1
|
Andersson M, Pernold K, Lilja N, Frias-Beneyto R, Ulfhake B. Longitudinal Study of Changes in Ammonia, Carbon Dioxide, Humidity and Temperature in Individually Ventilated Cages Housing Female and Male C57BL/6N Mice during Consecutive Cycles of Weekly and Bi-Weekly Cage Changes. Animals (Basel) 2024; 14:2735. [PMID: 39335324 PMCID: PMC11428529 DOI: 10.3390/ani14182735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/11/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Housing conditions are essential for ensuring animal welfare and high-quality research outcomes. In this study, we continuously monitored air quality-specifically ammonia, carbon dioxide, relative humidity, and temperature-in Individually Ventilated Cages (IVCs) housing five female or male C57BL/6N mice. The cages were cleaned either weekly or bi-weekly, and the data were collected as the mice aged from 100 to 348 days. The survival rate remained above 96%, with body weight increasing by 35-52% during the study period. The ammonia levels rose throughout the cleaning cycle, but averaged below 25 ppm. However, in the older, heavier mice with bi-weekly cage cleaning, the ammonia levels reached between 25 and 75 ppm, particularly in the males. While circadian rhythms influenced the ammonia concentration only to a small extent, the carbon dioxide levels varied between 800 and 3000 ppm, increasing by 30-50% at night and by 1000 ppm with body weight. Humidity also correlated primarily with the circadian rhythms (10% higher at night) and, to a lesser extent, with body weight, reaching ≥70% in the middle-aged mice. The temperature variations remained minimal, within a 1 °C range. We conclude that air quality assessments in IVCs should be conducted during animals' active periods, and both housing density and biomass must be considered to optimise welfare.
Collapse
Affiliation(s)
- Martina Andersson
- Department of Comparative Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Karin Pernold
- Department of Comparative Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
- Department of Laboratory Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Niklas Lilja
- Department of Comparative Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Rafael Frias-Beneyto
- Department of Laboratory Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
- Department of Comparative Medicine, Karolinska University Hospital, 171 76 Solna, Sweden
| | - Brun Ulfhake
- Department of Comparative Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
- Department of Laboratory Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| |
Collapse
|
2
|
Zawacki ZE, Sharpe JA, Porco TC, Lindstrom KE. Effects of Nesting Material and Housing Parameters on Feed Wastage Behavior in Female Swiss Webster Mice. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2024; 63. [PMID: 39164068 PMCID: PMC11467877 DOI: 10.30802/aalas-jaalas-24-000010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/20/2024] [Accepted: 06/04/2024] [Indexed: 08/22/2024]
Abstract
Feed wastage in laboratory mice, also known as chewing or grinding behavior, is problematic for program management and animal welfare. The destruction of pelleted feed without consumption produces a powder accumulation on the cage floor called orts. Ort accumulation disrupts the cage microenvironment and can clog Lixits resulting in flooding. Moreover, added labor adds cost, and cage disruption increases animal stress. Published studies examining the behavior and ways to mitigate it have had inconsistent results, and the cause or causes have not yet been fully identified. The purpose of this study was to identify methods to reduce the development of chewing behavior in laboratory mice. Female Swiss Webster (Tac:SW) mice (n = 144) were randomly assigned to one of 8 groups (12 cages per group) with 2 housing densities (single and pair) and 4 nesting material paradigms. Mice were housed on clean bedding for 8 wk and then soiled bedding for the next 8 wk. Chewing behavior was evaluated by feed weight, cage weight, and feed scores. The addition of a Diamond Twist significantly increased ort production, while nest transfer decreased it but not significantly. Pair housing increased overall orts but not when adjusted for animal number. These results identified potential contributing factors to chewing behavior. However, further research is needed to elucidate the exact causes and solutions.
Collapse
Affiliation(s)
- Zosia E Zawacki
- Laboratory Animal Resource Center, University of California San Francisco, San Francisco, California; and
| | - James A Sharpe
- Laboratory Animal Resource Center, University of California San Francisco, San Francisco, California; and
| | - Travis C Porco
- Francis I. Proctor Foundation, University of California San Francisco, San Francisco, California
| | - Krista E Lindstrom
- Laboratory Animal Resource Center, University of California San Francisco, San Francisco, California; and
| |
Collapse
|
3
|
Fuochi S, Rigamonti M, O'Connor EC, De Girolamo P, D'Angelo L. Big data and its impact on the 3Rs: a home cage monitoring oriented review. Front Big Data 2024; 7:1390467. [PMID: 38831953 PMCID: PMC11144903 DOI: 10.3389/fdata.2024.1390467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/29/2024] [Indexed: 06/05/2024] Open
Abstract
Undisturbed home cage recording of mouse activity and behavior has received increasing attention in recent years. In parallel, several technologies have been developed in a bid to automate data collection and interpretation. Thanks to these expanding technologies, massive datasets can be recorded and saved in the long term, providing a wealth of information concerning animal wellbeing, clinical status, baseline activity, and subsequent deviations in case of experimental interventions. Such large datasets can also serve as a long-term reservoir of scientific data that can be reanalyzed and repurposed upon need. In this review, we present how the impact of Big Data deriving from home cage monitoring (HCM) data acquisition, particularly through Digital Ventilated Cages (DVCs), can support the application of the 3Rs by enhancing Refinement, Reduction, and even Replacement of research in animals.
Collapse
Affiliation(s)
- Sara Fuochi
- Experimental Animal Center, University of Bern, Bern, Switzerland
| | | | - Eoin C. O'Connor
- Neuroscience and Rare Diseases, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Paolo De Girolamo
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Livia D'Angelo
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| |
Collapse
|
4
|
Lipp HP, Krackow S, Turkes E, Benner S, Endo T, Russig H. IntelliCage: the development and perspectives of a mouse- and user-friendly automated behavioral test system. Front Behav Neurosci 2024; 17:1270538. [PMID: 38235003 PMCID: PMC10793385 DOI: 10.3389/fnbeh.2023.1270538] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/18/2023] [Indexed: 01/19/2024] Open
Abstract
IntelliCage for mice is a rodent home-cage equipped with four corner structures harboring symmetrical double panels for operant conditioning at each of the two sides, either by reward (access to water) or by aversion (non-painful stimuli: air-puffs, LED lights). Corner visits, nose-pokes and actual licks at bottle-nipples are recorded individually using subcutaneously implanted transponders for RFID identification of up to 16 adult mice housed in the same home-cage. This allows for recording individual in-cage activity of mice and applying reward/punishment operant conditioning schemes in corners using workflows designed on a versatile graphic user interface. IntelliCage development had four roots: (i) dissatisfaction with standard approaches for analyzing mouse behavior, including standardization and reproducibility issues, (ii) response to handling and housing animal welfare issues, (iii) the increasing number of mouse models had produced a high work burden on classic manual behavioral phenotyping of single mice. and (iv), studies of transponder-chipped mice in outdoor settings revealed clear genetic behavioral differences in mouse models corresponding to those observed by classic testing in the laboratory. The latter observations were important for the development of home-cage testing in social groups, because they contradicted the traditional belief that animals must be tested under social isolation to prevent disturbance by other group members. The use of IntelliCages reduced indeed the amount of classic testing remarkably, while its flexibility was proved in a wide range of applications worldwide including transcontinental parallel testing. Essentially, two lines of testing emerged: sophisticated analysis of spontaneous behavior in the IntelliCage for screening of new genetic models, and hypothesis testing in many fields of behavioral neuroscience. Upcoming developments of the IntelliCage aim at improved stimulus presentation in the learning corners and videotracking of social interactions within the IntelliCage. Its main advantages are (i) that mice live in social context and are not stressfully handled for experiments, (ii) that studies are not restricted in time and can run in absence of humans, (iii) that it increases reproducibility of behavioral phenotyping worldwide, and (iv) that the industrial standardization of the cage permits retrospective data analysis with new statistical tools even after many years.
Collapse
Affiliation(s)
- Hans-Peter Lipp
- Faculty of Medicine, Institute of Evolutionary Medicine, University of Zürich, Zürich, Switzerland
| | - Sven Krackow
- Institute of Pathology and Molecular Pathology, University Hospital Zürich, Zürich, Switzerland
| | - Emir Turkes
- Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Seico Benner
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Ibaraki, Japan
| | | | | |
Collapse
|
5
|
Fuochi S, Rigamonti M, Raspa M, Scavizzi F, de Girolamo P, D'Angelo L. Data repurposing from digital home cage monitoring enlightens new perspectives on mouse motor behaviour and reduction principle. Sci Rep 2023; 13:10851. [PMID: 37407633 DOI: 10.1038/s41598-023-37464-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 06/22/2023] [Indexed: 07/07/2023] Open
Abstract
In this longitudinal study we compare between and within-strain variation in the home-cage spatial preference of three widely used and commercially available mice strains-C57BL/6NCrl, BALB/cAnNCrl and CRL:CD1(ICR)-starting from the first hour post cage-change until the next cage-change, for three consecutive intervals, to further profile the circadian home-cage behavioural phenotypes. Cage-change can be a stressful moment in the life of laboratory mice, since animals are disturbed during the sleeping hours and must then rapidly re-adapt to a pristine environment, leading to disruptions in normal motor patterns. The novelty of this study resides in characterizing new strain-specific biological phenomena, such as activity along the cage walls and frontality, using the vast data reserves generated by previous experimental data, thus introducing the potential and exploring the applicability of data repurposing to enhance Reduction principle when running in vivo studies. Our results, entirely obtained without the use of new animals, demonstrate that also when referring to space preference within the cage, C57BL/6NCrl has a high variability in the behavioural phenotypes from pre-puberty until early adulthood compared to BALB/cAnNCrl, which is confirmed to be socially disaggregated, and CRL:CD1(ICR) which is conversely highly active and socially aggregated. Our data also suggest that a strain-oriented approach is needed when defining frequency of cage-change as well as maximum allowed animal density, which should be revised, ideally under the EU regulatory framework as well, according to the physiological peculiarities of the strains, and always avoiding the "one size fits all" approach.
Collapse
Affiliation(s)
- Sara Fuochi
- Experimental Animal Center, University of Bern, Bern, Switzerland
| | | | - Marcello Raspa
- National Research Council, Institute of Biochemistry and Cell Biology (CNR-IBBC/EMMA/Infrafrontier/IMPC), International Campus 'A. Buzzati-Traverso', Monterotondo, Rome, Italy
| | - Ferdinando Scavizzi
- National Research Council, Institute of Biochemistry and Cell Biology (CNR-IBBC/EMMA/Infrafrontier/IMPC), International Campus 'A. Buzzati-Traverso', Monterotondo, Rome, Italy
| | - Paolo de Girolamo
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Livia D'Angelo
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
6
|
Pernold K, Rullman E, Ulfhake B. Bouts of rest and physical activity in C57BL/6J mice. PLoS One 2023; 18:e0280416. [PMID: 37363906 DOI: 10.1371/journal.pone.0280416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 06/05/2023] [Indexed: 06/28/2023] Open
Abstract
The objective was to exploit the raw data output from a scalable home cage (type IIL IVC) monitoring (HCM) system (DVC®), to characterize pattern of undisrupted rest and physical activity (PA) of C57BL/6J mice. The system's tracking algorithm show that mice in isolation spend 67% of the time in bouts of long rest (≥40s). Sixteen percent is physical activity (PA), split between local movements (6%) and locomotion (10%). Decomposition revealed that a day contains ˜7100 discrete bouts of short and long rest, local and locomotor movements. Mice travel ˜330m per day, mainly during the dark hours, while travelling speed is similar through the light-dark cycle. Locomotor bouts are usually <0.2m and <1% are >1m. Tracking revealed also fits of abnormal behaviour. The starting positions of the bouts showed no preference for the rear over the front of the cage floor, while there was a strong bias for the peripheral (75%) over the central floor area. The composition of bouts has a characteristic circadian pattern, however, intrusive husbandry routines increased bout fragmentation by ˜40%. Extracting electrode activations density (EAD) from the raw data yielded results close to those obtained with the tracking algorithm, with 81% of time in rest (<1 EAD s-1) and 19% in PA. Periods ≥40 s of file when no movement occurs and there is no EAD may correspond to periods of sleep (˜59% of file time). We confirm that EAD correlates closely with movement distance (rs>0.95) and the data agreed in ˜97% of the file time. Thus, albeit EAD being less informative it may serve as a proxy for PA and rest, enabling monitoring group housed mice. The data show that increasing density from one female to two males, and further to three male or female mice had the same effect size on EAD (˜2). In contrast, the EAD deviated significantly from this stepwise increase with 4 mice per cage, suggesting a crowdedness stress inducing sex specific adaptations. We conclude that informative metrics on rest and PA can be automatically extracted from the raw data flow in near-real time (< 1 hrs). As discussed, these metrics relay useful longitudinal information to those that use or care for the animals.
Collapse
Affiliation(s)
- Karin Pernold
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Eric Rullman
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Brun Ulfhake
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
7
|
Eskandarani MA, Hau J, Kalliokoski O. Rapid ammonia build-up in small individually ventilated mouse cages cannot be overcome by adjusting the amount of bedding. Lab Anim (NY) 2023; 52:130-135. [PMID: 37202548 PMCID: PMC10234810 DOI: 10.1038/s41684-023-01179-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 04/18/2023] [Indexed: 05/20/2023]
Abstract
We sought to investigate if varying levels of bedding had an effect on intra-cage ammonia levels in individually ventilated mouse cages (Euro Standard Types II and III). Employing a routine 2 week cage-changing interval, our goal is to keep ammonia levels under 50 ppm. In smaller cages used for breeding or for housing more than four mice, we measured problematic levels of intra-cage ammonia, and a considerable proportion of these cages had ammonia levels at more than 50 ppm toward the end of the cage-change cycle. These levels were not reduced significantly when the levels of absorbent wood chip bedding was either increased or decreased by 50%. The mice in both cage types II and III were housed at comparable stocking densities, yet ammonia levels in larger cages remained lower. This finding highlights the role of cage volume, as opposed to simply the floor space, in controlling air quality. With the current introduction of newer cage designs that employ an even smaller headspace, our study urges caution. With individually ventilated cages, problems with intra-cage ammonia may go undetected, and we may opt to utilize insufficient cage-changing intervals. Few modern cages have been designed to account for the amounts and types of enrichment that are used (and, in parts of the world, mandated) today, adding to the problems associated with decreasing cage volumes.
Collapse
Affiliation(s)
- Mahmud A Eskandarani
- Department of Experimental Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jann Hau
- Department of Experimental Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Otto Kalliokoski
- Department of Experimental Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
8
|
Gber TE, Louis H, Owen AE, Etinwa BE, Benjamin I, Asogwa FC, Orosun MM, Eno EA. Heteroatoms (Si, B, N, and P) doped 2D monolayer MoS 2 for NH 3 gas detection. RSC Adv 2022; 12:25992-26010. [PMID: 36199611 PMCID: PMC9468912 DOI: 10.1039/d2ra04028j] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/29/2022] [Indexed: 11/21/2022] Open
Abstract
2D transition metal dichalcogenide MoS2 monolayer quantum dots (MoS2-QD) and their doped boron (B@MoS2-QD), nitrogen (N@MoS2-QD), phosphorus (P@MoS2-QD), and silicon (Si@MoS2-QD) surfaces have been theoretically investigated using density functional theory (DFT) computation to understand their mechanistic sensing ability, such as conductivity, selectivity, and sensitivity toward NH3 gas. The results from electronic properties showed that P@MoS2-QD had the lowest energy gap, which indicated an increase in electrical conductivity and better adsorption behavior. By carrying out comparative adsorption studies using m062-X, ωB97XD, B3LYP, and PBE0 methods at the 6-311G++(d,p) level of theory, the most negative values were observed from ωB97XD for the P@MoS2-QD surface, signifying the preferred chemisorption surface for NH3 detection. The mechanistic studies provided in this study also indicate that the P@MoS2-QD dopant is a promising sensing material for monitoring ammonia gas in the real world. We hope this research work will provide informative knowledge for experimental researchers to realize the potential of MoS2 dopants, specifically the P@MoS2-QD surface, as a promising candidate for sensors to detect gas.
Collapse
Affiliation(s)
- Terkumbur E Gber
- Computational and Bio-Simulation Research Group, University of Calabar Calabar Nigeria
- Department of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar Calabar Nigeria
| | - Hitler Louis
- Computational and Bio-Simulation Research Group, University of Calabar Calabar Nigeria
- Department of Chemistry, Akwa-Ibom State University Uyo Nigeria
| | - Aniekan E Owen
- Computational and Bio-Simulation Research Group, University of Calabar Calabar Nigeria
- Department of Chemistry, Akwa-Ibom State University Uyo Nigeria
| | - Benjamin E Etinwa
- Computational and Bio-Simulation Research Group, University of Calabar Calabar Nigeria
- Department of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar Calabar Nigeria
| | - Innocent Benjamin
- Department of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar Calabar Nigeria
| | - Fredrick C Asogwa
- Computational and Bio-Simulation Research Group, University of Calabar Calabar Nigeria
- Department of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar Calabar Nigeria
| | | | - Ededet A Eno
- Computational and Bio-Simulation Research Group, University of Calabar Calabar Nigeria
- Department of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar Calabar Nigeria
| |
Collapse
|