1
|
Stevanović M, Tagkalidou N, Multisanti CR, Pujol S, Aljabasini O, Prats E, Faggio C, Porta JM, Barata C, Raldúa D. Zebra_K, a kinematic analysis automated platform for assessing sensitivity, habituation and prepulse inhibition of the acoustic startle response in adult zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:178028. [PMID: 39681027 DOI: 10.1016/j.scitotenv.2024.178028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/18/2024] [Accepted: 12/07/2024] [Indexed: 12/18/2024]
Abstract
The acoustic startle response (ASR) is leaded by a sudden and intense acoustic stimulus. ASR has several forms of plasticity, including habituation and sensorimotor gating. Although ASR and its plasticity have been intensively studied in zebrafish (Danio rerio) larvae, information in adult zebrafish is still very scarce. In this manuscript we present Zebra_K, a new automated high-content kinematic analysis platform for assessing ASR, its habituation and prepulse inhibition (PPI), a quantitative measure of sensorimotor gating, in adult zebrafish. The analysis of the kinematic parameters of ASR in adult zebrafish has shown a single response wave consistent with the short-latency C-bend described in zebrafish larvae. Moreover, protocols have been designed and validated in Zebra_K for the analysis of sensitivity, habituation and PPI of this response. Then, the effect of the time of day and the gender on zebrafish ASR plasticity has been analyzed for the first time. Females exhibited higher responsiveness and a lower habituation and PPI than males, a result consistent with the gender effect described in other animal models and in humans. This platform has also been used to determine the effect of a pharmacological modulators of ASR plasticity, the NMDA-receptor antagonist ketamine. As described in other animal models, ketamine increased the responsiveness to the acoustic stimuli, decreasing habituation and leading to complete abolition of PPI. These results enhance the interest of using adult zebrafish to assess the potential effect of environmental pollutants on ASR plasticity.
Collapse
Affiliation(s)
- Marija Stevanović
- Institute of Pesticides and Environmental Protection, Banatska 31b, 11080 Belgrade, Serbia
| | - Niki Tagkalidou
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona, 18, 08034 Barcelona, Spain
| | - Cristiana Roberta Multisanti
- Department of Veterinary Sciences, University of Messina, Viale Giovanni Palatucci snc, 98168 Messina, Italy; Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31, 98166 Messina, Italy
| | - Sergi Pujol
- Institut de Robòtica i Informàtica Industrial, CSIC-UPC, Barcelona, Spain
| | - Ouwais Aljabasini
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona, 18, 08034 Barcelona, Spain
| | - Eva Prats
- Research and Development Center (CID-CSIC), Jordi Girona, 18, 08034 Barcelona, Spain
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31, 98166 Messina, Italy; Department of Eco-Sustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, 80122 Naples, Italy
| | - Josep Maria Porta
- Institut de Robòtica i Informàtica Industrial, CSIC-UPC, Barcelona, Spain
| | - Carlos Barata
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona, 18, 08034 Barcelona, Spain
| | - Demetrio Raldúa
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona, 18, 08034 Barcelona, Spain.
| |
Collapse
|
2
|
Köcher L, Beppi C, Penner M, Meyer S, Bögli SY, Straumann D. Concussion leads to opposing sensorimotor effects of habituation deficit and fatigue in zebrafish larvae. Brain Commun 2024; 6:fcae407. [PMID: 39568550 PMCID: PMC11577614 DOI: 10.1093/braincomms/fcae407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/12/2024] [Accepted: 11/11/2024] [Indexed: 11/22/2024] Open
Abstract
Concussion, or mild traumatic brain injury, is caused by sudden mechanical forces impacting the brain either directly or through inertial loading. This can lead to physical, behavioural and cognitive impairments. Despite concussion being a significant health issue, our understanding of the relationship between initial impact force and the subsequent neurological consequences is not well understood. Previously, we established a model of concussion in zebrafish larvae. Here, we further investigate concussions of varying severities in zebrafish larvae using linear deceleration. Using an acoustic assay to monitor the larval sensorimotor behaviour, we found that different parameters of the resulting escape behaviour are modulated by the impact force of the preceding concussive insult. To investigate the relative contributions of habituation performance and fatigue on the escape response behaviour, we constructed a neurocomputational model. Our findings suggest that a concussive impact initially affects habituation performance at first and, as the impact force increases, fatigue is induced. Fatigue then alters the escape response behaviour in an opposing manner.
Collapse
Affiliation(s)
- Laura Köcher
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, 8057 Zurich, Switzerland
- Department of Neurology, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland
- Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland
| | - Carolina Beppi
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, 8057 Zurich, Switzerland
- Department of Neurology, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland
- Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland
| | - Marco Penner
- Department of Neurology, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland
| | - Samuel Meyer
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, 8057 Zurich, Switzerland
- Department of Neurology, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland
- Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland
| | - Stefan Yu Bögli
- Department of Neurology, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland
- Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland
| | - Dominik Straumann
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, 8057 Zurich, Switzerland
- Department of Neurology, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland
- Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland
| |
Collapse
|
3
|
Santistevan NJ, Ford CT, Gilsdorf CS, Grinblat Y. Behavioral and transcriptomic analyses of mecp2 function in zebrafish. Am J Med Genet B Neuropsychiatr Genet 2024; 195:e32981. [PMID: 38551133 DOI: 10.1002/ajmg.b.32981] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/07/2024] [Accepted: 03/12/2024] [Indexed: 11/15/2024]
Abstract
Rett syndrome (RTT), a human neurodevelopmental disorder characterized by severe cognitive and motor impairments, is caused by dysfunction of the conserved transcriptional regulator Methyl-CpG-binding protein 2 (MECP2). Genetic analyses in mouse Mecp2 mutants, which exhibit key features of human RTT, have been essential for deciphering the mechanisms of MeCP2 function; nonetheless, our understanding of these complex mechanisms is incomplete. Zebrafish mecp2 mutants exhibit mild behavioral deficits but have not been analyzed in depth. Here, we combine transcriptomic and behavioral assays to assess baseline and stimulus-evoked motor responses and sensory filtering in zebrafish mecp2 mutants from 5 to 7 days post-fertilization (dpf). We show that zebrafish mecp2 function is required for normal thigmotaxis but is dispensable for gross movement, acoustic startle response, and sensory filtering (habituation and sensorimotor gating), and reveal a previously unknown role for mecp2 in behavioral responses to visual stimuli. RNA-seq analysis identified a large gene set that requires mecp2 function for correct transcription at 4 dpf, and pathway analysis revealed several pathways that require MeCP2 function in both zebrafish and mammals. These findings show that MeCP2's function as a transcriptional regulator is conserved across vertebrates and supports using zebrafish to complement mouse modeling in elucidating these conserved mechanisms.
Collapse
Affiliation(s)
- Nicholas J Santistevan
- Departments of Integrative Biology and Neuroscience, University of Wisconsin, Madison, Wisconsin, USA
- Genetics Ph.D. Training Program, University of Wisconsin, Madison, Wisconsin, USA
| | - Colby T Ford
- School of Data Science, University of North Carolina, Charlotte, North Carolina, USA
- Department of Bioinformatics and Genomics, University of North Carolina, Charlotte, North Carolina, USA
- Tuple, LLC, Charlotte, North Carolina, USA
| | - Cole S Gilsdorf
- Departments of Integrative Biology and Neuroscience, University of Wisconsin, Madison, Wisconsin, USA
| | - Yevgenya Grinblat
- Departments of Integrative Biology and Neuroscience, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
4
|
Schloss SS, Marshall ZQ, Santistevan NJ, Gjorcheska S, Stenzel A, Barske L, Nelson JC. Cadherin 16 promotes sensory gating via the endocrine corpuscles of Stannius. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.614609. [PMID: 39386705 PMCID: PMC11463452 DOI: 10.1101/2024.09.23.614609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Sensory thresholds enable animals to regulate their behavioral responses to environmental threats. Despite the importance of sensory thresholds for animal behavior and human health, we do not yet have a full appreciation of the underlying molecular-genetic and circuit mechanisms. The larval zebrafish acoustic startle response provides a powerful system to identify molecular mechanisms underlying establishment of sensory thresholds and plasticity of thresholds through mechanisms like habituation. Using this system, we identify Cadherin 16 as a previously undescribed regulator of sensory gating. We demonstrate that Cadherin 16 regulates sensory thresholds via an endocrine organ, the corpuscle of Stannius (CS), which is essential in zebrafish for regulating Ca2+ homeostasis. We further show that Cadherin 16 regulates whole-body calcium and ultimately behavior through the hormone Stanniocalcin 1L, and the IGF-regulatory metalloprotease, Papp-aa. Finally, we demonstrate the importance of the CS through ablation experiments that reveal its role in promoting normal acoustic sensory gating. Together, our results uncover a previously undescribed brain non-autonomous pathway for the regulation of behavior and establish Ca2+ homeostasis as a critical process underlying sensory gating in vivo.
Collapse
Affiliation(s)
- Susannah S. Schloss
- Department of Cell and Developmental Biology; University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO, USA
| | - Zackary Q. Marshall
- Department of Cell and Developmental Biology; University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO, USA
| | - Nicholas J. Santistevan
- Department of Cell and Developmental Biology; University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO, USA
| | - Stefani Gjorcheska
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Amanda Stenzel
- Department of Cell and Developmental Biology; University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO, USA
| | - Lindsey Barske
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jessica C. Nelson
- Department of Cell and Developmental Biology; University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO, USA
| |
Collapse
|
5
|
Lei Q, Zhang S, Wang J, Qi C, Liu J, Cao D, Li F, Han H, Liu W, Li D, Tang C, Zhou Y. Genome-wide association studies of egg production traits by whole genome sequencing of Laiwu Black chicken. Poult Sci 2024; 103:103705. [PMID: 38598913 PMCID: PMC11636908 DOI: 10.1016/j.psj.2024.103705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/12/2024] Open
Abstract
Compared to high-yield commercial laying hens, Chinese indigenous chicken breeds have poor egg laying capacity due to the lack of intensive selection. However, as these breeds have not undergone systematic selection, it is possible that there is a greater abundance of genetic variations related to egg laying traits. In this study, we assessed 5 egg number (EN) traits at different stages of the egg-laying period: EN1 (from the first egg to 23 wk), EN2 (from 23 to 35 wk), EN3 (from 35 to 48 wk), EN4 (from the first egg to 35 wk), and EN5 (from the first egg to 48 wk). To investigate the molecular mechanisms underlying egg number traits in a Chinese local chicken breed, we conducted a genome-wide association study (GWAS) using data from whole-genome sequencing (WGS) of 399 Laiwu Black chickens. We obtained a total of 3.01 Tb of raw data with an average depth of 7.07 × per individual. A total of 86 genome-wide suggestive or significant single-nucleotide polymorphisms (SNP) contained within a set of 45 corresponding candidate genes were identified and found to be associated with stages EN1-EN5. The genes vitellogenin 2 (VTG2), lipase maturation factor 1 (LMF1), calcium voltage-gated channel auxiliary subunit alpha2delta 3 (CACNA2D3), poly(A) binding protein cytoplasmic 1 (PABPC1), programmed cell death 11 (PDCD11) and family with sequence similarity 213 member A (FAM213A) can be considered as the candidate genes associated with egg number traits, due to their reported association with animal reproduction traits. Noteworthy, results suggests that VTG2 and PDCD11 are not only involved in the regulation of EN3, but also in the regulation of EN5, implies that VTG2 and PDCD11 have a significant influence on egg production traits. Our study offers valuable genomic insights into the molecular genetic mechanisms that govern egg number traits in a Chinese indigenous egg-laying chicken breed. These findings have the potential to enhance the egg-laying performance of chickens.
Collapse
Affiliation(s)
- Qiuxia Lei
- Poultry Institute, Shandong Academy of Agricultural Sciences, 250100, Ji'nan, China.; Poultry Breeding Engineering Technology Center of Shandong Province, 250100, Ji'nan, China
| | - Shuer Zhang
- Shandong Animal Husbandry General Station, 250023, Ji'nan, China
| | - Jie Wang
- Poultry Institute, Shandong Academy of Agricultural Sciences, 250100, Ji'nan, China.; Poultry Breeding Engineering Technology Center of Shandong Province, 250100, Ji'nan, China
| | - Chao Qi
- Shandong Animal Husbandry General Station, 250023, Ji'nan, China
| | - Jie Liu
- Poultry Institute, Shandong Academy of Agricultural Sciences, 250100, Ji'nan, China.; Poultry Breeding Engineering Technology Center of Shandong Province, 250100, Ji'nan, China
| | - Dingguo Cao
- Poultry Institute, Shandong Academy of Agricultural Sciences, 250100, Ji'nan, China.; Poultry Breeding Engineering Technology Center of Shandong Province, 250100, Ji'nan, China
| | - Fuwei Li
- Poultry Institute, Shandong Academy of Agricultural Sciences, 250100, Ji'nan, China.; Poultry Breeding Engineering Technology Center of Shandong Province, 250100, Ji'nan, China
| | - Haixia Han
- Poultry Institute, Shandong Academy of Agricultural Sciences, 250100, Ji'nan, China.; Poultry Breeding Engineering Technology Center of Shandong Province, 250100, Ji'nan, China
| | - Wei Liu
- Poultry Institute, Shandong Academy of Agricultural Sciences, 250100, Ji'nan, China.; Poultry Breeding Engineering Technology Center of Shandong Province, 250100, Ji'nan, China
| | - Dapeng Li
- Poultry Institute, Shandong Academy of Agricultural Sciences, 250100, Ji'nan, China.; Poultry Breeding Engineering Technology Center of Shandong Province, 250100, Ji'nan, China
| | - Cunwei Tang
- Fujian Sunnzer Biological Technology Development Co. Ltd., 354100, Guang'ze, China
| | - Yan Zhou
- Poultry Institute, Shandong Academy of Agricultural Sciences, 250100, Ji'nan, China.; Poultry Breeding Engineering Technology Center of Shandong Province, 250100, Ji'nan, China..
| |
Collapse
|
6
|
Fichna JP, Chiliński M, Halder AK, Cięszczyk P, Plewczynski D, Żekanowski C, Janik P. Structural Variants and Implicated Processes Associated with Familial Tourette Syndrome. Int J Mol Sci 2024; 25:5758. [PMID: 38891944 PMCID: PMC11171586 DOI: 10.3390/ijms25115758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Gilles de la Tourette syndrome (GTS) is a neurodevelopmental psychiatric disorder with complex and elusive etiology with a significant role of genetic factors. The aim of this study was to identify structural variants that could be associated with familial GTS. The study group comprised 17 multiplex families with 80 patients. Structural variants were identified from whole-genome sequencing data and followed by co-segregation and bioinformatic analyses. The localization of these variants was used to select candidate genes and create gene sets, which were subsequently processed in gene ontology and pathway enrichment analysis. Seventy putative pathogenic variants shared among affected individuals within one family but not present in the control group were identified. Only four private or rare deletions were exonic in LDLRAD4, B2M, USH2A, and ZNF765 genes. Notably, the USH2A gene is involved in cochlear development and sensory perception of sound, a process that was associated previously with familial GTS. In addition, two rare variants and three not present in the control group were co-segregating with the disease in two families, and uncommon insertions in GOLM1 and DISC1 were co-segregating in three families each. Enrichment analysis showed that identified structural variants affected synaptic vesicle endocytosis, cell leading-edge organization, and signaling for neurite outgrowth. The results further support the involvement of the regulation of neurotransmission, neuronal migration, and sound-sensing in GTS.
Collapse
Affiliation(s)
- Jakub P. Fichna
- Department of Neurogenetics and Functional Genomics, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland;
| | - Mateusz Chiliński
- Laboratory of Bioinformatics and Computational Genomics, Faculty of Mathematics and Information Science, Warsaw University of Technology, 00-662 Warsaw, Poland or (M.C.); or (A.K.H.); or (D.P.)
- Laboratory of Functional and Structural Genomics, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Anup Kumar Halder
- Laboratory of Bioinformatics and Computational Genomics, Faculty of Mathematics and Information Science, Warsaw University of Technology, 00-662 Warsaw, Poland or (M.C.); or (A.K.H.); or (D.P.)
- Laboratory of Functional and Structural Genomics, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Paweł Cięszczyk
- Faculty of Physical Education, Gdansk University of Physical Education and Sport, Górskiego 1 Street, 80-336 Gdansk, Poland;
| | - Dariusz Plewczynski
- Laboratory of Bioinformatics and Computational Genomics, Faculty of Mathematics and Information Science, Warsaw University of Technology, 00-662 Warsaw, Poland or (M.C.); or (A.K.H.); or (D.P.)
- Laboratory of Functional and Structural Genomics, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Cezary Żekanowski
- Department of Neurogenetics and Functional Genomics, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland;
- Faculty of Physical Education, Gdansk University of Physical Education and Sport, Górskiego 1 Street, 80-336 Gdansk, Poland;
| | - Piotr Janik
- Department of Neurology, Medical University of Warsaw, 02-091 Warsaw, Poland;
| |
Collapse
|
7
|
Zúñiga Mouret R, Greenbaum JP, Doll HM, Brody EM, Iacobucci EL, Roland NC, Simamora RC, Ruiz I, Seymour R, Ludwick L, Krawitz JA, Groneberg AH, Marques JC, Laborde A, Rajan G, Del Bene F, Orger MB, Jain RA. The adaptor protein 2 (AP2) complex modulates habituation and behavioral selection across multiple pathways and time windows. iScience 2024; 27:109455. [PMID: 38550987 PMCID: PMC10973200 DOI: 10.1016/j.isci.2024.109455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 01/28/2024] [Accepted: 03/06/2024] [Indexed: 10/04/2024] Open
Abstract
Animals constantly integrate sensory information with prior experience to select behavioral responses appropriate to the current situation. Genetic factors supporting this behavioral flexibility are often disrupted in neuropsychiatric conditions, such as the autism-linked ap2s1 gene which supports acoustically evoked habituation learning. ap2s1 encodes an AP2 endocytosis adaptor complex subunit, although its behavioral mechanisms and importance have been unclear. Here, we show that multiple AP2 subunits regulate acoustically evoked behavior selection and habituation learning in zebrafish. Furthermore, ap2s1 biases escape behavior choice in sensory modality-specific manners, and broadly regulates action selection across sensory contexts. We demonstrate that the AP2 complex functions acutely in the nervous system to modulate acoustically evoked habituation, suggesting several spatially and/or temporally distinct mechanisms through which AP2 regulates escape behavior selection and performance. Altogether, we show the AP2 complex coordinates action selection across diverse contexts, providing a vertebrate model for ap2s1's role in human conditions including autism spectrum disorder.
Collapse
Affiliation(s)
- Rodrigo Zúñiga Mouret
- Department of Biology, Haverford College, Haverford, PA 19041, USA
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Jordyn P. Greenbaum
- Department of Biology, Haverford College, Haverford, PA 19041, USA
- The Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Hannah M. Doll
- Department of Biology, Haverford College, Haverford, PA 19041, USA
- Department of Neuroscience, University of Wisconsin-Madison, Madison WI 53705, USA
| | - Eliza M. Brody
- Department of Biology, Haverford College, Haverford, PA 19041, USA
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia PA 19104, USA
| | | | | | - Roy C. Simamora
- Department of Biology, Haverford College, Haverford, PA 19041, USA
| | - Ivan Ruiz
- Department of Biology, Haverford College, Haverford, PA 19041, USA
| | - Rory Seymour
- Department of Biology, Haverford College, Haverford, PA 19041, USA
| | - Leanne Ludwick
- Department of Biology, Haverford College, Haverford, PA 19041, USA
| | - Jacob A. Krawitz
- Department of Biology, Haverford College, Haverford, PA 19041, USA
| | - Antonia H. Groneberg
- Champalimaud Neuroscience Programme, Champalimaud Foundation, 1400-038 Lisboa, Portugal
| | - João C. Marques
- Champalimaud Neuroscience Programme, Champalimaud Foundation, 1400-038 Lisboa, Portugal
| | - Alexandre Laborde
- Champalimaud Neuroscience Programme, Champalimaud Foundation, 1400-038 Lisboa, Portugal
| | - Gokul Rajan
- Sorbonne Université; INSERM, CNRS, Institut de la Vision, 75012 Paris, France
- Institut Curie, PSL Research University; INSERM U934, CNRS UMR3215, Paris, France
| | - Filippo Del Bene
- Sorbonne Université; INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - Michael B. Orger
- Champalimaud Neuroscience Programme, Champalimaud Foundation, 1400-038 Lisboa, Portugal
| | - Roshan A. Jain
- Department of Biology, Haverford College, Haverford, PA 19041, USA
| |
Collapse
|
8
|
Ortiz EA, Campbell PD, Nelson JC, Granato M. A single base pair substitution in zebrafish distinguishes between innate and acute startle behavior regulation. PLoS One 2024; 19:e0300529. [PMID: 38498506 PMCID: PMC10947677 DOI: 10.1371/journal.pone.0300529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/26/2024] [Indexed: 03/20/2024] Open
Abstract
Behavioral thresholds define the lowest stimulus intensities sufficient to elicit a behavioral response. Establishment of baseline behavioral thresholds during development is critical for proper responses throughout the animal's life. Despite the relevance of such innate thresholds, the molecular mechanisms critical to establishing behavioral thresholds during development are not well understood. The acoustic startle response is a conserved behavior whose threshold is established during development yet is subsequently acutely regulated. We have previously identified a zebrafish mutant line (escapist) that displays a decreased baseline or innate acoustic startle threshold. Here, we identify a single base pair substitution on Chromosome 25 located within the coding sequence of the synaptotagmin 7a (syt7a) gene that is tightly linked to the escapist acoustic hypersensitivity phenotype. By generating animals in which we deleted the syt7a open reading frame, and subsequent complementation testing with the escapist line, we demonstrate that loss of syt7a function is not the cause of the escapist behavioral phenotype. Nonetheless, escapist mutants provide a powerful tool to decipher the overlap between acute and developmental regulation of behavioral thresholds. Extensive behavioral analyses reveal that in escapist mutants the establishment of the innate acoustic startle threshold is impaired, while regulation of its acute threshold remains intact. Moreover, our behavioral analyses reveal a deficit in baseline responses to visual stimuli, but not in the acute regulation of responses to visual stimuli. Together, this work eliminates loss of syt7a as causative for the escapist phenotype and suggests that mechanisms that regulate the establishment of behavioral thresholds in escapist larvae can operate independently from those regulating acute threshold regulation.
Collapse
Affiliation(s)
- Elelbin A. Ortiz
- Department of Neuroscience, University of Pennsylvania, Pennsylvania, PA, United States of America
- Department of Cell and Developmental Biology, University of Pennsylvania, Pennsylvania, PA, United States of America
| | - Philip D. Campbell
- Department of Cell and Developmental Biology, University of Pennsylvania, Pennsylvania, PA, United States of America
- Department of Psychiatry, University of Pennsylvania, Pennsylvania, PA, United States of America
| | - Jessica C. Nelson
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Michael Granato
- Department of Cell and Developmental Biology, University of Pennsylvania, Pennsylvania, PA, United States of America
| |
Collapse
|
9
|
Shao W, Zheng H, Zhu J, Li W, Li Y, Hu W, Zhang J, Jing L, Wang K, Jiang X. Deletions of Cacna2d3 in parvalbumin-expressing neurons leads to autistic-like phenotypes in mice. Neurochem Int 2023; 169:105569. [PMID: 37419212 DOI: 10.1016/j.neuint.2023.105569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/23/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
Autism spectrum disorder (ASD) is a series of highly inherited neurodevelopmental disorders. Loss-of-function (LOF) mutations in the CACNA2D3 gene are associated with ASD. However, the underlying mechanism is unknown. Dysfunction of cortical interneurons (INs) is strongly implicated in ASD. Parvalbumin-expressing (PV) INs and somatostatin-expressing (SOM) INs are the two most subtypes. Here, we characterized a mouse knockout of the Cacna2d3 gene in PV-expressing neurons (PVCre;Cacna2d3f/f mice) or in SOM-expressing neurons (SOMCre;Cacna2d3f/f mice), respectively. PVCre;Cacna2d3f/f mice showed deficits in the core ASD behavioral domains (including impaired sociability and increased repetitive behavior), as well as anxiety-like behavior and improved spatial memory. Furthermore, loss of Cacna2d3 from a subset of PV neurons results in a reduction of GAD67 and PV expression in the medial prefrontal cortex (mPFC). These may underlie the increased neuronal excitability in the mPFC, which contribute to the abnormal social behavior in PVCre;Cacna2d3f/f mice. Whereas, SOMCre;Cacna2d3f/f mice showed no obvious deficits in social, cognitive, or emotional phenotypes. Our findings provide the first evidence suggesting the causal role of Cacna2d3 insufficiency in PV neurons in autism.
Collapse
Affiliation(s)
- Wei Shao
- The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
| | - Hang Zheng
- The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
| | - Jingwen Zhu
- The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
| | - Wenhao Li
- The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
| | - Yifan Li
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wenjie Hu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Juanjuan Zhang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Liang Jing
- The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China; Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China.
| | - Kai Wang
- The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China; Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China; Collaborative Innovation Center for Neuropsychiatric Disorders and Mental Health, Hefei, China; Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China.
| | - Xiao Jiang
- The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China; Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China.
| |
Collapse
|
10
|
DeOliveira-Mello L, Baronio D, Panula P. Zebrafish embryonically exposed to valproic acid present impaired retinal development and sleep behavior. Autism Res 2023; 16:1877-1890. [PMID: 37638671 DOI: 10.1002/aur.3010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/23/2023] [Indexed: 08/29/2023]
Abstract
Prenatal exposure to valproic acid (VPA), a drug widely used to treat epilepsy and bipolar disorder, is an environmental risk factor for autism spectrum disorder (ASD). VPA has been used to reproduce the core symptoms of ASD in animal model organisms, including zebrafish. Visual system functioning is essential in the interpretation of social conditions and plays an important role of several behavioral responses. We hypothesized that behavioral deficits displayed by ASD patients may involve impaired visual processing. We used zebrafish as model organism to investigate the visual system after embryonic exposure to VPA using histological, behavioral and gene expression analysis. We analyzed the pineal gland of zebrafish and sleep-like behavior to study how VPA exposure alters photo-sensibility of zebrafish. VPA-exposed zebrafish showed a delay in the development of the retina and optic nerve, which normalized at five days post fertilization. At larval stage, VPA-exposed zebrafish showed sleep disturbances associated with a reduced number of serotonin-producing cells of the pineal gland. In addition, the number of hypocretin/orexin (hcrt) expressing neurons in the rostral hypothalamus at 6 and 14 days post fertilization was reduced. In conclusion, we demonstrated that although VPA exposure leads to a delay in visual system development, it does not affect larval visual function. The novel finding that VPA alters significantly cells involved in sleep regulation and the sleep-like state itself may be relevant for understanding sleep disturbances in ASD patients.
Collapse
Affiliation(s)
| | - Diego Baronio
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Pertti Panula
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
11
|
Koval A, Zhang X, Katanaev VL. Improved approaches to channel capacity estimation discover compromised GPCR signaling in diverse cancer cells. iScience 2023; 26:107270. [PMID: 37502258 PMCID: PMC10368911 DOI: 10.1016/j.isci.2023.107270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/20/2023] [Accepted: 06/28/2023] [Indexed: 07/29/2023] Open
Abstract
Intracellular signaling orchestrates an organism's development and functioning and underlies various pathologies, such as cancer, when aberrant. A universal cell signaling characteristic is channel capacity - the measure of how much information a given transmitting system can reliably transduce. Here, we describe improved approaches to quantify GPCR signaling channel capacity in single cells, averaged across cell population. We assess the channel capacity based on distribution of residuals by the cellular response amplitude. We further develop means to handle irregularly responding cancer cells using the integral values of their response to different agonist concentrations. These approaches enabled us to analyze, for the first time, channel capacity in single cancer cells. A universal feature emerging for different cancer cell types is a decreased channel capacity of their GPCR signaling. These findings provide experimental validation to the hypothesis that cancer is an information disease, bearing importance for basic cancer biology and anticancer drug discovery.
Collapse
Affiliation(s)
- Alexey Koval
- Department of Cell Physiology and Metabolism, Translational Research Center in Oncohaematology, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
| | - Xin Zhang
- Department of Cell Physiology and Metabolism, Translational Research Center in Oncohaematology, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
| | - Vladimir L. Katanaev
- Department of Cell Physiology and Metabolism, Translational Research Center in Oncohaematology, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia
| |
Collapse
|
12
|
Reemst K, Shahin H, Shahar OD. Learning and memory formation in zebrafish: Protein dynamics and molecular tools. Front Cell Dev Biol 2023; 11:1120984. [PMID: 36968211 PMCID: PMC10034119 DOI: 10.3389/fcell.2023.1120984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 02/20/2023] [Indexed: 03/12/2023] Open
Abstract
Research on learning and memory formation at the level of neural networks, as well as at the molecular level, is challenging due to the immense complexity of the brain. The zebrafish as a genetically tractable model organism can overcome many of the current challenges of studying molecular mechanisms of learning and memory formation. Zebrafish have a translucent, smaller and more accessible brain than that of mammals, allowing imaging of the entire brain during behavioral manipulations. Recent years have seen an extensive increase in published brain research describing the use of zebrafish for the study of learning and memory. Nevertheless, due to the complexity of the brain comprising many neural cell types that are difficult to isolate, it has been difficult to elucidate neural networks and molecular mechanisms involved in memory formation in an unbiased manner, even in zebrafish larvae. Therefore, data regarding the identity, location, and intensity of nascent proteins during memory formation is still sparse and our understanding of the molecular networks remains limited, indicating a need for new techniques. Here, we review recent progress in establishing learning paradigms for zebrafish and the development of methods to elucidate neural and molecular networks of learning. We describe various types of learning and highlight directions for future studies, focusing on molecular mechanisms of long-term memory formation and promising state-of-the-art techniques such as cell-type-specific metabolic labeling.
Collapse
Affiliation(s)
- Kitty Reemst
- Migal—Galilee Research Institute, Kiryat Shmona, Israel
- Department of Biotechnology, Tel-Hai College, Kiryat Shmona, Israel
| | - Heba Shahin
- Migal—Galilee Research Institute, Kiryat Shmona, Israel
- Department of Biotechnology, Tel-Hai College, Kiryat Shmona, Israel
| | - Or David Shahar
- Migal—Galilee Research Institute, Kiryat Shmona, Israel
- Department of Biotechnology, Tel-Hai College, Kiryat Shmona, Israel
- *Correspondence: Or David Shahar,
| |
Collapse
|
13
|
Nelson JC, Shoenhard H, Granato M. Integration of cooperative and opposing molecular programs drives learning-associated behavioral plasticity. PLoS Genet 2023; 19:e1010650. [PMID: 36972301 PMCID: PMC10079226 DOI: 10.1371/journal.pgen.1010650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 04/06/2023] [Accepted: 02/02/2023] [Indexed: 03/29/2023] Open
Abstract
Habituation is a foundational learning process critical for animals to adapt their behavior to changes in their sensory environment. Although habituation is considered a simple form of learning, the identification of a multitude of molecular pathways including several neurotransmitter systems that regulate this process suggests an unexpected level of complexity. How the vertebrate brain integrates these various pathways to accomplish habituation learning, whether they act independently or intersect with one another, and whether they act via divergent or overlapping neural circuits has remained unclear. To address these questions, we combined pharmacogenetic pathway analysis with unbiased whole-brain activity mapping using the larval zebrafish. Based on our findings, we propose five distinct molecular modules for the regulation of habituation learning and identify a set of molecularly defined brain regions associated with four of the five modules. Moreover, we find that in module 1 the palmitoyltransferase Hip14 cooperates with dopamine and NMDA signaling to drive habituation, while in module 3 the adaptor protein complex subunit Ap2s1 drives habituation by antagonizing dopamine signaling, revealing two distinct and opposing roles for dopaminergic neuromodulation in the regulation of behavioral plasticity. Combined, our results define a core set of distinct modules that we propose act in concert to regulate habituation-associated plasticity, and provide compelling evidence that even seemingly simple learning behaviors in a compact vertebrate brain are regulated by a complex and overlapping set of molecular mechanisms.
Collapse
Affiliation(s)
- Jessica C. Nelson
- Department of Cell and Developmental Biology; University of Pennsylvania, Perelman School of Medicine; Philadelphia, Pennsylvania, United States of America
- Department of Cell and Developmental Biology; University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Hannah Shoenhard
- Department of Cell and Developmental Biology; University of Pennsylvania, Perelman School of Medicine; Philadelphia, Pennsylvania, United States of America
| | - Michael Granato
- Department of Cell and Developmental Biology; University of Pennsylvania, Perelman School of Medicine; Philadelphia, Pennsylvania, United States of America
| |
Collapse
|