1
|
Chettri D, Verma AK, Chirania M, Verma AK. Metagenomic approaches in bioremediation of environmental pollutants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125297. [PMID: 39537082 DOI: 10.1016/j.envpol.2024.125297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/05/2024] [Accepted: 11/10/2024] [Indexed: 11/16/2024]
Abstract
Metagenomics has emerged as a pivotal tool in bioremediation, providing a deeper understanding of the structure and function of the microbial communities involved in pollutant degradation. By circumventing the limitations of traditional culture-based methods, metagenomics enables comprehensive analysis of microbial ecosystems and facilitates the identification of new genes and metabolic pathways that are critical for bioremediation. Advanced sequencing technologies combined with computational and bioinformatics approaches have greatly enhanced our ability to detect sources of pollution and monitor dynamic changes in microbial communities during the bioremediation process. These tools enable the precise identification of key microbial players and their functional roles, and provide a deeper understanding of complex biodegradation networks. The integration of artificial intelligence (AI) with machine learning algorithms has accelerated the process of discovery of novel genes associated with bioremediation and has optimized metabolic pathway prediction. Novel strategies, including sequencing techniques and AI-assisted analysis, have the potential to revolutionize bioremediation by enabling the development of highly efficient, targeted, and sustainable remediation strategies for various contaminated environments. However, the complexity of microbial interactions, data interpretation, and high cost of these advanced technologies remain challenging. Future research should focus on improving computational tools, reducing costs, and integrating multidisciplinary approaches to overcome these limitations.
Collapse
Affiliation(s)
- Dixita Chettri
- Department of Microbiology, Sikkim University, Gangtok, 737102, Sikkim, India
| | - Ashwani Kumar Verma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Manisha Chirania
- Department of Microbiology, Sikkim University, Gangtok, 737102, Sikkim, India
| | - Anil Kumar Verma
- Department of Microbiology, Sikkim University, Gangtok, 737102, Sikkim, India.
| |
Collapse
|
2
|
Kumar M, Saini HS. Deciphering Indigenous Bacterial Diversity of Co-Polluted Sites to Unravel Its Bioremediation Potential: A Metagenomic Approach. J Basic Microbiol 2024; 64:e2400303. [PMID: 38988320 DOI: 10.1002/jobm.202400303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/13/2024] [Accepted: 06/26/2024] [Indexed: 07/12/2024]
Abstract
Polluted drains across the globe are affected due to reckless disposal of untreated industrial effluents resulting in significant water pollution affecting microbial community structure/dynamics. To elucidate this, polluted samples were collected from Budha Nala (BN) drain, Tung Dhab (TD) drain, and wastewater treatment plant (WWTP) receiving an inflow of organic pollutants as well as heavy metals due to anthropogenic activities. The sample of unpolluted pristine soil (PS) was used as control, as there is no history of usage of organic chemicals at this site. The bacterial diversity of these samples was sequenced using the Illumina MiSeq platform by amplifying the V3/V4 region of 16S rRNA. The majority of operational taxonomic unit (OTUs) at polluted sites belonged to phyla Proteobacteria specifically Gammaproteobacteria class, followed by Actinobacteria, Bacteriodetes, Chloroflexi, Firmicutes, Planctomycetes, WS6, and TM7, whereas unpolluted site revealed the prevalence of Proteobacteria followed by Actinobacteria, Planctomycetes, Firmicutes, Acidobacteria, Chloroflexi, Bacteroidetes, Verrucomicrobia, and Nitrospirae. The data sets decode unclassified species of the phyla Proteobacteria, Bacteriodetes, Chloroflexi, Firmicutes, and WS6, along with some unclassified bacterial species. The study provided a comparative study of changed microbial community structure, their possible functions across diverse geographical locations, and identifying specific bacterial genera as pollution bio-indicators of aged polluted drains.
Collapse
Affiliation(s)
- Manoj Kumar
- Department of Microbiology, Guru Nanak Dev University, Amritsar, India
| | | |
Collapse
|
3
|
Wu Y, He H, Ren J, Shen H, Sahito ZA, Li B, Tang X, Tao Q, Huang R, Wang C. Assembly patterns and key taxa of bacterial communities in the rhizosphere soil of moso bamboo ( Phyllostachys pubescens) under different Cd and Pb pollution. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:1776-1786. [PMID: 38780520 DOI: 10.1080/15226514.2024.2356204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Moso bamboo is excellent candidate for cadmium (Cd)/lead (Pb) phytoremediation, while rhizosphere microbiome has significant impact on phytoremediation efficiency of host plant. However, little is known about the rhizosphere bacterial communities of moso bamboo in Cd/Pb contaminated soils. Therefore, this study investigated the assembly patterns and key taxa of rhizosphere bacterial communities of moso bamboo in Cd/Pb polluted and unpolluted soils, by field sampling, chemical analysis, and 16S rRNA gene sequencing. The results indicated α-diversity between Cd/Pb polluted and unpolluted soils showed a similar pattern (p > 0.05), while β-diversity was significantly different (p < 0.05). The relative abundance analysis indicated α-proteobacteria (37%) and actinobacteria (31%) were dominant in Cd/Pb polluted soils, while γ-proteobacteria (40%) and α-proteobacteria (22%) were dominant in unpolluted soils. Co-occurrence network analysis indicated microbial networks were less complex and more negative in polluted soils than in unpolluted soils. Mantel analysis indicated soil available phosphorus, organic matter, and available Pb were the most important environmental factors affecting microbial community structure. Correlation analysis showed 11 bacterial genera were significantly positively related to Cd/Pb. Overall, this study identified the bacterial community composition of bamboo rhizosphere in responding to Cd/Pb contamination and provides a theoretical basis for microbe-assistant phytoremediation in the future.
Collapse
Affiliation(s)
- Yingjie Wu
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Hua He
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Jiayi Ren
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Hongchi Shen
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Zulfiqar Ali Sahito
- College of Environmental and Resource Sciences, Key Laboratory of Environment Remediation and Ecological Health of Ministry of Education, Zhejiang University, Hangzhou, China
| | - Bing Li
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Xiaoyan Tang
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Qi Tao
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Rong Huang
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Changquan Wang
- College of Resources, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
4
|
Gou Y, Song Y, Li P, Wei W, Luo N, Wang H. Study on the accelerated biodegradation of PAHs in subsurface soil via coupled low-temperature thermally treatment and electron acceptor stimulation based on metagenomic sequencing. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133265. [PMID: 38113745 DOI: 10.1016/j.jhazmat.2023.133265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/21/2023]
Abstract
In situ anoxic bioremediation is a sustainable technology to remediate PAHs contaminated soils. However, the limited degradation rate of PAHs under anoxic conditions has become the primary bottleneck hindering the application of this technology. In this study, coupled low-temperature thermally treatment (<50 °C) and EA biostimulation was used to enhance PAH removal. Anoxic biodegradation of PAHs in soil was explored in microcosms in the absence and presence of added EAs at 3 temperatures (15 °C, 30 °C, and 45 °C). The influence of temperature, EA, and their interaction on the removal of PAHs were identified. A PAH degradation model based on PLSR analysis identified the importance and the positive/negative role of parameters on PAH removal. Soil archaeal and bacterial communities showed similar succession patterns, the impact of temperature was greater than that of EA. Soil microbial community and function were more influenced by temperature than EAs. Close and frequent interactions were observed among soil bacteria, archaea, PAH-degrading genes and methanogenic genes. A total of 15 bacterial OTUs, 1 PAH-degrading gene and 2 methanogenic genes were identified as keystones in the network. Coupled low-temperature thermally treatment and EA stimulation resulted in higher PAH removal efficiencies than EA stimulation alone and low-temperature thermally treatment alone.
Collapse
Affiliation(s)
- Yaling Gou
- Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing 100089, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| | - Yun Song
- Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing 100089, China
| | - Peizhong Li
- Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing 100089, China
| | - Wenxia Wei
- Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing 100089, China
| | - Nan Luo
- Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing 100089, China
| | - Hongqi Wang
- College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
5
|
Hu P, Sharaby Y, Gu J, Radian A, Lang‐Yona N. Environmental processes and health implications potentially mediated by dust-borne bacteria. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13222. [PMID: 38151778 PMCID: PMC10866058 DOI: 10.1111/1758-2229.13222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/29/2023] [Indexed: 12/29/2023]
Abstract
Understanding microbial migration and survival mechanisms in dust events (DEs) can elucidate genetic and metabolic exchange between environments and help predict the atmospheric pathways of ecological and health-related microbial stressors. Dust-borne microbial communities have been previously characterized, but the impact and interactions between potentially active bacteria within transported communities remain limited. Here, we analysed samples collected during DEs in Israel, using amplicon sequencing of the 16S rRNA genes and transcripts. Different air trajectories and wind speeds were associated not only with the genomic microbial community composition variations but also with specific 16S rRNA bacterial transcripts. Potentially active dust-borne bacteria exhibited positive interactions, including carbon and nitrogen cycling, biotransformation of heavy metals, degradation of organic compounds, biofilm formation, and the presence of pathogenic taxa. This study provides insights into the potential interactive relationships and survival strategies of microorganisms within the extreme dust environment.
Collapse
Affiliation(s)
- Pengfei Hu
- Civil and Environmental EngineeringTechnion—Israel Institute of TechnologyHaifaIsrael
- Environmental Science and Engineering Research GroupGuangdong Technion—Israel Institute of TechnologyShantouGuangdongChina
| | - Yehonatan Sharaby
- Civil and Environmental EngineeringTechnion—Israel Institute of TechnologyHaifaIsrael
- Present address:
Department of Biology and EnvironmentUniversity of HaifaOranimTivonIsrael
| | - Ji‐Dong Gu
- Environmental Science and Engineering Research GroupGuangdong Technion—Israel Institute of TechnologyShantouGuangdongChina
- Guangdong Provincial Key Laboratory of Materials and Technologies for Energy ConversionGuangdong Technion—Israel Institute of TechnologyShantouGuangdongChina
| | - Adi Radian
- Civil and Environmental EngineeringTechnion—Israel Institute of TechnologyHaifaIsrael
| | - Naama Lang‐Yona
- Civil and Environmental EngineeringTechnion—Israel Institute of TechnologyHaifaIsrael
| |
Collapse
|
6
|
Lin M, Pan C, Qian C, Tang F, Zhao S, Guo J, Zhang Y, Song J, Rittmann BE. Core taxa, co-occurrence pattern, diversity, and metabolic pathways contributing to robust anaerobic biodegradation of chlorophenol. ENVIRONMENTAL RESEARCH 2024; 241:117591. [PMID: 37926226 DOI: 10.1016/j.envres.2023.117591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/28/2023] [Accepted: 11/02/2023] [Indexed: 11/07/2023]
Abstract
It is hard to achieve robustness in anaerobic biodegradation of trichlorophenol (TCP). We hypothesized that specific combinations of environmental factors determine phylogenetic diversity and play important roles in the decomposition and stability of TCP-biodegrading bacteria. The anaerobic bioreactor was operated at 35 °C (H condition) or 30 °C (L condition) and mainly fed with TCP (from 28 μM to 180 μM) and organic material. Metagenome sequencing was combined with 16S rRNA gene amplicon sequencing for the microbial community analysis. The results exhibited that the property of robustness occurred in specific conditions. The corresponding co-occurrence and diversity patterns suggest high collectivization, degree and evenness for robust communities. Two types of core functional taxa were recognized: dechlorinators (unclassified Anaerolineae, Thermanaerothrix and Desulfovibrio) and ring-opening members (unclassified Proteobacteria, Methanosarcina, Methanoperedens, and Rubrobacter). The deterministic process of the expansion of niche of syntrophic bacteria at higher temperatures was confirmed. The reductive and hydrolytic dechlorination mechanisms jointly lead to C-Cl bond cleavage. H ultimately adapted to the stress of high TCP loading, with more abundant ring-opening enzyme (EC 3.1.1.45, ∼55%) and hydrolytic dechlorinase (EC 3.8.1.5, 26.5%) genes than L (∼47%, 10.5%). The functional structure (based on KEGG) in H was highly stable despite the high loading of TCP (up to 60 μM), but not in L. Furthermore, an unknown taxon with multiple functions (dechlorinating and ring-opening) was found based on genetic sequencing; its functional contribution of EC 3.8.1.5 in H (26.5%) was higher than that in L (10.5%), and it possessed a new metabolic pathway for biodegradation of halogenated aromatic compounds. This new finding is supplementary to the robust mechanisms underlying organic chlorine biodegradation, which can be used to support the engineering, regulation, and design of synthetic microbiomes.
Collapse
Affiliation(s)
- Ming Lin
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, PR China; Yangtze River Delta Urban Wetland Ecosystem National Field Scientific Observation and Research Station, Shanghai, 200234, PR China
| | - Chenhui Pan
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, PR China; Yangtze River Delta Urban Wetland Ecosystem National Field Scientific Observation and Research Station, Shanghai, 200234, PR China
| | - Chenyi Qian
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, PR China; Yangtze River Delta Urban Wetland Ecosystem National Field Scientific Observation and Research Station, Shanghai, 200234, PR China
| | - Fei Tang
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, PR China; Yangtze River Delta Urban Wetland Ecosystem National Field Scientific Observation and Research Station, Shanghai, 200234, PR China
| | - Siwen Zhao
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, PR China; Yangtze River Delta Urban Wetland Ecosystem National Field Scientific Observation and Research Station, Shanghai, 200234, PR China
| | - Jun Guo
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, PR China; Department of Environmental Science and Engineering, Fudan University, Shanghai, 200238, PR China
| | - Yongming Zhang
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, PR China; Yangtze River Delta Urban Wetland Ecosystem National Field Scientific Observation and Research Station, Shanghai, 200234, PR China
| | - Jiaxiu Song
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, PR China; Yangtze River Delta Urban Wetland Ecosystem National Field Scientific Observation and Research Station, Shanghai, 200234, PR China.
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, 85287-5701, USA
| |
Collapse
|
7
|
Satpati GG, Gupta S, Biswas RK, Choudhury AK, Kim JW, Davoodbasha M. Microalgae mediated bioremediation of polycyclic aromatic hydrocarbons: Strategies, advancement and regulations. CHEMOSPHERE 2023; 344:140337. [PMID: 37797901 DOI: 10.1016/j.chemosphere.2023.140337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/14/2023] [Accepted: 09/28/2023] [Indexed: 10/07/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are pervasive in the atmosphere and are one of the emerging pollutants that cause harmful effects in living systems. There are some natural and anthropogenic sources that can produce PAHs in an uncontrolled way. Several health hazards associated with PAHs like abnormality in the reproductive system, endocrine system as well as immune system have been explained. The mutagenic or carcinogenic effects of hydrocarbons in living systems including algae, vertebrates and invertebrates have been discussed. For controlling PAHs, biodegradation has been suggested as an effective and eco-friendly process. Microalgae-based biosorption and biodegradation resulted in the removal of toxic contaminants. Microalgae both in unialgal form and in consortium (with bacteria or fungi) performed good results in bioaccumulation and biodegradation. In the present review, we highlighted the general information about the PAHs, conventional versus advanced technology for removal. In addition microalgae based removal and toxicity is discussed. Furthermore this work provides an idea on modern scientific applications like genetic and metabolic engineering, nanomaterials-based technologies, artificial neural network (ANN), machine learning (ML) etc. As rapid and effective methods for bioremediation of PAHs. With several pros and cons, biological treatments using microalgae are found to be better for PAH removal than any other conventional technologies.
Collapse
Affiliation(s)
- Gour Gopal Satpati
- Department of Botany, Bangabasi Evening College, University of Calcutta, Kolkata- 700009, West Bengal, India.
| | - Shalini Gupta
- University School of Environment and Management, Guru Gobind Singh Indraprastha University, Dwarka, Delhi- 110078, India
| | - Rohan Kr Biswas
- Phycology Lab, Department of Botany, Ramakrishna Mission Vivekananda Centenary College, Rahara, Kolkata-700118, India
| | - Avik Kumar Choudhury
- Phycology Lab, Department of Botany, Ramakrishna Mission Vivekananda Centenary College, Rahara, Kolkata-700118, India
| | - Jung-Wan Kim
- Research Centre for Bio Material and Process Development, Incheon National Univeristy, Republic of Korea; Division of Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea.
| | - MubarakAli Davoodbasha
- Research Centre for Bio Material and Process Development, Incheon National Univeristy, Republic of Korea; Centre for Surface Technology and Applications, Korea Aerospace University, Goyang, 10540, Republic of Korea; School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, 600048, India.
| |
Collapse
|
8
|
Li H, Zhen Z, Zhang D, Huang Y, Yang G, Yang C, Wu W, Lin Z, Liang YQ. Improved sea rice yield and accelerated di-2-ethylhexyl phthalate (DEHP) degradation by straw carbonization returning in coastal saline soils. JOURNAL OF HAZARDOUS MATERIALS 2023; 463:132850. [PMID: 39491994 DOI: 10.1016/j.jhazmat.2023.132850] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/21/2023] [Accepted: 10/22/2023] [Indexed: 11/05/2024]
Abstract
Di-2-ethylhexyl phthalate, a persistent organic contaminant, is widely distributed in the environment and poses substantial threats to human health; however, there have been few investigations regarding the risks and remediation of DEHP in coastal saline soils. In this work, we studied the influences of straw carbonization returning on sea rice yield and DEHP degradation. Straw carbonization returning significantly increased soil nutrients and reduced salt stress to improve sea rice yield. DEHP degradation efficiency was enhanced to a maximum of 78.27% in straw carbonized return with 60% sea rice, mainly attributed to the high pH value, high soil organic matter and enriched potential DEHP degraders of Nocardioides, Mycobacterium and Bradyrhizobium. Some key genes related to metabolism (esterase and cytochrome P450) and DEHP-degradation (pht4, pht5, pcaG, dmpB, catA and fadA) were elevated and explained the accelerated DEHP degradation, shifting from the benzoic acid pathway to the protocatechuate pathway in straw carbonization returning. The results obtained in this study provide a deep and comprehensive understanding of sea rice yield improvement and DEHP degradation mechanisms in coastal paddy soil by a straw carbonization returning strategy.
Collapse
Affiliation(s)
- Huijun Li
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhen Zhen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Dayi Zhang
- College of New Energy and Environment, Jilin University, Changchun 130021, China
| | - Yongxiang Huang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Guiqiong Yang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Changhong Yang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Weilong Wu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhong Lin
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China; Shenzhen Research Institute of Guangdong Ocean University, Shenzhen 518108, China.
| | - Yan-Qiu Liang
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China.
| |
Collapse
|
9
|
Kumar M, Saggu SK, Pratibha P, Singh SK, Kumar S. Exploring the role of microbes for the management of persistent organic pollutants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118492. [PMID: 37384989 DOI: 10.1016/j.jenvman.2023.118492] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 07/01/2023]
Abstract
Persistent organic pollutants (POPs) are chemicals which have been persisting in the environment for many years due to their longer half-lives. POPs have gained attention over the last few decades due to the unsustainable management of chemicals which led to their widespread and massive contamination of biota from different strata and environments. Due to the widespread distribution, bio-accumulation and toxic behavior, POPs have become a risk for organisms and environment. Therefore, a focus is required to eliminate these chemicals from the environment or transform into non-toxic forms. Among the available techniques for the removal of POPs, most of them are inefficient or incur high operational costs. As an alternative to this, microbial bioremediation of POPs such as pesticides, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, pharmaceuticals and personal care products is much more efficient and cost-effective. Additionally, bacteria play a vital role in the biotransformation and solubilization of POPs, which reduces their toxicity. This review specifies the Stockholm Convention that evaluates the risk profile for the management of existing as well as emerging POPs. The sources, types and persistence of POPs along with the comparison of conventional elimination and bioremediation methods of POPs are discussed comprehensively. This study demonstrates the existing bioremediation techniques of POPs and summaries the potential of microbes which serve as enhanced, cost-effective, and eco-friendly approach for POPs elimination.
Collapse
Affiliation(s)
- Manoj Kumar
- School of Allied and Healthcare Sciences, GNA University, Phagwara, Punjab, 144401, India
| | - Sandeep Kaur Saggu
- Department of Biotechnology, Kanya Maha Vidyalaya, Jalandhar, Punjab, 144004, India
| | - Pritu Pratibha
- Center for Excellence in Molecular Plant Science, Plant Stress Center, CAS, Shanghai, 201602, China
| | - Sunil Kumar Singh
- Department of Botany, Faculty of Science, University of Allahabad, Prayagraj, 211002, India.
| | - Shiv Kumar
- Department of Microbiology, Guru Gobind Singh Medical College, Baba Farid University of Health Sciences, Faridkot, Punjab, 151203, India.
| |
Collapse
|
10
|
Leung MHY, Tong X, Shen Z, Du S, Bastien P, Appenzeller BMR, Betts RJ, Mezzache S, Bourokba N, Cavusoglu N, Aguilar L, Misra N, Clavaud C, Lee PKH. Skin microbiome differentiates into distinct cutotypes with unique metabolic functions upon exposure to polycyclic aromatic hydrocarbons. MICROBIOME 2023; 11:124. [PMID: 37264459 DOI: 10.1186/s40168-023-01564-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/01/2023] [Indexed: 06/03/2023]
Abstract
BACKGROUND The effects of air pollutants, particularly polycyclic aromatic hydrocarbons (PAHs), on the skin microbiome remain poorly understood. Thus, to better understand the interplay between air pollutants, microbiomes, and skin conditions, we applied metagenomics and metabolomics to analyze the effects of PAHs in air pollution on the skin microbiomes of over 120 subjects residing in two cities in China with different levels of air pollution. RESULTS The skin microbiomes differentiated into two cutotypes (termed 1 and 2) with distinct taxonomic, functional, resistome, and metabolite compositions as well as skin phenotypes that transcended geography and host factors. High PAH exposure was linked to dry skin and cutotype 2, which was enriched with species with potential biodegradation functions and had reduced correlation network structure integrity. The positive correlations identified between dominant taxa, key functional genes, and metabolites in the arginine biosynthesis pathway in cutotype 1 suggest that arginine from bacteria contributes to the synthesis of filaggrin-derived natural moisturizing factors (NMFs), which provide hydration for the skin, and could explain the normal skin phenotype observed. In contrast, no correlation with the arginine biosynthesis pathway was observed in cutotype 2, which indicates the limited hydration functions of NMFs and explains the observed dry skin phenotype. In addition to dryness, skin associated with cutotype 2 appeared prone to other adverse conditions such as inflammation. CONCLUSIONS This study revealed the roles of PAHs in driving skin microbiome differentiation into cutotypes that vary extensively in taxonomy and metabolic functions and may subsequently lead to variations in skin-microbe interactions that affect host skin health. An improved understanding of the roles of microbiomes on skin exposed to air pollutants can aid the development of strategies that harness microbes to prevent undesirable skin conditions. Video Abstract.
Collapse
Affiliation(s)
- Marcus H Y Leung
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China
| | - Xinzhao Tong
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China
- Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Zhiyong Shen
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China
| | - Shicong Du
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China
| | | | - Brice M R Appenzeller
- Human Biomonitoring Research Unit, Luxembourg Institute of Health, Strassen, Luxembourg
| | | | | | | | | | - Luc Aguilar
- L'Oréal Research and Innovation, Aulnay-Sous-Bois, France
| | - Namita Misra
- L'Oréal Research and Innovation, Aulnay-Sous-Bois, France
| | - Cécile Clavaud
- L'Oréal Research and Innovation, Aulnay-Sous-Bois, France
| | - Patrick K H Lee
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
11
|
Wang Z, Teng Y, Wang X, Xu Y, Li R, Hu W, Li X, Zhao L, Luo Y. Removal of cadmium and polychlorinated biphenyls by clover and the associated microbial community in a long-term co-contaminated soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:161983. [PMID: 36740062 DOI: 10.1016/j.scitotenv.2023.161983] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/29/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
Legumes such as clover are cost-effective and environmentally friendly components of strategies for remediating soils contaminated with heavy metals or organic pollutants. However, the mechanisms by which clover remediates co-contaminated soils are unclear. The present study explored the effects of phytoremediation by clover on pollutant removal and the microbial community in soil co-contaminated with cadmium (Cd) and polychlorinated biphenyls (PCBs). After 18 months of phytoremediation, Cd removal increased from 20.25 % in the control to 40.65 % in soil planted with clover, while PCB removal increased from 29.81 % to 60.02 %. High-throughput sequencing analysis showed that the relative abundances of the bacterial phylum Proteobacteria and the diazotrophic genus Rhizobium increased significantly after phytoremediation. Random forest analysis showed that bacterial and diazotrophic diversity significantly influenced Cd and PCB removal. Furthermore, co-occurrence network and correlation analyses revealed that Rhizobiales and Micromonosporales were the main bacteria associated with Cd removal, while Rhizobiales, Burkholderiales, and Xanthomonadales were identified as the main degraders of PCBs. PICRUSt functional prediction demonstrated that the gene bphC, which is related to PCB degradation, was significantly increased in the rhizosphere soil in the presence of clover. These results provide a better understanding for further studies of remediation efficiency by clover, rhizosphere microbial response and remediation mechanisms of co-contaminated soils under in situ conditions in the field.
Collapse
Affiliation(s)
- Zuopeng Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Teng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Xia Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yongfeng Xu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Ran Li
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Wenbo Hu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xiuhua Li
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Ling Zhao
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yongming Luo
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
12
|
Hu W, Wang X, Wang X, Xu Y, Li R, Zhao L, Ren W, Teng Y. Enhancement of nitrogen fixation and diazotrophs by long-term polychlorinated biphenyl contamination in paddy soil. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130697. [PMID: 36599277 DOI: 10.1016/j.jhazmat.2022.130697] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/07/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Biological nitrogen fixation (BNF) driven by diazotrophs is a major means of increasing available nitrogen (N) in paddy soil, in addition to anthropogenic fertilization. However, the influence of long-term polychlorinated biphenyl (PCB) contamination on the diazotrophic community and nitrogen fixation in paddy soil is poorly understood. In this study, samples were collected from paddy soil subjected to > 30 years of PCB contamination, and the soil diazotrophic community and N2 fixation rate were evaluated by Illumina MiSeq sequencing and acetylene reduction assays, respectively. The results indicated that high PCB contamination increased diazotrophic abundance and the N2 fixation rate, and altered diazotrophic community structure in the paddy soil. The random forest model demonstrated that the β-diversity of the diazotrophic community was the most significant predictor of the N2 fixation rate. Structure equation modeling identified a specialized keystone diazotrophic ecological cluster, predominated by Bradyrhizobium, Desulfomonile, and Cyanobacteria, as the key driver of N2 fixation. Overall, our findings indicated that long-term PCB contamination enhanced the N2 fixation rate by altering diazotrophic community abundance and structure, which may deepen our understanding of the ecological function of diazotrophs in organic-contaminated soil.
Collapse
Affiliation(s)
- Wenbo Hu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaomi Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xia Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yongfeng Xu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Ran Li
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Ling Zhao
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Wenjie Ren
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Ying Teng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
13
|
Sun H, Chen Q, Qu C, Tian Y, Song J, Liu Z, Guo J. Occurrence of OCPs & PCBs and their effects on multitrophic biological communities in riparian groundwater of the Beiluo River, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 253:114713. [PMID: 36870171 DOI: 10.1016/j.ecoenv.2023.114713] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Persistent Organic Pollutants (POPs) may exert adverse effects on human and ecosystem health. However, as an ecologically fragile zone with strong interaction between river and groundwater, the POPs pollution in the riparian zone has received little attention. The goal of this research is to examine the concentrations, spatial distribution, potential ecological risks, and biological effects of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) in the riparian groundwater of the Beiluo River, China. The results showed that the pollution level and ecological risk of OCPs in riparian groundwater of the Beiluo River were higher than PCBs. The presence of PCBs (Penta-CBs, Hexa-CBs) and CHLs, respectively, may have reduced the richness of bacteria (Firmicutes) and fungi (Ascomycota). Furthermore, the richness and Shannon's diversity index of algae (Chrysophyceae and Bacillariophyta) decreased, which could be linked to the presence of OCPs (DDTs, CHLs, DRINs), and PCBs (Penta-CBs, Hepta-CBs), while for metazoans (Arthropoda) the tendency was reversed, presumably as a result of SULPHs pollution. In the network analysis, core species belonging to bacteria (Proteobacteria), fungi (Ascomycota), and algae (Bacillariophyta) played essential roles in maintaining community function. Burkholderiaceae and Bradyrhizobium can be considered biological indicators of PCBs pollution in the Beiluo River. Note that the core species of interaction network, playing a fundamental role in community interactions, are strongly affected by POPs pollutants. This work provides insights into the functions of multitrophic biological communities in maintaining the stability of riparian ecosystems through the response of core species to riparian groundwater POPs contamination.
Collapse
Affiliation(s)
- Haotian Sun
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Qiqi Chen
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Chengkai Qu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Yulu Tian
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Jinxi Song
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Ziteng Liu
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Jiahua Guo
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China.
| |
Collapse
|
14
|
Devika NT, Katneni VK, Jangam AK, Suganya PN, Shekhar MS, Jithendran KP. In silico prediction of potential indigenous microbial biomarkers in Penaeus vannamei identified through meta-analysis and genome-scale metabolic modelling. ENVIRONMENTAL MICROBIOME 2023; 18:2. [PMID: 36631881 PMCID: PMC9835370 DOI: 10.1186/s40793-022-00458-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/25/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Understanding the microbiome is crucial as it contributes to the metabolic health of the host and, upon dysbiosis, may influence disease development. With the recent surge in high-throughput sequencing technology, the availability of microbial genomic data has increased dramatically. Amplicon sequence-based analyses majorly profile microbial abundance and determine taxonomic markers. Furthermore, the availability of genome sequences for various microbial organisms has prompted the integration of genome-scale metabolic modelling that provides insights into the metabolic interactions influencing host health. However, the analysis from a single study may not be consistent, necessitating a meta-analysis. RESULTS We conducted a meta-analysis and integrated with constraint-based metabolic modelling approach, focusing on the microbiome of pacific white shrimp Penaeus vannamei, an extensively cultured marine candidate species. Meta-analysis revealed that Acinetobacter and Alteromonas are significant indicators of "health" and "disease" specific taxonomic biomarkers, respectively. Further, we enumerated metabolic interactions among the taxonomic biomarkers by applying a constraint-based approach to the community metabolic models (4416 pairs). Under different nutrient environments, a constraint-based flux simulation identified five beneficial species: Acinetobacter spWCHA55, Acinetobacter tandoii SE63, Bifidobacterium pseudolongum 49 D6, Brevundimonas pondensis LVF1, and Lutibacter profundi LP1 mediating parasitic interactions majorly under sucrose environment in the pairwise community. The study also reports the healthy biomarkers that can co-exist and have functionally dependent relationships to maintain a healthy state in the host. CONCLUSIONS Toward this, we collected and re-analysed the amplicon sequence data of P. vannamei (encompassing 117 healthy and 142 disease datasets). By capturing the taxonomic biomarkers and modelling the metabolic interaction between them, our study provides a valuable resource, a first-of-its-kind analysis in aquaculture scenario toward a sustainable shrimp farming.
Collapse
Affiliation(s)
- Neelakantan Thulasi Devika
- Nutrition Genetics and Biotechnology Division, Indian Council of Agricultural Research - Central Institute of Brackishwater Aquaculture, Chennai, India
| | - Vinaya Kumar Katneni
- Nutrition Genetics and Biotechnology Division, Indian Council of Agricultural Research - Central Institute of Brackishwater Aquaculture, Chennai, India.
| | - Ashok Kumar Jangam
- Nutrition Genetics and Biotechnology Division, Indian Council of Agricultural Research - Central Institute of Brackishwater Aquaculture, Chennai, India
| | - Panjan Nathamuni Suganya
- Nutrition Genetics and Biotechnology Division, Indian Council of Agricultural Research - Central Institute of Brackishwater Aquaculture, Chennai, India
| | - Mudagandur Shashi Shekhar
- Nutrition Genetics and Biotechnology Division, Indian Council of Agricultural Research - Central Institute of Brackishwater Aquaculture, Chennai, India
| | - Karingalakkandy Poochirian Jithendran
- Aquatic Animal Health and Environment Division, Indian Council of Agricultural Research - Central Institute of Brackishwater Aquaculture, Chennai, India
| |
Collapse
|
15
|
Marzuki I, Rosmiati R, Mustafa A, Sahabuddin S, Tarunamulia T, Susianingsih E, Hendrajat EA, Sahrijanna A, Muslimin M, Ratnawati E, Kamariah K, Nisaa K, Herlambang S, Gunawan S, Santi IS, Isnawan BH, Kaseng ES, Septiningsih E, Asaf R, Athirah A, Basri B. Potential Utilization of Bacterial Consortium of Symbionts Marine Sponges in Removing Polyaromatic Hydrocarbons and Heavy Metals, Review. BIOLOGY 2023; 12:86. [PMID: 36671778 PMCID: PMC9855174 DOI: 10.3390/biology12010086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/17/2022] [Accepted: 12/08/2022] [Indexed: 01/07/2023]
Abstract
Toxic materials in waste generally contain several components of the global trending pollutant category, especially PAHs and heavy metals. Bioremediation technology for waste management that utilizes microorganisms (bacteria) has not been fully capable of breaking down these toxic materials into simple and environmentally friendly chemical products. This review paper examines the potential application of a consortium of marine sponge symbionts with high performance and efficiency in removing PAHs and heavy metal contaminants. The method was carried out through a review of several related research articles by the author and published by other researchers. The results of the study conclude that the development of global trending pollutant (GTP) bioremediation technology could be carried out to increase the efficiency of remediation. Several types of marine sponge symbiont bacteria, hydrocarbonoclastic (R-1), metalloclastic (R-2), and metallo-hydro-carbonoclastic (R-3), have the potential to be applied to improve waste removal performance. A consortium of crystalline bacterial preparations is required to mobilize into GTP-exposed sites rapidly. Bacterial symbionts of marine sponges can be traced mainly to sea sponges, whose body surface is covered with mucus.
Collapse
Affiliation(s)
- Ismail Marzuki
- Department of Chemical Engineering, Fajar University, Makassar 90231, South Sulawesi, Indonesia
| | - Rosmiati Rosmiati
- Research Center for Fishery National Research and Innovation Agency, Cibinong 16911, West Java, Indonesia
| | - Akhmad Mustafa
- Research Center for Fishery National Research and Innovation Agency, Cibinong 16911, West Java, Indonesia
| | - Sahabuddin Sahabuddin
- Research Center for Fishery National Research and Innovation Agency, Cibinong 16911, West Java, Indonesia
| | - Tarunamulia Tarunamulia
- Research Center for Fishery National Research and Innovation Agency, Cibinong 16911, West Java, Indonesia
| | - Endang Susianingsih
- Research Center for Fishery National Research and Innovation Agency, Cibinong 16911, West Java, Indonesia
| | - Erfan Andi Hendrajat
- Research Center for Fishery National Research and Innovation Agency, Cibinong 16911, West Java, Indonesia
| | - Andi Sahrijanna
- Research Center for Fishery National Research and Innovation Agency, Cibinong 16911, West Java, Indonesia
| | - Muslimin Muslimin
- Research Center for Fishery National Research and Innovation Agency, Cibinong 16911, West Java, Indonesia
| | - Erna Ratnawati
- Research Center for Fishery National Research and Innovation Agency, Cibinong 16911, West Java, Indonesia
| | - Kamariah Kamariah
- Research Center for Fishery National Research and Innovation Agency, Cibinong 16911, West Java, Indonesia
| | - Khairun Nisaa
- Research Center for Fishery National Research and Innovation Agency, Cibinong 16911, West Java, Indonesia
| | - Susila Herlambang
- Soil Science Departement of Agriculture Faculty Universitas Pembangunan Nasional Veteran, Yogyakarta 55283, DI Yogyakarta, Indonesia
| | - Sri Gunawan
- Department of Agrotechnology, Institut Pertanian Stiper, Yogyakarta 55283, DI Yogyakarta, Indonesia
| | - Idum Satia Santi
- Department of Agrotechnology, Institut Pertanian Stiper, Yogyakarta 55283, DI Yogyakarta, Indonesia
| | - Bambang Heri Isnawan
- Department of Agrotechnology, Universitas Muhammadiyah Yogyakarta, Bantul 55183, DI Yogyakarta, Indonesia
| | - Ernawati Syahruddin Kaseng
- Agricultural Technology Education Department, Faculty of Engineering, Makassar State University, Makassar 90222, South Sulawesi, Indonesia
| | - Early Septiningsih
- Research Center for Conservation of Marine and Inland Water Resources, National Research and Innovation Agency, Cibinong 16911, West Java, Indonesia
| | - Ruzkiah Asaf
- Research Center for Conservation of Marine and Inland Water Resources, National Research and Innovation Agency, Cibinong 16911, West Java, Indonesia
| | - Admi Athirah
- Research Center for Conservation of Marine and Inland Water Resources, National Research and Innovation Agency, Cibinong 16911, West Java, Indonesia
| | - Basri Basri
- Institute of Health Science (STIK), Makassar 90231, South Sulawesi, Indonesia
| |
Collapse
|
16
|
Hung CM, Chen CW, Huang CP, Sheu DS, Dong CD. Metal-free catalysis for organic micropollutant degradation in waste activated sludge via poly(3-hydroxybutyrate) biopolymers using Cupriavidus sp. L7L coupled with peroxymonosulfate. BIORESOURCE TECHNOLOGY 2022; 361:127680. [PMID: 35878764 DOI: 10.1016/j.biortech.2022.127680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
This study employed a novel and environment-friendly biopolymer/oxidant catalytic system, viz., poly(3-hydroxybutyrate)/peroxymonosulfate (PHB/PMS), for pretreating wastewater sludge for the first time. Under optimal conditions, i.e., 3.1 × 10-4 M of PMS and 3.3 g/L of PHB at pH = 6.0, the PAHs in the sludge matrix was decreased by 79 % in 12 h. Increase in salinity (75 % synthetic seawater) achieved 83 % of PAHs degradation. Functional groups (CO) of the biopolymer matrix were active centers for biopolymer-mediated electron transfer that produced reactive oxygen species (SO4-, HO, and 1O2) for adsorption and catalytic oxidation of PAHs in the sludge. Functional metagenomic analysis revealed the main genus, Conexibacter (phylum, Actinobacteria) exhibited PAH-degrading function with high efficiency in the biodegradation of PAHs from sludge pretreated with PHB/PMS. Coupling chemical oxidation and biostimulation using bacterial polymer-based biomaterials is effective and beneficial for pretreating wastewater sludge toward circular bioeconomy.
Collapse
Affiliation(s)
- Chang-Mao Hung
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chin-Pao Huang
- Department of Civil and Environmental Engineering, University of Delaware, Newark, USA
| | - Der-Shyan Sheu
- Department of Marine Biotechnology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| |
Collapse
|
17
|
Sandhu M, Paul AT, Proćków J, de la Lastra JMP, Jha PN. PCB-77 biodegradation potential of biosurfactant producing bacterial isolates recovered from contaminated soil. Front Microbiol 2022; 13:952374. [PMID: 36225351 PMCID: PMC9549355 DOI: 10.3389/fmicb.2022.952374] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Polychlorinated biphenyls (PCBs) are persistent organic pollutants widely distributed in the environment and possess deleterious health effects. The main objective of the study was to obtain bacterial isolates from PCB-contaminated soil for enhanced biodegradation of PCB-77. Selective enrichment resulted in the isolation of 33 strains of PCB-contaminated soil nearby Bhilai steel plant, Chhattisgarh, India. Based on the prominent growth using biphenyl as the sole carbon source and the confirmation of its degradation by GC-MS/MS analysis, four isolates were selected for further study. The isolates identified by 16S rRNA gene sequencing were Pseudomonas aeruginosa MAPB-2, Pseudomonas plecoglossicida MAPB-6, Brucella anthropi MAPB-9, and Priestia megaterium MAPB-27. The isolate MAPB-9 showed a degradation of 66.15% biphenyl, while MAPB-2, MAPB-6, and MAPB-27 showed a degradation of 62.06, 57.02, and 56.55%, respectively in 48 h. Additionally, the degradation ability of these strains was enhanced with addition of co-metabolite glucose (0.2%) in the culture medium. Addition of glucose showed 100% degradation of biphenyl by MAPB-9, in 48 h, while MAPB-6, MAPB-2, and MAPB-27 showed 97.1, 67.5, and 53.3% degradation, respectively as analyzed by GC-MS/MS. Furthermore, in the presence of inducer, PCB-77 was found to be 59.89, 30.49, 27.19, and 4.43% degraded by MAPB-6, MAPB-9, MAPB-2, and MAPB-27, respectively in 7 d. The production of biosurfactants that aid in biodegradation process were observed in all the isolates. This was confirmed by ATR-FTIR analysis that showed the presence of major functional groups (CH2, CH3, CH, = CH2, C–O–C, C-O) of the biosurfactant. The biosurfactants were further identified by HPTLC and GC-MS/MS analysis. Present study is the first to report PCB-77 degradation potential of Pseudomonas aeruginosa, B. anthropi, Pseudomonas plecoglossicida, and Priestia megaterium. Similarly, this is the first report on Pseudomonas plecoglossicida and Priestia megaterium for PCB biodegradation. Our results suggest that the above isolates can be used for the biodegradation of biphenyl and PCB-77 in PCB-contaminated soil.
Collapse
Affiliation(s)
- Monika Sandhu
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, Pilani, Rajasthan, India
| | - Atish T. Paul
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani, Rajasthan, India
| | - Jarosław Proćków
- Department of Plant Biology, Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - José Manuel Pérez de la Lastra
- Biotecnología de Macromoléculas, Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), San Cristóbal de la Laguna, Spain
- José Manuel Pérez de la Lastra,
| | - Prabhat N. Jha
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, Pilani, Rajasthan, India
- *Correspondence: Prabhat N. Jha,
| |
Collapse
|