microRNAs. We compared the delivery efficiency of a small library of cationic calix[4]arene vectors complexed with fluorescent antimiRNA molecules (Peptide Nucleic Acids, PNAs), pre-miRNA (microRNA precursors), and mature microRNAs, in glioma- and colon-cancer cellular models. The transfection was assayed by cytofluorimetry, cell imaging assays, and RT-qPCR. The calix[4]arene-based vectors were shown to be powerful tools to facilitate the uptake of both neutral (PNAs) and negatively charged (pre-miRNAs and mature microRNAs) molecules showing low toxicity in transfected cells and ability to compete with commercially available vectors in terms of delivery efficiency. These results could be of great interest to validate microRNA therapeutics approaches for future application in personalized treatment and precision medicine.
Collapse
Affiliation(s)
- Jessica Gasparello
- Section of Biochemistry and Molecular Biology, Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (J.G.); (C.P.); (M.Z.); (R.G.)
| | - Chiara Papi
- Section of Biochemistry and Molecular Biology, Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (J.G.); (C.P.); (M.Z.); (R.G.)
| | - Matteo Zurlo
- Section of Biochemistry and Molecular Biology, Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (J.G.); (C.P.); (M.Z.); (R.G.)
| | - Stefano Volpi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (S.V.); (R.C.); (A.C.)
| | - Roberto Gambari
- Section of Biochemistry and Molecular Biology, Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (J.G.); (C.P.); (M.Z.); (R.G.)
| | - Roberto Corradini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (S.V.); (R.C.); (A.C.)
| | - Alessandro Casnati
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (S.V.); (R.C.); (A.C.)
| | - Francesco Sansone
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (S.V.); (R.C.); (A.C.)
| | - Alessia Finotti
- Section of Biochemistry and Molecular Biology, Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (J.G.); (C.P.); (M.Z.); (R.G.)
| |
Collapse
|
4
|
Pradeep SP, Malik S, Slack FJ, Bahal R. Unlocking the potential of chemically modified peptide nucleic acids for RNA-based therapeutics. RNA (NEW YORK, N.Y.) 2023; 29:434-445. [PMID: 36653113 PMCID: PMC10019372 DOI: 10.1261/rna.079498.122] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/12/2023] [Indexed: 05/27/2023]
Abstract
RNA therapeutics have emerged as next-generation therapy for the treatment of many diseases. Unlike small molecules, RNA targeted drugs are not limited by the availability of binding pockets on the protein, but rather utilize Watson-Crick (WC) base-pairing rules to recognize the target RNA and modulate gene expression. Antisense oligonucleotides (ASOs) present a powerful therapeutic approach to treat disorders triggered by genetic alterations. ASOs recognize the cognate site on the target RNA to alter gene expression. Nine single-stranded ASOs have been approved for clinical use and several candidates are in late-stage clinical trials for both rare and common diseases. Several chemical modifications, including phosphorothioates, locked nucleic acid, phosphorodiamidate, morpholino, and peptide nucleic acids (PNAs), have been investigated for efficient RNA targeting. PNAs are synthetic DNA mimics where the deoxyribose phosphate backbone is replaced by N-(2-aminoethyl)-glycine units. The neutral pseudopeptide backbone of PNAs contributes to enhanced binding affinity and high biological stability. PNAs hybridize with the complementary site in the target RNA and act by a steric hindrance--based mechanism. In the last three decades, various PNA designs, chemical modifications, and delivery strategies have been explored to demonstrate their potential as an effective and safe RNA-targeting platform. This review covers the advances in PNA-mediated targeting of coding and noncoding RNAs for a myriad of therapeutic applications.
Collapse
Affiliation(s)
- Sai Pallavi Pradeep
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Shipra Malik
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Frank J Slack
- HMS Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Raman Bahal
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269, USA
| |
Collapse
|
5
|
Catapano R, Sepe L, Toscano E, Paolella G, Chiurazzi F, Barbato SP, Bruzzese D, Arianna R, Grosso M, Romano S, Romano MF, Costanzo P, Cesaro E. Biological relevance of ZNF224 expression in chronic lymphocytic leukemia and its implication IN NF-kB pathway regulation. Front Mol Biosci 2022; 9:1010984. [PMID: 36425656 PMCID: PMC9681601 DOI: 10.3389/fmolb.2022.1010984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/20/2022] [Indexed: 12/21/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is a heterogeneous disease, whose presentation and clinical course are highly variable. Identification of novel prognostic factors may contribute to improving the CLL classification and providing indications for treatment options. The zinc finger protein ZNF224 plays a key role in cell transformation, through the control of apoptotic and survival pathways. In this study, we evaluated the potential application of ZNF224 as a novel marker of CLL progression and therapy responsiveness. To this aim, we analyzed ZNF224 expression levels in B lymphocytes from CLL patients at different stages of the disease and in patients showing different treatment outcomes. The expression of ZNF224 was significantly increased in disease progression and dramatically decreased in patients in complete remission after chemotherapy. Gene expression correlation analysis performed on datasets of CLL patients revealed that ZNF224 expression was well correlated with that of some prognostic and predictive markers. Moreover, bioinformatic analysis coupled ZNF224 to NF-κB pathway, and experimental data demonstrated that RNA interference of ZNF224 reduced the activity of the NF-κB survival pathway in CLL cells. Consistently with a pro-survival role, ZNF224 knockdown raised spontaneous and drug-induced apoptosis and inhibited the proliferation of peripheral blood mononuclear cells from CLL patients. Our findings provide evidence for the involvement of ZNF224 in the survival of CLL cells via NF-κB pathway modulation, and also suggest ZNF224 as a prognostic and predictive molecular marker of CLL disease.
Collapse
Affiliation(s)
- Rosa Catapano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Leandra Sepe
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
- Ceinge Advanced Technologies, Naples, Italy
| | - Elvira Toscano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
- Ceinge Advanced Technologies, Naples, Italy
| | - Giovanni Paolella
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
- Ceinge Advanced Technologies, Naples, Italy
| | - Federico Chiurazzi
- Division of Hematology, Department of Clinical and Experimental Medicine, University of Naples Federico II, Naples, Italy
| | - Serafina Patrizia Barbato
- Division of Hematology, Department of Clinical and Experimental Medicine, University of Naples Federico II, Naples, Italy
| | - Dario Bruzzese
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Rosa Arianna
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Michela Grosso
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
- Ceinge Advanced Technologies, Naples, Italy
| | - Simona Romano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Maria Fiammetta Romano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Paola Costanzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Elena Cesaro
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| |
Collapse
|