1
|
Gao X, An J, Yu C, Zha X, Tian Y. Dietary sources apportionment and health risk assessment for trace elements among residents of the Tethys-Himalayan tectonic domain in Tibet, China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:8015-8030. [PMID: 37523030 DOI: 10.1007/s10653-023-01706-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/18/2023] [Indexed: 08/01/2023]
Abstract
Dietary intake of toxic elements (TEs) and essential trace elements (ETEs) can significantly impact human health. This study collected 302 samples, including 78 food, 104 drinking water, 73 cultivated topsoil, and 47 sedimentary rock from a typical area of Tethys-Himalaya tectonic domain. These samples were used to calculate the average daily dose of oral intake (ADDoral) and assess the health risks of five TEs and five ETEs. The results indicate that grain and meat are the primary dietary sources of TEs and ETEs for local residents. The intake of manganese (Mn) and copper (Cu) is mainly from local highland barley (66.90% and 60.32%, respectively), iron (Fe) is primarily from local grains (75.51%), and zinc (Zn) is mainly from local yak meat (60.03%). The ADDoral of arsenic (As), Mn, Fe and Zn were found to be higher than the maximum oral reference dose in all townships of study area, indicating non-carcinogenic health risks for local residents. Additionally, lead (Pb) and nickel (Ni) in 36.36% townships, and Cu in 81.82% townships were above the maximum oral reference dose, while As posed a carcinogenic risk throughout the study area. The concentrations of As, mercury (Hg), Pb, Mn, Cu Fe and selenium (Se) in grains were significantly correlated with those in soils. Moreover, the average concentrations of As in Proterozoic, Triassic, Jurassic and Cretaceous was 43.09, 12.41, 15.86 and 6.22 times higher than those in the South Tibet shell, respectively. The high concentrations of TEs and ETEs in the stratum can lead to their enrichment in soils, which, in turn, can result in excessive intake by local residents through the food chain and biogeochemical cycles . To avoid the occurrence of some diseases caused by dietary intake, it is necessary to consume a variety of exotic foods, such as high-selenium foods, foreign rice and flour in order to improve the dietary structure.
Collapse
Affiliation(s)
- Xue Gao
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Jinzhu Str.130, Chengguan District, Lhasa, 850000, China
- Tibet Academy of Agriculture and Animal Husbandry Sciences, Institute of Agricultural Resources and Environment, Jinzhu Str.130, Chengguan District, Lhasa, 850000, China
| | - Jialu An
- Xi'an University of Finance and Economics, Changning Str. 360, Chang'an District, Xi'an, 710100, China
| | - Chengqun Yu
- Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Datun Str. 11A, Chaoyang District, Beijing, 100101, China
| | - Xinjie Zha
- Xi'an University of Finance and Economics, Changning Str. 360, Chang'an District, Xi'an, 710100, China
| | - Yuan Tian
- Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Datun Str. 11A, Chaoyang District, Beijing, 100101, China.
| |
Collapse
|
2
|
Onen P, Akemkwene R, Nakiguli CK, Nimusiima D, Ruma DH, Khanakwa AV, Angiro C, Bamanya G, Opio B, Gonzaga A, Omara T. Health Risks from Intake and Contact with Toxic Metal-Contaminated Water from Pager River, Uganda. J Xenobiot 2023; 13:544-559. [PMID: 37873812 PMCID: PMC10594420 DOI: 10.3390/jox13040035] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/25/2023] Open
Abstract
Pollution of water resources is one of the major impediments to the realization of Sustainable Development Goals, especially in developing countries. The aim of this study was to investigate the physicochemical quality and potentially toxic element (lead and cadmium) concentrations in surface water sampled from Pager River, a tributary of the Nile River in Northern Uganda. Water samples (n = 18) were taken from six different points upstream (A, B, and C) and downstream (D, E, and F) of the river and analyzed following standard methods for their physiochemical properties. Atomic absorption spectroscopy was used to quantify lead and cadmium concentrations. Human health risks from ingestion and dermal contact with potentially toxic metal-contaminated water were calculated. The results obtained indicated that the mean temperature (27.7 ± 0.5-29.5 ± 0.8 °C), turbidity (40.7 ± 2.1-50.1 ± 1.1 NTU), lead (0.296 ± 0.030-0.576 ± 0.163 mg/L) and cadmium (0.278 ± 0.040-0.524 ± 0.040 mg/L) occurred at levels that surpassed their permissible limits as per World Health Organization guidelines for drinking water. Human health risk assessment showed that there are potential non-cancer risks from the ingestion of water from Pager River by adults, as the total hazard quotients were greater than one. These results emphasize the urgency to restrict the dumping of wastes into the river to minimize chances of impacting the Nile River, which flows northwards to the Mediterranean Sea. Further studies should perform routine monitoring of the river during both dry and wet seasons to establish the spatiotemporal variations of physicochemical, microbial, and trace metal profiles of the river and the associated health risks.
Collapse
Affiliation(s)
- Patrick Onen
- Department of Chemistry, University of Kerala, Thiruvananthapuram 695581, India
| | - Robin Akemkwene
- Department of Chemistry, Faculty of Education and Humanities, Gulu University, Gulu P.O. Box 166, Uganda
| | - Caroline K. Nakiguli
- Department of Chemistry, Faculty of Science, Mbarara University of Science and Technology, Mbarara P.O. Box 1410, Uganda
| | - Daniel Nimusiima
- Department of Chemistry, Faculty of Science, Mbarara University of Science and Technology, Mbarara P.O. Box 1410, Uganda
| | - Daniel Hendry Ruma
- Department of Nutritional Sciences and Dietetics, Kyambogo University, Kampala P.O. Box 1, Uganda
| | - Alice V. Khanakwa
- Department of Environmental Health and Disease Prevention, Faculty of Public Health, Lira University, Lira P.O. Box 1035, Uganda
| | - Christopher Angiro
- School of Water, Energy and Environment, Water Science Institute, Cranfield University, College Road, Cranfield MK43 0AL, UK
| | - Gadson Bamanya
- Department of Physical Sciences, Kampala International University, Kampala P.O. Box 20000, Uganda
| | - Boniface Opio
- Department of Science and Vocational Education, Lira University, Lira P.O. Box 1035, Uganda
| | - Allan Gonzaga
- Department of Physical Sciences, Kampala International University, Kampala P.O. Box 20000, Uganda
| | - Timothy Omara
- Chemistry Division, Testing Department, Uganda National Bureau of Standards, Kampala P.O. Box 6329, Uganda
| |
Collapse
|
3
|
Widiastuti EL, Afifa AD, Tugiyono T, Umar S, Mumtazah DF, Hadi S. Plankton diversity and its heavy metal content in Ratai Bay of Pesawaran district, Lampung, Indonesia. JOURNAL OF WATER AND HEALTH 2023; 21:663-675. [PMID: 37387334 PMCID: wh_2023_209 DOI: 10.2166/wh.2023.209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Artisanal and small-scale gold mining (ASGM) activity in Way Ratai River produces heavy metal wastes; therefore, further information regarding heavy metal concentrations in the water was needed, especially in plankton samples. Furthermore, the determination of plankton diversity was also carried out in the waters of Way Ratai to determine the bioconcentration factor (BCF). Eight sampling sites were chosen along the river reaching the coast of Way Ratai. The research was conducted in November 2020 and March 2021. Ten heavy metals, Ag, Cd, Co, Cr, Cu, Fe, Mn, Pb, and Zn that are commonly found in mining areas, were determined in the water and plankton samples by using ICP-OES. The results indicated that the highest concentration found was Fe in plankton samples (0.725 mg/L in the river and 1.294 mg/L on the coast). Meanwhile, contents of Cd, Cu, Fe, Mn, and Zn in the river exceeded the predetermined water quality standards, while Ag and Pb metals were not detected. The Cd, Cr, Cu, Pb, and Zn content in seawater also exceeded quality standards. The highest BCF value (12.96) was found for Fe at station G, whereas the lowest BCF value (0.13) was found for Ag at stations G and H.
Collapse
Affiliation(s)
- Endang Linirin Widiastuti
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Lampung, Bandar Lampung 35145, Indonesia E-mail:
| | - A D Afifa
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Lampung, Bandar Lampung 35145, Indonesia
| | - T Tugiyono
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Lampung, Bandar Lampung 35145, Indonesia
| | - S Umar
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Lampung, Bandar Lampung 35145, Indonesia
| | - D F Mumtazah
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Lampung, Bandar Lampung 35145, Indonesia
| | - S Hadi
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Lampung, Bandar Lampung 35145, Indonesia
| |
Collapse
|
4
|
Hossain MA, Chowdhury T, Chowdhury G, Schneider P, Hussain M, Das B, Iqbal MM. Impact of Pb Toxicity on the Freshwater Pearl Mussel, Lamellidens marginalis: Growth Metrics, Hemocyto-Immunology, and Histological Alterations in Gill, Kidney, and Muscle Tissue. TOXICS 2023; 11:475. [PMID: 37368575 DOI: 10.3390/toxics11060475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/11/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023]
Abstract
Pb is one of the most extensively used harmful heavy metals in Bangladesh, and its occurrence in waters affects aquatic organisms significantly. The tropical pearl mussel, Lamellidens marginalis, was exposed to different concentrations (T1 21.93 mgL-1, T2 43.86 mgL-1, and T3 87.72 mgL-1) of Pb(NO3)2 and was evaluated against a control C 0 mgL-1 of Pb(NO3)2, followed by a 96 h acute toxicity test. The LC50 value was recorded as 219.32 mgL-1. The physicochemical parameters were documented regularly for each treatment unit. The values of % SGR, shell weight, soft tissue wet weight, and weight gain remained statistically higher for the control group in comparison with the treatment. No mortality was noted for control units, while a gradually decreased survival rate was recorded for the different treatment groups. Fulton's condition factor was recorded as highest in the control and lowest in the T3 unit, while the condition indices did not vary between the control and treatment groups. The hemocyte was accounted as maximum in the control and T1, while minimum in T2 and T3. The serum lysosomal parameters also followed a similar pattern, and a significantly low level of lysosomal membrane stability, and serum lysosome activity was noted for T3 and T2 units in comparison to the control group. The histology of the gill, kidney, and muscle was well structured in the control group, while distinct pathologies were observed in the gill, kidney, and muscle tissue of different treatment groups. The quantitative comparison revealed that the intensity of pathological alteration increased as the dosage of Pb increased. The current study, therefore, indicated that intrusion of Pb(NO3)2 in the living medium significantly alters growth performance and hemocyte counts, and chronic toxicity induces histomorphological abnormalities in vital organs.
Collapse
Affiliation(s)
- Mohammad Amzad Hossain
- Department of Fish Biology and Genetics, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Toma Chowdhury
- Department of Fish Biology and Genetics, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Gourab Chowdhury
- Department of Fish Biology and Genetics, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Petra Schneider
- Department for Water, Environment, Civil Engineering and Safety, Magdeburg-Stendal University of Applied Sciences, Breitscheidstraße 2, 39114 Magdeburg, Germany
| | - Monayem Hussain
- Department of Fish Biology and Genetics, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Bipresh Das
- Department of Fish Biology and Genetics, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Mohammed Mahbub Iqbal
- Department of Fish Biology and Genetics, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| |
Collapse
|
5
|
Ghataora JS, Gebhard S, Reeksting BJ. Chimeric MerR-Family Regulators and Logic Elements for the Design of Metal Sensitive Genetic Circuits in Bacillus subtilis. ACS Synth Biol 2023; 12:735-749. [PMID: 36629785 PMCID: PMC10028694 DOI: 10.1021/acssynbio.2c00545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Whole-cell biosensors are emerging as promising tools for monitoring environmental pollutants such as heavy metals. These sensors constitute a genetic circuit comprising a sensing module and an output module, such that a detectable signal is produced in the presence of the desired analyte. The MerR family of metal-responsive regulators offers great potential for the construction of metal sensing circuits, due to their high sensitivity, tight transcription control, and large diversity in metal-specificity. However, the sensing diversity is broadest in Gram-negative systems, while chassis organisms are often selected from Gram-positive species, particularly sporulating bacilli. This can be problematic, because Gram-negative biological parts, such as promoters, are frequently observed to be nonfunctional in Gram-positive hosts. Herein, we combined construction of synthetic genetic circuits and chimeric MerR regulators, supported by structure-guided design, to generate metal-sensitive biosensor modules that are functional in the biotechnological work-horse species Bacillus subtilis. These chimeras consist of a constant Gram-positive derived DNA-binding domain fused to variable metal binding domains of Gram-negative origins. To improve the specificity of the whole-cell biosensor, we developed a modular "AND gate" logic system based on the B. subtilis two-subunit σ-factor, SigO-RsoA, designed to maximize future use for synthetic biology applications in B. subtilis. This work provides insights into the use of modular regulators, such as the MerR family, in the design of synthetic circuits for the detection of heavy metals, with potentially wider applicability of the approach to other systems and genetic backgrounds.
Collapse
Affiliation(s)
- Jasdeep S Ghataora
- Life Sciences Department, Milner Centre for Evolution, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Susanne Gebhard
- Life Sciences Department, Milner Centre for Evolution, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Bianca J Reeksting
- Life Sciences Department, Milner Centre for Evolution, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| |
Collapse
|
6
|
Ren Y, Cao X, Wu P, Li L. Experimental insights into the formation of secondary minerals in acid mine drainage-polluted karst rivers and their effects on element migration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160076. [PMID: 36356774 DOI: 10.1016/j.scitotenv.2022.160076] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/02/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Acid mine drainage (AMD) threatens the water quality and safety of karst river water (KRW), and the formation of secondary iron or aluminum-bearing minerals during the mixing of AMD with KRW plays a crucial role in the migration of elements. However, the variations in the mineralogical, morphological and elemental compositions of secondary minerals and their influences on the migration of elements during AMD-KRW mixing have not been systematically studied. In this study, we mixed different proportions of AMD and KRW in a laboratory experiment to simulate seasonal hydrological conditions in a river to understand the major and trace elemental distributions in the mixed water and in precipitates and we discuss the formation process for the secondary minerals. The results showed that AMD can lead to a decrease in pH and DO and an increase in heavy metals and rare earth elements (REEs) in KRW. With the biological or chemical oxidation of Fe2+, Fe3+ combines with SO42- to form schwertmannite or hydrolyzes to form Fe(OH)3(s) and FeOOH(s), accompanied by the formation of amorphous Al hydroxide, resulting in a decrease in pH and an increase in Eh. Schwertmannite had strong adsorption and coprecipitation effects on Mn, Cr, Cu and As, so the adsorption and coprecipitation effects of schwertmannite on REEs were inhibited, while the migration of REEs were mainly affected by Al hydroxides. Therefore, after the AMD mixes with KRW, it not only causes severe water and sediment pollution but also adsorbs and enriches high concentrations of heavy metals in the secondary minerals formed during the mixing process, creating a major ecological hazard that requires further attention.
Collapse
Affiliation(s)
- Yeye Ren
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 500025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang 500025, China
| | - Xingxing Cao
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 500025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang 500025, China.
| | - Pan Wu
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 500025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang 500025, China
| | - Linwei Li
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 500025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang 500025, China
| |
Collapse
|
7
|
Mawari G, Kumar N, Sarkar S, Frank AL, Daga MK, Singh MM, Joshi TK, Singh I. Human Health Risk Assessment due to Heavy Metals in Ground and Surface Water and Association of Diseases With Drinking Water Sources: A Study From Maharashtra, India. ENVIRONMENTAL HEALTH INSIGHTS 2022; 16:11786302221146020. [PMID: 36582432 PMCID: PMC9793032 DOI: 10.1177/11786302221146020] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Contamination of freshwater sources can be caused by both anthropogenic and natural processes. According to Central Pollution Control Board, Maharashtra along with 2 other states, contribute 80% of hazardous waste generated in India, including heavy metal pollution. Hence, it is important to quantify heavy metal concentrations in drinking water sources in such areas. MATERIALS AND METHODS Water samples were analyzed for toxic elements (F, As, Cd, Hg, Pb, Ni, Cu, Zn, Mn, and Cr) using Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) Agilent 7500. Health risks due to ingestion and dermal contact was assessed. A total of 557 people were randomly selected, with consumers from all 4 types of water sources that is surface water, hand pump, wells, and municipal water. Spot urine samples were collected from 47 people after considering inclusion and exclusion criteria. Urine was collected for estimating mercury and arsenic levels in the study participants. RESULTS Arsenic contributes the most health risk from ingestion from water. Among surface water users, 14 people (32%) reported frequent loose stool (P-value < .05) (OR 2.5), and 11 people (23%) reported frequent abdominal pain (OR 1.9). Hand pump and well water users reported frequent abdominal pain (27%) (OR 1.4) and gastric discomfort (31%) (P-value < .05) (OR 3) respectively. The mean value of urinary Hg and As were 4.91 ± 0.280 and 42.04 ± 2.635 µg/L respectively. CONCLUSION Frequent loose stool, gastric discomfort, and frequent abdominal pain were associated with the various sources of drinking water. Urine Hg levels were found higher than the NHANES (USA) Survey. It is recommended that frequent monitoring of drinking water should be enforced around the industrial hub, so that appropriate actions can be taken if present in excess.
Collapse
Affiliation(s)
- Govind Mawari
- Department Center for Occupational and
Environment Health, Maulana Azad Medical College, New Delhi, India
| | - Naresh Kumar
- Department Center for Occupational and
Environment Health, Maulana Azad Medical College, New Delhi, India
| | - Sayan Sarkar
- Department Center for Occupational and
Environment Health, Maulana Azad Medical College, New Delhi, India
| | - Arthur L Frank
- Department of Environmental and
Occupational Health, Drexel University, Philadelphia, PA, USA
| | - Mradul Kumar Daga
- Department of Internal Medicine and
Infectious Disease, Institute of Liver and Biliary Sciences, New Delhi, India
| | | | - Tushar Kant Joshi
- Department Center for Occupational and
Environment Health, Maulana Azad Medical College, New Delhi, India
| | - Ishwar Singh
- Department of ENT, Maulana Azad Medical
College, New Delhi, India
| |
Collapse
|
8
|
Copper (II)-Catalyzed Oxidation of Ascorbic Acid: Ionic Strength Effect and Analytical Use in Aqueous Solution. INORGANICS 2022. [DOI: 10.3390/inorganics10070102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Copper is an important metal both in living organisms and in the industrial activity of humans, it is also a distributed water pollutant and a toxic agent capable of inducing acute and chronic health disorders. There are several fluorescent chemosensors for copper (II) determination in solutions; however, they are often difficult to synthesize and solvent-sensitive, requiring a non-aqueous medium. The present paper improves the known analytical technique for copper (II) ions, where the linear dependence between the ascorbic acid oxidation rate constant and copper (II) concentration is used. The limits of detection and quantification of the copper (II) analysis kinetic method are determined to be 82 nM and 275 nM, respectively. In addition, the selectivity of the chosen indicator reaction is shown: Cu2+ cations can be quantified in the presence of the 5–20 fold excess of Co2+, Ni2+, and Zn2+ ions. The La3+, Ce3+, and UO22+ ions also do not catalyze the ascorbic acid oxidation reaction. The effect of the concentration of the common background electrolytes is studied, the anomalous influence for chloride-containing salts is observed and discussed.
Collapse
|