1
|
Ngo VN, Winski DP, Aho B, Kamath PL, King BL, Waters H, Zimmerberg J, Sodt A, Hess ST. Conserved sequence features in intracellular domains of viral spike proteins. Virology 2024; 599:110198. [PMID: 39116647 PMCID: PMC11383743 DOI: 10.1016/j.virol.2024.110198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/23/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024]
Abstract
Viral spike proteins mutate frequently, but conserved features within these proteins often have functional importance and can inform development of anti-viral therapies which circumvent the effects of viral sequence mutations. Through analysis of large numbers of viral spike protein sequences from several viral families, we found highly (>99%) conserved patterns within their intracellular domains. The patterns generally consist of one or more basic amino acids (arginine or lysine) adjacent to a cysteine, many of which are known to undergo acylation. These patterns were not enriched in cellular proteins in general. Molecular dynamics simulations show direct electrostatic and hydrophobic interactions between these conserved residues in hemagglutinin (HA) from influenza A and B and the phosphoinositide PIP2. Super-resolution microscopy shows nanoscale colocalization of PIP2 and several of the same viral proteins. We propose the hypothesis that these conserved viral spike protein features can interact with phosphoinositides such as PIP2.
Collapse
Affiliation(s)
- Vinh-Nhan Ngo
- Department of Physics and Astronomy, 120 Bennett Hall, University of Maine, Orono, ME, 04469-5709, USA
| | - David P Winski
- Department of Physics and Astronomy, 120 Bennett Hall, University of Maine, Orono, ME, 04469-5709, USA
| | - Brandon Aho
- Department of Physics and Astronomy, 120 Bennett Hall, University of Maine, Orono, ME, 04469-5709, USA
| | - Pauline L Kamath
- School of Food and Agriculture, 342 Hitchner Hall, University of Maine, And Maine Center for Genetics in the Environment, Orono, ME, USA.
| | - Benjamin L King
- Department of Molecular and Biomedical Sciences, 5735 Hitchner Hall, University of Maine, Orono, ME, USA.
| | - Hang Waters
- Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Joshua Zimmerberg
- Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Alexander Sodt
- Unit on Membrane Chemical Physics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Samuel T Hess
- Department of Physics and Astronomy, 120 Bennett Hall, University of Maine, Orono, ME, 04469-5709, USA.
| |
Collapse
|
2
|
Sarkar A, Hildebrandt ER, Patel KV, Mai ET, Shah SA, Kim JH, Schmidt WK. Comprehensive analysis of CXXX sequence space reveals that Saccharomyces cerevisiae GGTase-I mainly relies on a2X substrate determinants. G3 (BETHESDA, MD.) 2024; 14:jkae121. [PMID: 38839053 PMCID: PMC11304957 DOI: 10.1093/g3journal/jkae121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/07/2024] [Accepted: 05/07/2024] [Indexed: 06/07/2024]
Abstract
Many proteins undergo a post-translational lipid attachment, which increases their hydrophobicity, thus strengthening their membrane association properties or aiding in protein interactions. Geranylgeranyltransferase-I (GGTase-I) is an enzyme involved in a 3-step post-translational modification (PTM) pathway that attaches a 20-carbon lipid group called geranylgeranyl at the carboxy-terminal cysteine of proteins ending in a canonical CaaL motif (C-cysteine, a-aliphatic, L-often leucine, but can be phenylalanine, isoleucine, methionine, or valine). Genetic approaches involving 2 distinct reporters were employed in this study to assess Saccharomyces cerevisiae GGTase-I specificity, for which limited data exist, toward all 8,000 CXXX combinations. Orthogonal biochemical analyses and structure-based alignments were also performed to better understand the features required for optimal target interaction. These approaches indicate that yeast GGTase-I best modifies the Cxa[L/F/I/M/V] sequence that resembles but is not an exact match for the canonical CaaL motif. We also observed that minor modification of noncanonical sequences is possible. A consistent feature associated with well-modified sequences was the presence of a nonpolar a2 residue and a hydrophobic terminal residue, which are features recognized by mammalian GGTase-I. These results thus support that mammalian and yeast GGTase-I exhibit considerable shared specificity.
Collapse
Affiliation(s)
- Anushka Sarkar
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Emily R Hildebrandt
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Khushi V Patel
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Emily T Mai
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Sumil A Shah
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - June H Kim
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Walter K Schmidt
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
3
|
Hildebrandt ER, Hussain SA, Sieburg MA, Ravishankar R, Asad N, Gore S, Ito T, Hougland JL, Dore TM, Schmidt WK. Targeted genetic and small molecule disruption of N-Ras CaaX cleavage alters its localization and oncogenic potential. Bioorg Chem 2024; 147:107316. [PMID: 38583246 PMCID: PMC11098683 DOI: 10.1016/j.bioorg.2024.107316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/16/2024] [Accepted: 03/26/2024] [Indexed: 04/09/2024]
Abstract
Ras GTPases and other CaaX proteins undergo multiple post-translational modifications at their carboxyl-terminus. These events initiate with prenylation of a cysteine and are followed by endoproteolytic removal of the 'aaX' tripeptide and carboxylmethylation. Some CaaX proteins are only subject to prenylation, however, due to the presence of an uncleavable sequence. In this study, uncleavable sequences were used to stage Ras isoforms in a farnesylated and uncleaved state to address the impact of CaaX proteolysis on protein localization and function. This targeted strategy is more specific than those that chemically inhibit the Rce1 CaaX protease or delete the RCE1 gene because global abrogation of CaaX proteolysis impacts the entire CaaX protein proteome and effects cannot be attributed to any specific CaaX protein of the many concurrently affected. With this targeted strategy, clear mislocalization and reduced activity of farnesylated and uncleaved Ras isoforms was observed. In addition, new peptidomimetics based on cleavable Ras CaaX sequences and the uncleavable CAHQ sequence were synthesized and tested as Rce1 inhibitors using in vitro and cell-based assays. Consistently, these non-hydrolyzable peptidomimetic Rce1 inhibitors recapitulate Ras mislocalization effects when modeled on cleavable but not uncleavable CaaX sequences. These findings indicate that a prenylated and uncleavable CaaX sequence, which can be easily applied to a wide range of mammalian CaaX proteins, can be used to probe the specific impact of CaaX proteolysis on CaaX protein properties under conditions of an otherwise normally processed CaaX protein proteome.
Collapse
Affiliation(s)
- Emily R Hildebrandt
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA, USA
| | - Shaneela A Hussain
- New York University Abu Dhabi, Saadiyat Island, PO Box 129188, Abu Dhabi, UAE
| | | | - Rajani Ravishankar
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA, USA
| | - Nadeem Asad
- New York University Abu Dhabi, Saadiyat Island, PO Box 129188, Abu Dhabi, UAE
| | - Sangram Gore
- New York University Abu Dhabi, Saadiyat Island, PO Box 129188, Abu Dhabi, UAE
| | - Takahiro Ito
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA, USA
| | - James L Hougland
- Department of Chemistry, Syracuse University, Syracuse, NY, USA; Department of Biology, Syracuse University, Syracuse, NY, USA; BioInspired Syracuse, Syracuse University, Syracuse, NY, USA
| | - Timothy M Dore
- New York University Abu Dhabi, Saadiyat Island, PO Box 129188, Abu Dhabi, UAE; Department of Chemistry, University of Georgia, Athens, GA, USA
| | - Walter K Schmidt
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA, USA.
| |
Collapse
|
4
|
Hildebrandt ER, Sarkar A, Ravishankar R, Kim JH, Schmidt WK. Evaluating protein prenylation of human and viral CaaX sequences using a humanized yeast system. Dis Model Mech 2024; 17:dmm050516. [PMID: 38818856 PMCID: PMC11152559 DOI: 10.1242/dmm.050516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 04/23/2024] [Indexed: 06/01/2024] Open
Abstract
Prenylated proteins are prevalent in eukaryotic biology (∼1-2% of proteins) and are associated with human disease, including cancer, premature aging and infections. Prenylated proteins with a C-terminal CaaX sequence are targeted by CaaX-type prenyltransferases and proteases. To aid investigations of these enzymes and their targets, we developed Saccharomyces cerevisiae strains that express these human enzymes instead of their yeast counterparts. These strains were developed in part to explore human prenyltransferase specificity because of findings that yeast FTase has expanded specificity for sequences deviating from the CaaX consensus (i.e. atypical sequence and length). The humanized yeast strains displayed robust prenyltransferase activity against CaaX sequences derived from human and pathogen proteins containing typical and atypical CaaX sequences. The system also recapitulated prenylation of heterologously expressed human proteins (i.e. HRas and DNAJA2). These results reveal that substrate specificity is conserved for yeast and human farnesyltransferases but is less conserved for type I geranylgeranyltransferases. These yeast systems can be easily adapted for investigating the prenylomes of other organisms and are valuable new tools for helping define the human prenylome, which includes physiologically important proteins for which the CaaX modification status is unknown.
Collapse
Affiliation(s)
- Emily R. Hildebrandt
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Anushka Sarkar
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Rajani Ravishankar
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - June H. Kim
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Walter K. Schmidt
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
5
|
Sarkar A, Hildebrandt ER, Patel KV, Mai ET, Shah SS, Kim JH, Schmidt WK. Comprehensive analysis of CXXX sequence space reveals that S. cerevisiae GGTase-I mainly relies on a 2X substrate determinants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.04.583369. [PMID: 38496651 PMCID: PMC10942308 DOI: 10.1101/2024.03.04.583369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Many proteins undergo a post-translational lipid attachment, which increases their hydrophobicity, thus strengthening their membrane association properties or aiding in protein interactions. Geranylgeranyltransferase-I (GGTase-I) is an enzyme involved in a three-step post-translational modification (PTM) pathway that attaches a 20-carbon lipid group called geranylgeranyl at the carboxy-terminal cysteine of proteins ending in a canonical CaaL motif (C - cysteine, a - aliphatic, L - often leucine, but can be phenylalanine, isoleucine, methionine, or valine). Genetic approaches involving two distinct reporters were employed in this study to assess S. cerevisiae GGTase-I specificity, for which limited data exists, towards all 8000 CXXX combinations. Orthogonal biochemical analyses and structure-based alignments were also performed to better understand the features required for optimal target interaction. These approaches indicate that yeast GGTase-I best modifies the Cxa[L/F/I/M/V] sequence that resembles but is not an exact match for the canonical CaaL motif. We also observed that minor modification of non-canonical sequences is possible. A consistent feature associated with well-modified sequences was the presence of a non-polar a2 residue and a hydrophobic terminal residue, which are features recognized by mammalian GGTase-I. These results thus support that mammalian and yeast GGTase-I exhibit considerable shared specificity.
Collapse
Affiliation(s)
- Anushka Sarkar
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602
| | - Emily R. Hildebrandt
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602
| | - Khushi V. Patel
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602
| | - Emily T. Mai
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602
| | - Sumil S. Shah
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602
| | - June H. Kim
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602
| | - Walter K. Schmidt
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602
| |
Collapse
|
6
|
Hildebrandt ER, Sarkar A, Ravishankar R, Kim JH, Schmidt WK. A Humanized Yeast System for Evaluating the Protein Prenylation of a Wide Range of Human and Viral CaaX Sequences. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.19.558494. [PMID: 37786692 PMCID: PMC10541624 DOI: 10.1101/2023.09.19.558494] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
The C-terminal CaaX sequence (cysteine-aliphatic-aliphatic-any of several amino acids) is subject to isoprenylation on the conserved cysteine and is estimated to occur in 1-2% of proteins within yeast and human proteomes. Recently, non-canonical CaaX sequences in addition to shorter and longer length CaX and CaaaX sequences have been identified that can be prenylated. Much of the characterization of prenyltransferases has relied on the yeast system because of its genetic tractability and availability of reporter proteins, such as the a-factor mating pheromone, Ras GTPase, and Ydj1 Hsp40 chaperone. To compare the properties of yeast and human prenyltransferases, including the recently expanded target specificity of yeast farnesyltransferase, we have developed yeast strains that express human farnesyltransferase or geranylgeranyltransferase-I in lieu of their yeast counterparts. The humanized yeast strains display robust prenyltransferase activity that functionally replaces yeast prenyltransferase activity in a wide array of tests, including the prenylation of a wide variety of canonical and non-canonical human CaaX sequences, virus encoded CaaX sequences, non-canonical length sequences, and heterologously expressed human proteins HRas and DNAJA2. These results reveal highly overlapping substrate specificity for yeast and human farnesyltransferase, and mostly overlapping substrate specificity for GGTase-I. This yeast system is a valuable tool for further defining the prenylome of humans and other organisms, identifying proteins for which prenylation status has not yet been determined.
Collapse
Affiliation(s)
| | - Anushka Sarkar
- Department of Biochemistry and Molecular Biology, University of Georgia
| | | | - June H. Kim
- Department of Biochemistry and Molecular Biology, University of Georgia
| | - Walter K. Schmidt
- Department of Biochemistry and Molecular Biology, University of Georgia
| |
Collapse
|
7
|
Kim JH, Hildebrandt ER, Sarkar A, Yeung W, Waldon LRA, Kannan N, Schmidt WK. A comprehensive in vivo screen of yeast farnesyltransferase activity reveals broad reactivity across a majority of CXXX sequences. G3 (BETHESDA, MD.) 2023; 13:jkad094. [PMID: 37119806 PMCID: PMC10320760 DOI: 10.1093/g3journal/jkad094] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/12/2023] [Accepted: 04/27/2023] [Indexed: 05/01/2023]
Abstract
The current understanding of farnesyltransferase (FTase) specificity was pioneered through investigations of reporters like Ras and Ras-related proteins that possess a C-terminal CaaX motif that consists of 4 amino acid residues: cysteine-aliphatic1-aliphatic2-variable (X). These studies led to the finding that proteins with the CaaX motif are subject to a 3-step post-translational modification pathway involving farnesylation, proteolysis, and carboxylmethylation. Emerging evidence indicates, however, that FTase can farnesylate sequences outside the CaaX motif and that these sequences do not undergo the canonical 3-step pathway. In this work, we report a comprehensive evaluation of all possible CXXX sequences as FTase targets using the reporter Ydj1, an Hsp40 chaperone that only requires farnesylation for its activity. Our genetic and high-throughput sequencing approach reveals an unprecedented profile of sequences that yeast FTase can recognize in vivo, which effectively expands the potential target space of FTase within the yeast proteome. We also document that yeast FTase specificity is majorly influenced by restrictive amino acids at a2 and X positions as opposed to the resemblance of CaaX motif as previously regarded. This first complete evaluation of CXXX space expands the complexity of protein isoprenylation and marks a key step forward in understanding the potential scope of targets for this isoprenylation pathway.
Collapse
Affiliation(s)
- June H Kim
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Emily R Hildebrandt
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Anushka Sarkar
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Wayland Yeung
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
| | - La Ryel A Waldon
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Natarajan Kannan
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
| | - Walter K Schmidt
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|