1
|
Ding K, He R, Wang X, Chen Q, Kenett YN. Recognizing ideas generated in a creative task: the roles of the hippocampus and medial prefrontal cortex in facilitating self-generated learning. Cereb Cortex 2024; 34:bhae219. [PMID: 38798002 DOI: 10.1093/cercor/bhae219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 05/01/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024] Open
Abstract
Creative idea generation plays an important role in promoting successful memory formation. Yet, its underlying neural correlates remain unclear. We investigated the self-generated learning of creative ideas motivated by the schema-linked interactions between medial prefrontal and medial temporal regions framework. This was achieved by having participants generate ideas in the alternative uses task, self-evaluating their ideas based on novelty and source (i.e. new or old), and then later being tested on the recognition performance of the generated ideas. At the behavioral level, our results indicated superior performances in discriminating novel ideas, highlighting the novelty effect on memory. At the neural level, the regions-of-interest analyses revealed that successful recognition of novel ideas was associated with greater activations in the hippocampus (HPC) and medial prefrontal cortex (mPFC) during ideation. However, only activation in the right HPC was positively related to the successful recognition of novel ideas. Importantly, the weaker the connection between the right HPC and left mPFC, the higher the recognition accuracy of novel ideas. Moreover, activations in the right HPC and left mPFC were both effective predictors of successful recognition of novel ideas. These findings uniquely highlight the role of novelty in promoting self-generated learning of creative ideas.
Collapse
Affiliation(s)
- Ke Ding
- Faculty of Data and Decision Sciences, Technion - Israel Institute of Technology, Technicon City, 3200003, Haifa, Israel
| | - Ruizhi He
- Faculty of Psychology, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715, Chongqing, China
- Key Laboratory of Cognition and Personality, Ministry of Education, No. 2, Tiansheng Road, Beibei District, 400715, Chongqing, China
| | - Xi Wang
- Faculty of Medicine, Dresden University of Technology, No. 10, Helmholtzstr, 01069, Dresden, Germany
| | - Qunlin Chen
- Faculty of Psychology, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715, Chongqing, China
- Key Laboratory of Cognition and Personality, Ministry of Education, No. 2, Tiansheng Road, Beibei District, 400715, Chongqing, China
| | - Yoed N Kenett
- Faculty of Data and Decision Sciences, Technion - Israel Institute of Technology, Technicon City, 3200003, Haifa, Israel
| |
Collapse
|
2
|
Denis D, Bottary R, Cunningham TJ, Tcheukado MC, Payne JD. The influence of encoding strategy on associative memory consolidation across wake and sleep. Learn Mem 2023; 30:185-191. [PMID: 37726141 PMCID: PMC10547373 DOI: 10.1101/lm.053765.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/19/2023] [Indexed: 09/21/2023]
Abstract
Sleep benefits memory consolidation. However, factors present at initial encoding may moderate this effect. Here, we examined the role that encoding strategy plays in subsequent memory consolidation during sleep. Eighty-nine participants encoded pairs of words using two different strategies. Each participant encoded half of the word pairs using an integrative visualization technique, where the two items were imagined in an integrated scene. The other half were encoded nonintegratively, with each word pair item visualized separately. Memory was tested before and after a period of nocturnal sleep (N = 47) or daytime wake (N = 42) via cued recall tests. Immediate memory performance was significantly better for word pairs encoded using the integrative strategy compared with the nonintegrative strategy (P < 0.001). When looking at the change in recall across the delay, there was significantly less forgetting of integrated word pairs across a night of sleep compared with a day spent awake (P < 0.001), with no significant difference in the nonintegrated pairs (P = 0.19). This finding was driven by more forgetting of integrated compared with not-integrated pairs across the wake delay (P < 0.001), whereas forgetting was equivalent across the sleep delay (P = 0.26). Together, these results show that the strategy engaged in during encoding impacts both the immediate retention of memories and their subsequent consolidation across sleep and wake intervals.
Collapse
Affiliation(s)
- Dan Denis
- Department of Psychology, University of York, York YO10 5DD, United Kingdom
| | - Ryan Bottary
- Institute for Graduate Clinical Psychology, Widener University, Chester, Pennsylvania 19013, USA
| | - Tony J Cunningham
- Center for Sleep and Cognition, Psychiatry Department, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | - Jessica D Payne
- Department of Psychology, University of Notre Dame, Notre Dame, Indiana 46556, USA
| |
Collapse
|
3
|
Golkashani HA, Ghorbani S, Leong RLF, Ong JL, Chee MWL. Advantage conferred by overnight sleep on schema-related memory may last only a day. SLEEP ADVANCES : A JOURNAL OF THE SLEEP RESEARCH SOCIETY 2023; 4:zpad019. [PMID: 37193282 PMCID: PMC10155747 DOI: 10.1093/sleepadvances/zpad019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/07/2023] [Indexed: 05/18/2023]
Abstract
Study Objectives Sleep contributes to declarative memory consolidation. Independently, schemas benefit memory. Here we investigated how sleep compared with active wake benefits schema consolidation 12 and 24 hours after initial learning. Methods Fifty-three adolescents (age: 15-19 years) randomly assigned into sleep and active wake groups participated in a schema-learning protocol based on transitive inference (i.e. If B > C and C > D then B > D). Participants were tested immediately after learning and following 12-, and 24-hour intervals of wake or sleep for both the adjacent (e.g. B-C, C-D; relational memory) and inference pairs: (e.g.: B-D, B-E, and C-E). Memory performance following the respective 12- and 24-hour intervals were analyzed using a mixed ANOVA with schema (schema, no-schema) as the within-participant factor, and condition (sleep, wake) as the between-participant factor. Results Twelve hours after learning, there were significant main effects of condition (sleep, wake) and schema, as well as a significant interaction, whereby schema-related memory was significantly better in the sleep condition compared to wake. Higher sleep spindle density was most consistently associated with greater overnight schema-related memory benefit. After 24 hours, the memory advantage of initial sleep was diminished. Conclusions Overnight sleep preferentially benefits schema-related memory consolidation following initial learning compared with active wake, but this advantage may be eroded after a subsequent night of sleep. This is possibly due to delayed consolidation that might occur during subsequent sleep opportunities in the wake group. Clinical Trial Information Name: Investigating Preferred Nap Schedules for Adolescents (NFS5) URL: https://clinicaltrials.gov/ct2/show/NCT04044885. Registration: NCT04044885.
Collapse
Affiliation(s)
- Hosein Aghayan Golkashani
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Shohreh Ghorbani
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ruth L F Leong
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ju Lynn Ong
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Michael W L Chee
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
4
|
Sleep preferentially consolidates negative aspects of human memory: Well-powered evidence from two large online experiments. Proc Natl Acad Sci U S A 2022; 119:e2202657119. [PMID: 36279434 PMCID: PMC9636942 DOI: 10.1073/pnas.2202657119] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Recent research has called into question whether sleep improves memory, especially for emotional information. However, many of these studies used a relatively small number of participants and focused only on college student samples, limiting both the power of these findings and their generalizability to the wider population. Here, using the well-established emotional memory trade-off task, we investigated sleep’s impact on memory for emotional components of scenes in a large online sample of adults ranging in age from 18 to 59 y. Despite the limitations inherent in using online samples, this well-powered study provides strong evidence that sleep selectively consolidates negative emotional aspects of memory and that this effect generalizes to participants across young adulthood and middle age. Research suggests that sleep benefits memory. Moreover, it is often claimed that sleep selectively benefits memory for emotionally salient information over neutral information. However, not all scientists are convinced by this relationship [e.g., J. M. Siegel. Curr. Sleep Med. Rep., 7, 15–18 (2021)]. One criticism of the overall sleep and memory literature—like other literature—is that many studies are underpowered and lacking in generalizability [M. J. Cordi, B. Rasch. Curr. Opin. Neurobiol., 67, 1–7 (2021)], thus leaving the evidence mixed and confusing to interpret. Because large replication studies are sorely needed, we recruited over 250 participants spanning various age ranges and backgrounds in an effort to confirm sleep’s preferential emotional memory consolidation benefit using a well-established task. We found that sleep selectively benefits memory for negative emotional objects at the expense of their paired neutral backgrounds, confirming our prior work and clearly demonstrating a role for sleep in emotional memory formation. In a second experiment also using a large sample, we examined whether this effect generalized to positive emotional memory. We found that while participants demonstrated better memory for positive objects compared to their neutral backgrounds, sleep did not modulate this effect. This research provides strong support for a sleep-specific benefit on memory consolidation for specifically negative information and more broadly affirms the benefit of sleep for cognition.
Collapse
|
5
|
Joensen BH, Harrington MO, Berens SC, Cairney SA, Gaskell MG, Horner AJ. Targeted memory reactivation during sleep can induce forgetting of overlapping memories. LEARNING & MEMORY (COLD SPRING HARBOR, N.Y.) 2022; 29:401-411. [PMID: 36253007 PMCID: PMC9578373 DOI: 10.1101/lm.053594.122] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 08/26/2022] [Indexed: 11/24/2022]
Abstract
Memory reactivation during sleep can shape new memories into a long-term form. Reactivation of memories can be induced via the delivery of auditory cues during sleep. Although this targeted memory reactivation (TMR) approach can strengthen newly acquired memories, research has tended to focus on single associative memories. It is less clear how TMR affects retention for overlapping associative memories. This is critical, given that repeated retrieval of overlapping associations during wake can lead to forgetting, a phenomenon known as retrieval-induced forgetting (RIF). We asked whether a similar pattern of forgetting occurs when TMR is used to cue reactivation of overlapping pairwise associations during sleep. Participants learned overlapping pairs—learned separately, interleaved with other unrelated pairs. During sleep, we cued a subset of overlapping pairs using TMR. While TMR increased retention for the first encoded pairs, memory decreased for the second encoded pairs. This pattern of retention was only present for pairs not tested prior to sleep. The results suggest that TMR can lead to forgetting, an effect similar to RIF during wake. However, this effect did not extend to memories that had been strengthened via retrieval prior to sleep. We therefore provide evidence for a reactivation-induced forgetting effect during sleep.
Collapse
Affiliation(s)
- Bárður H Joensen
- Department of Psychology, University of York, York YO10 5DD, United Kingdom.,Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, United Kingdom.,Institute of Neurology, University College London, London WC1N 3BG, United Kingdom
| | | | - Sam C Berens
- School of Psychology, University of Sussex, Falmer BN1 9QH, United Kingdom
| | - Scott A Cairney
- Department of Psychology, University of York, York YO10 5DD, United Kingdom.,York Biomedical Research Institute, University of York, York YO10 5NG, United Kingdom
| | - M Gareth Gaskell
- Department of Psychology, University of York, York YO10 5DD, United Kingdom.,York Biomedical Research Institute, University of York, York YO10 5NG, United Kingdom
| | - Aidan J Horner
- Department of Psychology, University of York, York YO10 5DD, United Kingdom.,York Biomedical Research Institute, University of York, York YO10 5NG, United Kingdom
| |
Collapse
|