1
|
Castro-Vargas C, Pandey G, Yeap HL, Lacey MJ, Lee SF, Park SJ, Taylor PW, Oakeshott JG. Correction: Diversity and sex differences in rectal gland volatiles of Queensland fruit fly, Bactrocera tryoni (Diptera: Tephritidae). PLoS One 2025; 20:e0317849. [PMID: 39820292 PMCID: PMC11737748 DOI: 10.1371/journal.pone.0317849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025] Open
Abstract
[This corrects the article DOI: 10.1371/journal.pone.0273210.].
Collapse
|
2
|
Castro-Vargas C, Oakeshott JG, Yeap HL, Lacey MJ, Lee SF, Park SJ, Taylor PW, Pandey G. Differential pheromone profile as a contributor to premating isolation between two sympatric sibling fruit fly species. JOURNAL OF INSECT SCIENCE (ONLINE) 2024; 24:26. [PMID: 38913610 PMCID: PMC11195474 DOI: 10.1093/jisesa/ieae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/12/2024] [Accepted: 06/19/2024] [Indexed: 06/26/2024]
Abstract
Bactrocera tryoni (Froggatt) and Bactrocera neohumeralis (Hardy) are sibling fruit fly species that are sympatric over much of their ranges. Premating isolation of these close relatives is thought to be maintained in part by allochrony-mating activity in B. tryoni peaks at dusk, whereas in B. neohumeralis, it peaks earlier in the day. To ascertain whether differences in pheromone composition may also contribute to premating isolation between them, this study used solid-phase microextraction and gas chromatography-mass spectrometry to characterize the rectal gland volatiles of a recently collected and a more domesticated strain of each species. These glands are typical production sites and reservoirs of pheromones in bactrocerans. A total of 120 peaks were detected and 50 were identified. Differences were found in the composition of the rectal gland emissions between the sexes, species, and recently collected versus domesticated strains of each species. The compositional variation included several presence/absence and many quantitative differences. Species and strain differences in males included several relatively small alcohols, esters, and aliphatic amides. Species and strain differences in females also included some of the amides but additionally involved many fatty acid esters and 3 spiroacetals. While the strain differences indicate there is also heritable variation in rectal gland emissions within each species, the species differences imply that compositional differences in pheromones emitted from rectal glands could contribute to the premating isolation between B. tryoni and B. neohumeralis. The changes during domestication could also have significant implications for the efficacy of Sterile Insect Technique control programs.
Collapse
Affiliation(s)
- Cynthia Castro-Vargas
- Environment, Commonwealth Scientific and Industrial Research Organisation, Acton, ACT, Australia
- Applied BioSciences, Macquarie University, North Ryde, NSW, Australia
| | - John Graham Oakeshott
- Environment, Commonwealth Scientific and Industrial Research Organisation, Acton, ACT, Australia
- Applied BioSciences, Macquarie University, North Ryde, NSW, Australia
| | - Heng Lin Yeap
- Environment, Commonwealth Scientific and Industrial Research Organisation, Acton, ACT, Australia
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Parkville, VIC, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia
| | - Michael J Lacey
- National Collections and Marine Infrastructure, Commonwealth Scientific and Industrial Research Organisation, Acton, ACT, Australia
| | - Siu Fai Lee
- Environment, Commonwealth Scientific and Industrial Research Organisation, Acton, ACT, Australia
- Applied BioSciences, Macquarie University, North Ryde, NSW, Australia
| | - Soo Jean Park
- Applied BioSciences, Macquarie University, North Ryde, NSW, Australia
- Australian Research Council Centre for Fruit Fly Biosecurity Innovation, Macquarie University, North Ryde, NSW, Australia
| | - Phillip Warren Taylor
- Applied BioSciences, Macquarie University, North Ryde, NSW, Australia
- Australian Research Council Centre for Fruit Fly Biosecurity Innovation, Macquarie University, North Ryde, NSW, Australia
| | - Gunjan Pandey
- Environment, Commonwealth Scientific and Industrial Research Organisation, Acton, ACT, Australia
- Applied BioSciences, Macquarie University, North Ryde, NSW, Australia
| |
Collapse
|
3
|
Li XL, Li DD, Cai XY, Cheng DF, Lu YY. Reproductive behavior of fruit flies: courtship, mating, and oviposition. PEST MANAGEMENT SCIENCE 2024; 80:935-952. [PMID: 37794312 DOI: 10.1002/ps.7816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/09/2023] [Accepted: 10/01/2023] [Indexed: 10/06/2023]
Abstract
Many species of the Tephritidae family are invasive and cause huge damage to agriculture and horticulture, owing to their reproductive characteristics. In this review, we have summarized the existing studies on the reproductive behavior of Tephritidae, particularly those regarding the genes and external factors that are associated with courtship, mating, and oviposition. Furthermore, we outline the issues that still need to be addressed in fruit fly reproduction research. The review highlights the implications for understanding the reproductive behavior of fruit flies and discusses methods for their integrated management and biological control. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xin-Lian Li
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Dou-Dou Li
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Xin-Yan Cai
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Dai-Feng Cheng
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Yong-Yue Lu
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| |
Collapse
|
4
|
Castro-Vargas C, Pandey G, Yeap HL, Prasad SS, Lacey MJ, Lee SF, Park SJ, Taylor PW, Oakeshott JG. Genetic variation for rectal gland volatiles among recently collected isofemale lines and a domesticated strain of Queensland fruit fly, Bactrocera tryoni (Diptera: Tephritidae). PLoS One 2023; 18:e0285099. [PMID: 37115788 PMCID: PMC10146519 DOI: 10.1371/journal.pone.0285099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Divergence between populations in mating behaviour can function as a potent premating isolating mechanism and promote speciation. However, very few cases of inherited intraspecific variation in sexual signalling have been reported in tephritid fruit flies, despite them being a highly speciose family. We tested for such variation in one tephritid, the Queensland fruit fly, Bactrocera tryoni (Qfly). Qfly mating behaviour depends on volatiles secreted from male rectal glands but no role for the volatiles from female rectal glands has yet been reported. We previously detected over 100 volatile compounds in male rectal glands and identified over 30 of them. Similar numbers were recorded in females. However, many compounds showed presence/absence differences between the sexes and many others showed quantitative differences between them. Here we report inherited variation among 24 Qfly lines (23 isofemale lines established from recent field collections and one domesticated line) in the abundance of three esters, two alcohols, two amides, an aldehyde and 18 unidentified volatiles in male rectal glands. We did not find any compounds in female rectal glands that varied significantly among the lines, although this may at least partly reflect lower female sample numbers. Most of the 26 male compounds that differed between lines were more abundant in the domesticated line than any of the recently established isofemale lines, which concurs with other evidence for changes in mating behaviour during domestication of this species. There were also large differences in several of the 26 compounds among the isofemale lines, and some of these differences were associated with the regions from which the lines were collected. While some of the variation in different compounds was correlated across lines, much of it was not, implicating involvement of multiple genes. Our findings parallel reports of geographic variation in other Qfly traits and point to inherited differences in reproductive physiology that could provide a basis for evolution of premating isolation between ecotypes.
Collapse
Affiliation(s)
- Cynthia Castro-Vargas
- Environment, Black Mountain, Commonwealth Scientific and Industrial Research Organisation, Acton, ACT, Australia
- Applied BioSciences, Macquarie University, North Ryde, NSW, Australia
- Australian Research Council Centre for Fruit Fly Biosecurity Innovation, Macquarie University, North Ryde, NSW, Australia
| | - Gunjan Pandey
- Environment, Black Mountain, Commonwealth Scientific and Industrial Research Organisation, Acton, ACT, Australia
- Applied BioSciences, Macquarie University, North Ryde, NSW, Australia
| | - Heng Lin Yeap
- Environment, Black Mountain, Commonwealth Scientific and Industrial Research Organisation, Acton, ACT, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia
| | - Shirleen S Prasad
- Environment, Black Mountain, Commonwealth Scientific and Industrial Research Organisation, Acton, ACT, Australia
- Applied BioSciences, Macquarie University, North Ryde, NSW, Australia
- Australian Research Council Centre for Fruit Fly Biosecurity Innovation, Macquarie University, North Ryde, NSW, Australia
| | - Michael J Lacey
- National Collections and Marine Infrastructure, Black Mountain, Commonwealth Scientific and Industrial Research Organisation, Acton, ACT, Australia
| | - Siu Fai Lee
- Environment, Black Mountain, Commonwealth Scientific and Industrial Research Organisation, Acton, ACT, Australia
- Applied BioSciences, Macquarie University, North Ryde, NSW, Australia
- Australian Research Council Centre for Fruit Fly Biosecurity Innovation, Macquarie University, North Ryde, NSW, Australia
| | - Soo J Park
- Applied BioSciences, Macquarie University, North Ryde, NSW, Australia
- Australian Research Council Centre for Fruit Fly Biosecurity Innovation, Macquarie University, North Ryde, NSW, Australia
| | - Phillip W Taylor
- Applied BioSciences, Macquarie University, North Ryde, NSW, Australia
- Australian Research Council Centre for Fruit Fly Biosecurity Innovation, Macquarie University, North Ryde, NSW, Australia
| | - John G Oakeshott
- Environment, Black Mountain, Commonwealth Scientific and Industrial Research Organisation, Acton, ACT, Australia
- Applied BioSciences, Macquarie University, North Ryde, NSW, Australia
| |
Collapse
|