1
|
Zhang Z, Criscuolo ER, Hao Y, McKeown T, Yang D. A vessel bifurcation liver CT landmark pair dataset for evaluating deformable image registration algorithms. Med Phys 2024. [PMID: 39504386 DOI: 10.1002/mp.17507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 09/10/2024] [Accepted: 10/14/2024] [Indexed: 11/08/2024] Open
Abstract
PURPOSE Evaluating deformable image registration (DIR) algorithms is vital for enhancing algorithm performance and gaining clinical acceptance. However, there is a notable lack of dependable DIR benchmark datasets for assessing DIR performance except for lung images. To address this gap, we aim to introduce our comprehensive liver computed tomography (CT) DIR landmark dataset library. This dataset is designed for efficient and quantitative evaluation of various DIR methods for liver CTs, paving the way for more accurate and reliable image registration techniques. ACQUISITION AND VALIDATION METHODS Forty CT liver image pairs were acquired from several publicly available image archives and authors' institutions under institutional review board (IRB) approval. The images were processed with a semi-automatic procedure to generate landmark pairs: (1) for each case, liver vessels were automatically segmented on one image; (2) landmarks were automatically detected at vessel bifurcations; (3) corresponding landmarks in the second image were placed using two deformable image registration methods to avoid algorithm-specific biases; (4) a comprehensive validation process based on quantitative evaluation and manual assessment was applied to reject outliers and ensure the landmarks' positional accuracy. This workflow resulted in an average of ∼56 landmark pairs per image pair, comprising a total of 2220 landmarks for 40 cases. The general landmarking accuracy of this procedure was evaluated using digital phantoms and manual landmark placement. The landmark pair target registration errors (TRE) on digital phantoms were 0.37 ± 0.26 and 0.55 ± 0.34 mm respectively for the two selected DIR algorithms used in our workflow, with 97% of landmark pairs having TREs below 1.5 mm. The distances from the calculated landmarks to the averaged manual placement were 1.27 ± 0.79 mm. DATA FORMAT AND USAGE NOTES All data, including image files and landmark information, are publicly available at Zenodo (https://zenodo.org/records/13738577). Instructions for using our data can be found on our GitHub page at https://github.com/deshanyang/Liver-DIR-QA. POTENTIAL APPLICATIONS The landmark dataset generated in this work is the first collection of large-scale liver CT DIR landmarks prepared on real patient images. This dataset can provide researchers with a dense set of ground truth benchmarks for the quantitative evaluation of DIR algorithms within the liver.
Collapse
Affiliation(s)
- Zhendong Zhang
- Department of Radiation Oncology, Duke University, Durham, North Carolina, USA
| | | | - Yao Hao
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Trevor McKeown
- Department of Radiation Oncology, Duke University, Durham, North Carolina, USA
| | - Deshan Yang
- Department of Radiation Oncology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
2
|
Nenoff L, Amstutz F, Murr M, Archibald-Heeren B, Fusella M, Hussein M, Lechner W, Zhang Y, Sharp G, Vasquez Osorio E. Review and recommendations on deformable image registration uncertainties for radiotherapy applications. Phys Med Biol 2023; 68:24TR01. [PMID: 37972540 PMCID: PMC10725576 DOI: 10.1088/1361-6560/ad0d8a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 10/30/2023] [Accepted: 11/15/2023] [Indexed: 11/19/2023]
Abstract
Deformable image registration (DIR) is a versatile tool used in many applications in radiotherapy (RT). DIR algorithms have been implemented in many commercial treatment planning systems providing accessible and easy-to-use solutions. However, the geometric uncertainty of DIR can be large and difficult to quantify, resulting in barriers to clinical practice. Currently, there is no agreement in the RT community on how to quantify these uncertainties and determine thresholds that distinguish a good DIR result from a poor one. This review summarises the current literature on sources of DIR uncertainties and their impact on RT applications. Recommendations are provided on how to handle these uncertainties for patient-specific use, commissioning, and research. Recommendations are also provided for developers and vendors to help users to understand DIR uncertainties and make the application of DIR in RT safer and more reliable.
Collapse
Affiliation(s)
- Lena Nenoff
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden—Rossendorf, Dresden Germany
- Helmholtz-Zentrum Dresden—Rossendorf, Institute of Radiooncology—OncoRay, Dresden, Germany
| | - Florian Amstutz
- Department of Physics, ETH Zurich, Switzerland
- Center for Proton Therapy, Paul Scherrer Institute, Villigen PSI, Switzerland
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - Martina Murr
- Section for Biomedical Physics, Department of Radiation Oncology, University of Tübingen, Germany
| | | | - Marco Fusella
- Department of Radiation Oncology, Abano Terme Hospital, Italy
| | - Mohammad Hussein
- Metrology for Medical Physics, National Physical Laboratory, Teddington, United Kingdom
| | - Wolfgang Lechner
- Department of Radiation Oncology, Medical University of Vienna, Austria
| | - Ye Zhang
- Center for Proton Therapy, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Greg Sharp
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
| | - Eliana Vasquez Osorio
- Division of Cancer Sciences, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
3
|
Li Y, Li Z, Zhu J, Li B, Shu H, Ge D. Online prediction for respiratory movement compensation: a patient-specific gating control for MRI-guided radiotherapy. Radiat Oncol 2023; 18:149. [PMID: 37697360 PMCID: PMC10496354 DOI: 10.1186/s13014-023-02341-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/31/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND This study aims to validate the effectiveness of linear regression for motion prediction of internal organs or tumors on 2D cine-MR and to present an online gating signal prediction scheme that can improve the accuracy of MR-guided radiotherapy for liver and lung cancer. MATERIALS AND METHODS We collected 2D cine-MR sequences of 21 liver cancer patients and 10 lung cancer patients to develop a binary gating signal prediction algorithm that forecasts the crossing-time of tumor motion traces relative to the target threshold. Both 0.4 s and 0.6 s prediction windows were tested using three linear predictors and three recurrent neural networks (RNNs), given the system delay of 0.5 s. Furthermore, an adaptive linear regression model was evaluated using only the first 30 s as the burn-in period, during which the model parameters were adapted during the online prediction process. The accuracy of the predicted traces was measured using amplitude metrics (MAE, RMSE, and R2), and in addition, we proposed three temporal metrics, namely crossing error, gating error, and gating accuracy, which are more relevant to the nature of the gating signals. RESULTS In both 0.6 s and 0.4 s prediction cases, linear regression outperformed other methods, demonstrating significantly smaller amplitude errors compared to the RNNs (P < 0.05). The proposed algorithm with adaptive linear regression had the best performance with an average gating accuracy of 98.3% and 98.0%, a gating error of 44 ms and 45 ms, for liver cancer and lung cancer patients, respectively. CONCLUSION A functional online gating control scheme was developed with an adaptive linear regression that is both more cost-efficient and accurate than sophisticated RNN based methods in all studied metrics.
Collapse
Affiliation(s)
- Yang Li
- Laboratory of Image Science and Technology, School of Computer Science and Engineering, Southeast University, Nanjing, 210096, Jiangsu, People's Republic of China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, People's Republic of China
- L.T.S.I., Inserm UMR 1099 - Université de Rennes, Campus de Beaulieu - Bat. 22, 35042, Rennes, France
- Jiangsu Provincial Joint International Research Laboratory of Medical Information Processing, Centre de Recherche en Information Biomédicale, Sino-Français (CRIBs), Rennes, France
| | - Zhenjiang Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, People's Republic of China
| | - Jian Zhu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, People's Republic of China
| | - Baosheng Li
- Laboratory of Image Science and Technology, School of Computer Science and Engineering, Southeast University, Nanjing, 210096, Jiangsu, People's Republic of China.
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, People's Republic of China.
| | - Huazhong Shu
- Laboratory of Image Science and Technology, School of Computer Science and Engineering, Southeast University, Nanjing, 210096, Jiangsu, People's Republic of China.
- Jiangsu Provincial Joint International Research Laboratory of Medical Information Processing, Centre de Recherche en Information Biomédicale, Sino-Français (CRIBs), Rennes, France.
| | - Di Ge
- L.T.S.I., Inserm UMR 1099 - Université de Rennes, Campus de Beaulieu - Bat. 22, 35042, Rennes, France.
- Jiangsu Provincial Joint International Research Laboratory of Medical Information Processing, Centre de Recherche en Information Biomédicale, Sino-Français (CRIBs), Rennes, France.
| |
Collapse
|