1
|
Lin J, Miao J, Schaefer KG, Russell CM, Pyron RJ, Zhang F, Phan QT, Solis NV, Liu H, Tashiro M, Dordick JS, Linhardt RJ, Yeaman MR, King GM, Barrera FN, Peters BM, Filler SG. Sulfated glycosaminoglycans are host epithelial cell targets of the Candida albicans toxin candidalysin. Nat Microbiol 2024; 9:2553-2569. [PMID: 39285260 PMCID: PMC11734966 DOI: 10.1038/s41564-024-01794-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 07/23/2024] [Indexed: 10/03/2024]
Abstract
Candidalysin, a cytolytic peptide produced by the fungal pathogen Candida albicans, is a key virulence factor. However, its host cell targets remain elusive. Here we performed a genome-wide loss-of-function CRISPR screen in the TR146 human oral epithelial cell line and identified that disruption of genes (XYLT2, B3GALT6 and B3GAT3) in glycosaminoglycan (GAG) biosynthesis conferred resistance to damage induced by candidalysin and live C. albicans. Surface plasmon resonance and atomic force and electron microscopy indicated that candidalysin binds to sulfated GAGs, facilitating its enrichment on the host cell surface. Adding exogenous sulfated GAGs or the analogue dextran sulfate protected cells against candidalysin-induced damage. Dextran sulfate also inhibited C. albicans invasion and fungal-induced epithelial cell cytokine production. In mice with vulvovaginal candidiasis, topical dextran sulfate administration reduced intravaginal tissue damage and inflammation. Collectively, sulfated GAGs are epithelial cell targets of candidalysin and can be used therapeutically to protect cells from candidalysin-induced damage.
Collapse
Affiliation(s)
- Jianfeng Lin
- Institute for Infection and Immunity, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Jian Miao
- Pharmaceutical Sciences Program, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | | | - Charles M Russell
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, USA
| | - Robert J Pyron
- Genome Science and Technology, University of Tennessee, Knoxville, TN, USA
| | - Fuming Zhang
- Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Quynh T Phan
- Institute for Infection and Immunity, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Norma V Solis
- Institute for Infection and Immunity, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Hong Liu
- Institute for Infection and Immunity, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Masato Tashiro
- Institute for Infection and Immunity, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
- Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Jonathan S Dordick
- Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Robert J Linhardt
- Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Michael R Yeaman
- Institute for Infection and Immunity, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Division of Infectious Diseases, Department of Medicine, Harbor-UCLA Medical Center, Torrance, CA, USA
- Division of Molecular Medicine, Department of Medicine, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Gavin M King
- Department of Physics and Astronomy, University of Missouri, Columbia, MO, USA
- Department of Biochemistry, University of Missouri-Columbia, Columbia, MO, USA
| | - Francisco N Barrera
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, USA
| | - Brian M Peters
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Scott G Filler
- Institute for Infection and Immunity, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA.
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
- Division of Infectious Diseases, Department of Medicine, Harbor-UCLA Medical Center, Torrance, CA, USA.
| |
Collapse
|
2
|
Lin J, Miao J, Schaefer KG, Russell CM, Pyron RJ, Zhang F, Phan QT, Solis-Swidergall NV, Liu H, Tashiro M, Dordick JS, Linhardt RJ, Yeaman MR, King GM, Barrera FN, Peters BM, Filler SG. A genome-scale screen identifies sulfated glycosaminoglycans as pivotal in epithelial cell damage by Candida albicans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.23.595417. [PMID: 38826446 PMCID: PMC11142209 DOI: 10.1101/2024.05.23.595417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Candidalysin is a cytolytic peptide produced by the opportunistic fungal pathogen Candida albicans. This peptide is a key virulence factor in mouse models of mucosal and hematogenously disseminated candidiasis. Despite intense interest in the role of candidalysin in C. albicans pathogenicity, its host cell targets have remained elusive. To fill this knowledge gap, we performed a genome-wide loss-of-function CRISPR screen in a human oral epithelial cell line to identify specific host factors required for susceptibility to candidalysin-induced cellular damage. Among the top hits were XYLT2, B3GALT6 and B3GAT3, genes that function in glycosaminoglycan (GAG) biosynthesis. Deletion of these genes led to the absence of GAGs such as heparan sulfate on the epithelial cell surface and increased resistance to damage induced by both candidalysin and live C. albicans. Biophysical analyses including surface plasmon resonance and atomic force and electron microscopy indicated that candidalysin physically binds to sulfated GAGs, facilitating its oligomerization or enrichment on the host cell surface. The addition of exogenous sulfated GAGs or the GAG analogue dextran sulfate protected cells against candidalysin-induced damage. Dextran sulfate, but not non-sulfated dextran, also inhibited epithelial cell endocytosis of C. albicans and fungal-induced epithelial cell cytokine and chemokine production. In a murine model of vulvovaginal candidiasis, topical dextran sulfate administration reduced host tissue damage and decreased intravaginal IL-1β and neutrophil levels. Collectively, these data indicate that GAGs are epithelial cell targets of candidalysin and can be used therapeutically to protect cells from candidalysin-induced damage.
Collapse
Affiliation(s)
- Jianfeng Lin
- Institute for Infection and Immunity, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Jian Miao
- Pharmaceutical Sciences Program, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Katherine G Schaefer
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri United States
| | - Charles M Russell
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee United States
| | - Robert J Pyron
- Genome Science and Technology, University of Tennessee, Knoxville, United States
| | - Fuming Zhang
- Department of Chemical and Biological Engineering, and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Quynh T Phan
- Institute for Infection and Immunity, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Norma V Solis-Swidergall
- Institute for Infection and Immunity, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Hong Liu
- Institute for Infection and Immunity, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Masato Tashiro
- Institute for Infection and Immunity, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
- Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Jonathan S Dordick
- Department of Chemical and Biological Engineering, and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Robert J Linhardt
- Department of Chemical and Biological Engineering, and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Michael R Yeaman
- Institute for Infection and Immunity, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
- David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Division of Infectious Diseases, Department of Medicine, Harbor-UCLA Medical Center, Torrance, California, USA
- Division of Molecular Medicine, Department of Medicine, Harbor-UCLA Medical Center, Torrance, California, USA
| | - Gavin M King
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri United States
| | - Francisco N Barrera
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee United States
| | - Brian M Peters
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Scott G Filler
- Institute for Infection and Immunity, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
- David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Division of Infectious Diseases, Department of Medicine, Harbor-UCLA Medical Center, Torrance, California, USA
| |
Collapse
|
3
|
Messina A, Mariani A, Brandolisio R, Tavella E, Germano C, Lipari G, Leo L, Masturzo B, Manzoni P. Candidiasis in Pregnancy: Relevant Aspects of the Pathology for the Mother and the Fetus and Therapeutic Strategies. Trop Med Infect Dis 2024; 9:114. [PMID: 38787047 PMCID: PMC11125970 DOI: 10.3390/tropicalmed9050114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
Vulvovaginal candidiasis (VVC) is a common condition that can lead to significant discomfort, affecting approximately 70-75% of women at least once in their lives. During pregnancy, the prevalence of VVC is estimated to be around 20%, peaking at about 30% in the third trimester, with a number of specific risk factors predisposing to yeast infection being identified and needing elucidation. This review aims to provide updated knowledge on candidiasis during pregnancy, addressing risk factors and maternal and neonatal outcomes, as well as discussing optimal therapeutic strategies to safeguard mothers and newborns. The bibliographic search involved two biomedical databases, PubMed and Embase, without imposing time limits. Among all Candida spp., Candida albicans remains the most frequent causative species. The hyperestrogenic environment of the vaginal mucosa and reduced immune defenses, physiological effects of pregnancy, create conditions favorable for Candida spp. vaginal colonization and hence VVC. Recent evidence shows an association between VVC and adverse obstetric outcomes, including premature membrane rupture (PROM), chorioamnionitis, preterm birth, and puerperal infections. Prompt and effective management of this condition is therefore crucial to prevent adverse obstetric outcomes, maternal-fetal transmission, and neonatal disease. Additional studies are required to confirm the benefits of systemic treatment for maternal candida infection or colonization in preventing premature birth or neonatal systemic candidiasis.
Collapse
Affiliation(s)
- Alessandro Messina
- Division of Obstetrics and Gynecology, Department of Maternal, Neonatal and Infant Medicine, University Hospital “Degli Infermi”, 13875 Ponderano, Italy (A.M.); (C.G.); (G.L.); (B.M.)
| | - Alessia Mariani
- Division of Obstetrics and Gynecology, Department of Maternal, Neonatal and Infant Medicine, University Hospital “Degli Infermi”, 13875 Ponderano, Italy (A.M.); (C.G.); (G.L.); (B.M.)
| | - Romina Brandolisio
- Division of Pediatrics and Neonatology, Department of Maternal, Neonatal and Infant Medicine, University Hospital “Degli Infermi”, 13875 Ponderano, Italy; (R.B.); (E.T.)
- Department of Maternal, Neonatal and Infant Medicine, University of Torino School of Medicine, 10125 Turin, Italy
| | - Elena Tavella
- Division of Pediatrics and Neonatology, Department of Maternal, Neonatal and Infant Medicine, University Hospital “Degli Infermi”, 13875 Ponderano, Italy; (R.B.); (E.T.)
- Department of Maternal, Neonatal and Infant Medicine, University of Torino School of Medicine, 10125 Turin, Italy
| | - Chiara Germano
- Division of Obstetrics and Gynecology, Department of Maternal, Neonatal and Infant Medicine, University Hospital “Degli Infermi”, 13875 Ponderano, Italy (A.M.); (C.G.); (G.L.); (B.M.)
| | - Giovanni Lipari
- Division of Obstetrics and Gynecology, Department of Maternal, Neonatal and Infant Medicine, University Hospital “Degli Infermi”, 13875 Ponderano, Italy (A.M.); (C.G.); (G.L.); (B.M.)
| | - Livio Leo
- Division of Obstetrics and Gynecology, Hopital Beauregard, AUSL Valleè d’Aoste, 11100 Aosta, Italy;
| | - Bianca Masturzo
- Division of Obstetrics and Gynecology, Department of Maternal, Neonatal and Infant Medicine, University Hospital “Degli Infermi”, 13875 Ponderano, Italy (A.M.); (C.G.); (G.L.); (B.M.)
| | - Paolo Manzoni
- Division of Pediatrics and Neonatology, Department of Maternal, Neonatal and Infant Medicine, University Hospital “Degli Infermi”, 13875 Ponderano, Italy; (R.B.); (E.T.)
- Department of Maternal, Neonatal and Infant Medicine, University of Torino School of Medicine, 10125 Turin, Italy
| |
Collapse
|
4
|
Valentine M, Rudolph P, Dietschmann A, Tsavou A, Mogavero S, Lee S, Priest EL, Zhurgenbayeva G, Jablonowski N, Timme S, Eggeling C, Allert S, Dolk E, Naglik JR, Figge MT, Gresnigt MS, Hube B. Nanobody-mediated neutralization of candidalysin prevents epithelial damage and inflammatory responses that drive vulvovaginal candidiasis pathogenesis. mBio 2024; 15:e0340923. [PMID: 38349176 PMCID: PMC10936171 DOI: 10.1128/mbio.03409-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 01/12/2024] [Indexed: 03/14/2024] Open
Abstract
Candida albicans can cause mucosal infections in humans. This includes oropharyngeal candidiasis, which is commonly observed in human immunodeficiency virus infected patients, and vulvovaginal candidiasis (VVC), which is the most frequent manifestation of candidiasis. Epithelial cell invasion by C. albicans hyphae is accompanied by the secretion of candidalysin, a peptide toxin that causes epithelial cell cytotoxicity. During vaginal infections, candidalysin-driven tissue damage triggers epithelial signaling pathways, leading to hyperinflammatory responses and immunopathology, a hallmark of VVC. Therefore, we proposed blocking candidalysin activity using nanobodies to reduce epithelial damage and inflammation as a therapeutic strategy for VVC. Anti-candidalysin nanobodies were confirmed to localize around epithelial-invading C. albicans hyphae, even within the invasion pocket where candidalysin is secreted. The nanobodies reduced candidalysin-induced damage to epithelial cells and downstream proinflammatory responses. Accordingly, the nanobodies also decreased neutrophil activation and recruitment. In silico mathematical modeling enabled the quantification of epithelial damage caused by candidalysin under various nanobody dosing strategies. Thus, nanobody-mediated neutralization of candidalysin offers a novel therapeutic approach to block immunopathogenic events during VVC and alleviate symptoms.IMPORTANCEWorldwide, vaginal infections caused by Candida albicans (VVC) annually affect millions of women, with symptoms significantly impacting quality of life. Current treatments are based on anti-fungals and probiotics that target the fungus. However, in some cases, infections are recurrent, called recurrent VVC, which often fails to respond to treatment. Vaginal mucosal tissue damage caused by the C. albicans peptide toxin candidalysin is a key driver in the induction of hyperinflammatory responses that fail to clear the infection and contribute to immunopathology and disease severity. In this pre-clinical evaluation, we show that nanobody-mediated candidalysin neutralization reduces tissue damage and thereby limits inflammation. Implementation of candidalysin-neutralizing nanobodies may prove an attractive strategy to alleviate symptoms in complicated VVC cases.
Collapse
Affiliation(s)
- Marisa Valentine
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology–Hans Knöll Institute, Jena, Germany
| | - Paul Rudolph
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
| | - Axel Dietschmann
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology–Hans Knöll Institute, Jena, Germany
| | - Antzela Tsavou
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London, England, United Kingdom
| | - Selene Mogavero
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology–Hans Knöll Institute, Jena, Germany
| | - Sejeong Lee
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London, England, United Kingdom
| | - Emily L. Priest
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London, England, United Kingdom
| | - Gaukhar Zhurgenbayeva
- Institute of Applied Optics and Biophysics, Friedrich Schiller University, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University, Jena, Germany
| | - Nadja Jablonowski
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology–Hans Knöll Institute, Jena, Germany
| | - Sandra Timme
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
| | - Christian Eggeling
- Institute of Applied Optics and Biophysics, Friedrich Schiller University, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University, Jena, Germany
- Biophysical Imaging, Leibniz Institute of Photonic Technology, Jena, Germany
- Jena Center for Soft Matter (JCSM), Jena, Germany
| | - Stefanie Allert
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology–Hans Knöll Institute, Jena, Germany
| | | | - Julian R. Naglik
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London, England, United Kingdom
| | - Marc T. Figge
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University, Jena, Germany
- Institute of Microbiology, Friedrich-Schiller-University, Jena, Germany
| | - Mark S. Gresnigt
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology–Hans Knöll Institute, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University, Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology–Hans Knöll Institute, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University, Jena, Germany
- Institute of Microbiology, Friedrich-Schiller-University, Jena, Germany
| |
Collapse
|
5
|
Mori T, Kataoka H, Into T. Effect of NLRP3 deficiency on cytotoxic and IL-1β-producing activities of synthetic candidalysin peptide. J Oral Biosci 2023; 65:287-292. [PMID: 37659475 DOI: 10.1016/j.job.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/24/2023] [Accepted: 08/27/2023] [Indexed: 09/04/2023]
Abstract
OBJECTIVES Candidalysin (CL), a hydrophobic peptide toxin secreted by Candida albicans, is a key virulence factor that contributes to cytolysis, tissue damage, and immune activation. CL is thought to exert some of its biological activities, including IL-1β production, through the activation of the NLRP3-inflammasome pathway. To date, the mechanism by which CL affects human NLRP3 is not fully understood. We investigated specific activities of synthetic CL peptides using human-derived NLRP3-deficient cells. METHODS Two distinct synthetic CL peptide solutions were prepared: CLd, with CL completely solubilized as nanoparticles in dimethyl sulfoxide, and CLw, with CL partly solubilized in water, and including insoluble microparticles. THP-1 human monocytic cells and NLRP3-deficient THP-1 cells were differentiated into macrophages and stimulated with these peptide solutions. Cell membrane damage, lactate dehydrogenase release, IL-1β production, and caspase-1 activation in stimulated cells were subsequently evaluated. RESULTS Both CLd and CLw exhibited cytotoxic activities independent of NLRP3. Importantly, CLd induced IL-1β production and caspase-1 activation in an NLRP3-independent manner, whereas these activities in CLw-stimulated cells were entirely NLRP3-dependent, suggesting that the NLRP3-dependent response might be triggered by insoluble microparticles. CONCLUSIONS Our results demonstrate that inherent CL activities can cause cell damage and IL-1β production in an NLRP3-independent manner. Our research advances the elucidation of the role of NLRP3 in CL biological activity, underscoring the necessity for further exploration of the precise mechanisms underlying the NLRP3-independent effects of CL and providing novel insights into the complexity of host-pathogen interactions.
Collapse
Affiliation(s)
- Taiki Mori
- Department of Oral Microbiology, Division of Oral Infections Health Sciences, Asahi University School of Dentistry, 1851 Hozumi, Mizuho, Gifu 501-0296, Japan
| | - Hideo Kataoka
- Department of Oral Microbiology, Division of Oral Infections Health Sciences, Asahi University School of Dentistry, 1851 Hozumi, Mizuho, Gifu 501-0296, Japan
| | - Takeshi Into
- Department of Oral Microbiology, Division of Oral Infections Health Sciences, Asahi University School of Dentistry, 1851 Hozumi, Mizuho, Gifu 501-0296, Japan.
| |
Collapse
|
6
|
Domae E, Kamada A, Yoshikawa Y, Ikeo T. Heparin interacts with candidalysin and neutralizes its cytotoxicity to oral epithelial cells. J Oral Biosci 2023; 65:206-210. [PMID: 36963631 DOI: 10.1016/j.job.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/26/2023]
Abstract
OBJECTIVES Candidalysin is a peptide toxin produced by Candida albicans that causes damage to epithelial cells by destabilizing the plasma membrane. This study aimed to evaluate heparin's ability to neutralize candidalysin and protect epithelial cells from lysis. METHODS The study was conducted using a human oral epithelial cell line and synthetic candidalysin. Cell damage was assessed by measuring lactate dehydrogenase release. Enzyme-linked immunosorbent assay and immunoblotting were used to determine cytokine concentrations and assess activation of intracellular signaling molecules and transcription factors, respectively. Flow cytometry was used to measure cell-bound candidalysin. RESULTS Heparin diminished the cell-lytic activity of candidalysin and subsequent epithelial responses. Additionally, heparin inhibited the interaction between candidalysin and epithelial cells. Furthermore, polyacrylic acid, a synthetic polymer, mimicked the neutralizing effects of candidalysin. CONCLUSION Our findings suggest that negatively charged polymers could be a potential therapeutic option for preventing the damage caused by candidalysin. Further research is needed to explore the effectiveness of other anionic polymers and their potential clinical applications.
Collapse
Affiliation(s)
- Eisuke Domae
- Department of Biochemistry, Osaka Dental University, Hirakata, Osaka 5731121, Japan.
| | - Aiko Kamada
- Department of Biochemistry, Osaka Dental University, Hirakata, Osaka 5731121, Japan
| | - Yoshihiro Yoshikawa
- Department of Biochemistry, Osaka Dental University, Hirakata, Osaka 5731121, Japan
| | - Takashi Ikeo
- Department of Biochemistry, Osaka Dental University, Hirakata, Osaka 5731121, Japan
| |
Collapse
|