1
|
Luo X, Zhang M, Zhang Y, Li X, Lu R. Phenotypic changes and gene expression profiles of Vibrio parahaemolyticus in response to low concentrations of ampicillin. J Antibiot (Tokyo) 2024; 77:823-836. [PMID: 39322835 DOI: 10.1038/s41429-024-00772-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/28/2024] [Accepted: 09/01/2024] [Indexed: 09/27/2024]
Abstract
Vibrio parahaemolyticus is a leading cause of seafood-associated gastroenteritis and possesses intrinsic resistance to ampicillin. While ampicillin can trigger transcriptional responses of global genes, the behavioral and molecular changes that occur in V. parahaemolyticus when exposed to ampicillin are not fully understood. In this work, we investigated the effects of low concentrations of ampicillin on the physiology and gene expression of V. parahaemolyticus by combining phenotypic assays and RNA sequencing (RNA-seq) analysis. Our results showed that the growth of V. parahaemolyticus were notably delayed, and both motility and c-di-GMP production were significantly inhibited in the response to low concentrations of ampicillin stress. In contrast, biofilm formation by V. parahaemolyticus was enhanced by exposure to low concentrations of ampicillin. However, low concentrations of ampicillin had no effect on the cytotoxicity or adherence activity of V. parahaemolyticus. The RNA-seq data revealed that a low concentration of ampicillin significantly affected the expression levels of 676 genes, including those involved in antibiotic resistance, virulence, biofilm formation, and regulation. This work contributes to our understanding of how V. parahaemolyticus alters its behavior and gene expression in response to ampicillin exposure.
Collapse
Affiliation(s)
- Xi Luo
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
| | - Miaomiao Zhang
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
| | - Yiquan Zhang
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China.
| | - Xue Li
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
| | - Renfei Lu
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
2
|
Ni B, Tian Z, Chang J, Zhou Y, Li X, Zhang M, Li W, Zhang N, Luo X, Zhang Y, Lu R. AcsS inhibits the hemolytic activity and thermostable direct hemolysin (TDH) gene expression in Vibrio parahaemolyticus. Can J Microbiol 2024. [PMID: 39536299 DOI: 10.1139/cjm-2024-0114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Vibrio parahaemolyticus produces a key virulent factor known as thermostable direct hemolysin (TDH). TDH exhibits diverse biological activities, including hemolytic activity. The β-type hemolysis observed on Wagatsuma agar due to TDH is recognized as the Kanagawa phenomenon (KP). The tdh2 gene is primarily responsible for TDH production and the associated KP. AcsS was originally identified as an activator of swimming and swarming motility in V. parahaemolyticus. However, its potential roles in other cellular pathways remain unclear. In this study, we investigated the regulatory effects of AcsS on the hemolytic activity and tdh2 expression in V. parahaemolyticus using phenotypic tests for KP, quantitative real-time polymerase chain reaction, LacZ fusion, and electrophoretic mobility shift assays. The data showed that V. parahaemolyticus hemolytic activity and tdh2 transcription were under the negative control of AcsS. Additionally, in-vitro binding assays revealed that His-AcsS could not bind to the regulatory DNA region of tdh2. However, overexpression of AcsS in an Escherichia coli strain suppressed the expression of tdh2. Collectively, these results suggested that AcsS suppresses the hemolytic activity of V. parahaemolyticus through the downregulation of tdh2 transcription. The data enhanced our understanding of the regulatory networks governing tdh2 expression and the roles of AcsS in this bacterium.
Collapse
Affiliation(s)
- Bin Ni
- Department of laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Zhukang Tian
- Department of laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
- Health Commission of Qinghai Province, Xining 810008, Qinghai, China
| | - Jingyang Chang
- Department of laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226006, Jiangsu, China
| | - Yining Zhou
- Department of laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226006, Jiangsu, China
| | - Xue Li
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226006, Jiangsu, China
| | - Miaomiao Zhang
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226006, Jiangsu, China
| | - Wanpeng Li
- Department of laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
- Health Commission of Qinghai Province, Xining 810008, Qinghai, China
| | - Nan Zhang
- Department of laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226006, Jiangsu, China
| | - Xi Luo
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226006, Jiangsu, China
| | - Yiquan Zhang
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226006, Jiangsu, China
| | - Renfei Lu
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226006, Jiangsu, China
| |
Collapse
|
3
|
Park SB, Zhang Y. Innovative Multiplex PCR Assay for Detection of tlh, trh, and tdh Genes in Vibrio parahaemolyticus with Reference to the U.S. FDA's Bacteriological Analytical Manual ( BAM). Pathogens 2024; 13:774. [PMID: 39338964 PMCID: PMC11434849 DOI: 10.3390/pathogens13090774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/31/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
Vibrio parahaemolyticus is an important foodborne bacterium that causes severe gastroenteritis following the consumption of contaminated seafood. To identify V. parahaemolyticus and determine its pathogenicity, the U.S. Food and Drug Administration (FDA)'s Bacteriological Analytical Manual (BAM) recommends a multiplex polymerase chain reaction (PCR) protocol to simultaneously detect the species-specific thermolabile hemolysin (tlh) gene and the pathogenic thermostable-related hemolysin (trh) and thermostable-direct hemolysin (tdh) genes. However, this assay has shown two limitations: difficulty in separating the amplicons of the trh (486 bp) and tlh (450 bp) genes due to their highly similar sizes, and the weaker band exhibited by the tdh gene amplicon (270 bp). The present study aimed to improve the BAM's multiplex PCR assay by separating the three amplicons with similar intensity. A new primer set was applied for the tlh gene (369 bp) alongside the existing primers for the trh and tdh genes. The amplicons for the three genes were effectively separated by electrophoresis on a 2% tris-borate-EDTA (TBE) agarose gel within 45 min. Primer concentrations of 0.25 µM for three genes produced a significant amount of amplicons among various combinations of primer concentrations with 35 PCR cycles. This assay exhibited a detection limit of 10 pg of bacterial DNA, demonstrating its high sensitivity. It did not display amplicons from nine Vibrio species known to be human pathogens or from 18 well-documented foodborne pathogens. Therefore, the present multiplex PCR protocol could help overcome the limitations of existing assays and provide a more reliable method for detecting the three genes of V. parahaemolyticus.
Collapse
Affiliation(s)
- Seong Bin Park
- Experimental Seafood Processing Laboratory, Coastal Research & Extension Center, Mississippi State University, Pascagoula, MS 39567, USA
| | - Yan Zhang
- Experimental Seafood Processing Laboratory, Coastal Research & Extension Center, Mississippi State University, Pascagoula, MS 39567, USA
| |
Collapse
|
4
|
Huang Q, Zhang Y, Zhang M, Li X, Wang Q, Ji X, Chen R, Luo X, Ji S, Lu R. Assessment of Vibrionaceae prevalence in seafood from Qidong market and analysis of Vibrio parahaemolyticus strains. PLoS One 2024; 19:e0309304. [PMID: 39173020 PMCID: PMC11341049 DOI: 10.1371/journal.pone.0309304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/09/2024] [Indexed: 08/24/2024] Open
Abstract
The aim of this study was to investigate the prevalence of Vibrionaceae family in retail seafood products available in the Qidong market during the summer of 2023 and to characterize Vibrio parahaemolyticus isolates, given that this bacterium is the leading cause of seafood-associated food poisoning. We successfully isolated a total of 240 Vibrionaceae strains from a pool of 718 seafood samples. The breakdown of the isolates included 146 Photobacterium damselae, 59 V. parahaemolyticus, 18 V. campbellii, and 11 V. alginolyticus. Among these, P. damselae and V. parahaemolyticus were the predominant species, with respective prevalence rates of 20.3% and 8.2%. Interestingly, all 59 isolates of V. parahaemolyticus were identified as non-pathogenic. They demonstrated proficiency in swimming and swarming motility and were capable of forming biofilms across a range of temperatures. In terms of antibiotic resistance, the V. parahaemolyticus isolates showed high resistance to ampicillin, intermediate resistance to cefuroxime and cefazolin, and were sensitive to the other antibiotics evaluated. The findings of this study may offer valuable insights and theoretical support for enhancing seafood safety measures in Qidong City.
Collapse
Affiliation(s)
- Qinglian Huang
- School of Medicine, Nantong University, Nantong, Jiangsu, China
- Department of Clinical Laboratory, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
- Department of Clinical Laboratory, Qidong People’s Hospital, Qidong, Jiangsu, China
| | - Yiquan Zhang
- Department of Clinical Laboratory, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
| | - Miaomiao Zhang
- Department of Clinical Laboratory, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
| | - Xue Li
- Department of Clinical Laboratory, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
| | - Qinjun Wang
- Department of Clinical Laboratory, Qidong People’s Hospital, Qidong, Jiangsu, China
| | - Xianyi Ji
- Department of Clinical Laboratory, Qidong People’s Hospital, Qidong, Jiangsu, China
| | - Rongrong Chen
- Department of Clinical Laboratory, Qidong People’s Hospital, Qidong, Jiangsu, China
| | - Xi Luo
- Department of Clinical Laboratory, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
| | - Shenjie Ji
- Department of Clinical Laboratory, Qidong People’s Hospital, Qidong, Jiangsu, China
| | - Renfei Lu
- School of Medicine, Nantong University, Nantong, Jiangsu, China
- Department of Clinical Laboratory, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
5
|
Li X, Chang J, Zhang M, Zhou Y, Zhang T, Zhang Y, Lu R. The effect of environmental calcium on gene expression, biofilm formation and virulence of Vibrio parahaemolyticus. Front Microbiol 2024; 15:1340429. [PMID: 38881663 PMCID: PMC11176486 DOI: 10.3389/fmicb.2024.1340429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/20/2024] [Indexed: 06/18/2024] Open
Abstract
Calcium (Ca2+) can regulate the swarming motility and virulence of Vibrio parahaemolyticus BB22. However, the effects of Ca2+ on the physiology of V. parahaemolyticus RIMD2210633, whose genomic composition is quite different with that of BB22, have not been investigated. In this study, the results of phenotypic assays showed that the biofilm formation, c-di-GMP production, swimming motility, zebrafish survival rate, cytoxicity against HeLa cells, and adherence activity to HeLa cells of V. parahaemolyticus RIMD2210633 were significantly enhanced by Ca2+. However, Ca2+ had no effect on the growth, swarming motility, capsular polysaccharide (CPS) phase variation and hemolytic activity. The RNA sequencing (RNA-seq) assay disclosed 459 significantly differentially expressed genes (DEGs) in response to Ca2+, including biofilm formation-associated genes and those encode virulence factors and putative regulators. DEGs involved in polar flagellum and T3SS1 were upregulated, whereas majority of those involved in regulatory functions and c-di-GMP metabolism were downregulated. The work helps us understand how Ca2+ affects the behavior and gene expression of V. parahaemolyticus RIMD2210633.
Collapse
Affiliation(s)
- Xue Li
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, China
| | - Jingyang Chang
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, China
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Miaomiao Zhang
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, China
| | - Yining Zhou
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, China
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Tingting Zhang
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, China
| | - Yiquan Zhang
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, China
| | - Renfei Lu
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, China
| |
Collapse
|
6
|
Li X, Lian W, Zhang M, Luo X, Zhang Y, Lu R. QsvR and OpaR coordinately regulate the transcription of cpsS and cpsR in Vibrio parahaemolyticus. Can J Microbiol 2024; 70:128-134. [PMID: 38415613 DOI: 10.1139/cjm-2023-0196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Vibrio parahaemolyticus, the leading cause of seafood-associated gastroenteritis, has a strong capacity to form biofilms on surfaces, which is strictly regulated by the CpsS-CpsR-CpsQ regulatory cascade. OpaR, a master regulator of quorum sensing, is a global regulator that controls multiple cellular pathways including biofilm formation and virulence. QsvR is an AraC-type regulator that works coordinately with OpaR to control biofilm formation and virulence gene expression of V. parahaemolyticus. QsvR and OpaR activate cpsQ transcription. OpaR also activates cpsR transcription, but lacks the detailed regulatory mechanisms. Furthermore, it is still unknown whether QsvR regulates cpsR transcription, as well as whether QsvR and OpaR regulate cpsS transcription. In this study, the results of quantitative real-time PCR and LacZ fusion assays demonstrated that deletion of qsvR and/or opaR significantly decreased the expression levels of cpsS and cpsR compared to the wild-type strain. However, the results of two-plasmid lacZ reporter and electrophoretic mobility-shift assays showed that both QsvR and OpaR were unable to bind the regulatory DNA regions of cpsS and cpsR. Therefore, transcription of cpsS and cpsR was coordinately and indirectly activated by QsvR and OpaR. This work enriched our knowledge on the regulatory network of biofilm formation in V. parahaemolyticus.
Collapse
Affiliation(s)
- Xue Li
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong 226006, Jiangsu, China
| | - Wei Lian
- Nantong Center for Disease Control and Prevention, Nantong 226007, Jiangsu, China
| | - Miaomiao Zhang
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong 226006, Jiangsu, China
| | - Xi Luo
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong 226006, Jiangsu, China
| | - Yiquan Zhang
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong 226006, Jiangsu, China
| | - Renfei Lu
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong 226006, Jiangsu, China
| |
Collapse
|
7
|
Fung BL, Esin JJ, Visick KL. Vibrio fischeri: a model for host-associated biofilm formation. J Bacteriol 2024; 206:e0037023. [PMID: 38270381 PMCID: PMC10882983 DOI: 10.1128/jb.00370-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024] Open
Abstract
Multicellular communities of adherent bacteria known as biofilms are often detrimental in the context of a human host, making it important to study their formation and dispersal, especially in animal models. One such model is the symbiosis between the squid Euprymna scolopes and the bacterium Vibrio fischeri. Juvenile squid hatch aposymbiotically and selectively acquire their symbiont from natural seawater containing diverse environmental microbes. Successful pairing is facilitated by ciliary movements that direct bacteria to quiet zones on the surface of the squid's symbiotic light organ where V. fischeri forms a small aggregate or biofilm. Subsequently, the bacteria disperse from that aggregate to enter the organ, ultimately reaching and colonizing deep crypt spaces. Although transient, aggregate formation is critical for optimal colonization and is tightly controlled. In vitro studies have identified a variety of polysaccharides and proteins that comprise the extracellular matrix. Some of the most well-characterized matrix factors include the symbiosis polysaccharide (SYP), cellulose polysaccharide, and LapV adhesin. In this review, we discuss these components, their regulation, and other less understood V. fischeri biofilm contributors. We also highlight what is currently known about dispersal from these aggregates and host cues that may promote it. Finally, we briefly describe discoveries gleaned from the study of other V. fischeri isolates. By unraveling the complexities involved in V. fischeri's control over matrix components, we may begin to understand how the host environment triggers transient biofilm formation and dispersal to promote this unique symbiotic relationship.
Collapse
Affiliation(s)
- Brittany L Fung
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | - Jeremy J Esin
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | - Karen L Visick
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| |
Collapse
|
8
|
Park SB, Zhang Y. Development of Multienzyme Isothermal Rapid Amplification (MIRA) Combined with Lateral-Flow Dipstick (LFD) Assay to Detect Species-Specific tlh and Pathogenic trh and tdh Genes of Vibrio parahaemolyticus. Pathogens 2024; 13:57. [PMID: 38251364 PMCID: PMC10819497 DOI: 10.3390/pathogens13010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/27/2023] [Accepted: 01/04/2024] [Indexed: 01/23/2024] Open
Abstract
Vibrio parahaemolyticus causes severe gastroenteritis in humans after consuming contaminated raw or undercooked seafood. A species-specific marker, the thermolabile hemolysin (tlh) gene, and two pathogenic markers, thermostable-related hemolysin (trh) and thermostable-direct hemolysin (tdh) genes, have been used to identify V. parahaemolyticus and determine its pathogenicity using both PCR and qPCR assays. To enable testing in field conditions with limited resources, this study aimed to develop a simple and rapid method to detect the species-specific (tlh) and pathogenic (trh and tdh) genes of V. parahaemolyticus using multienzyme isothermal rapid amplification (MIRA) combined with a lateral-flow dipstick (LFD). The amplification of the tlh, trh, and tdh genes could be completed within 20 min at temperatures ranging from 30 to 45 °C (p < 0.05). The test yielded positive results for V. parahaemolyticus but produced negative results for nine Vibrio species and eighteen foodborne pathogenic bacterial species. MIRA-LFD could detect 10 fg of DNA and 2 colony-forming units (CFU) of V. parahaemolyticus per reaction, demonstrating a sensitivity level comparable to that of qPCR, which can detect 10 fg of DNA and 2 CFU per reaction. Both MIRA-LFD and qPCR detected seven tlh-positive results from thirty-six oyster samples, whereas one positive result was obtained using the PCR assay. No positive results for the trh and tdh genes were obtained from any oyster samples using MIRA-LFD, PCR, and qPCR. This study suggests that MIRA-LFD is a simple and rapid method to detect species-specific and pathogenic genes of V. parahaemolyticus with high sensitivity.
Collapse
Affiliation(s)
- Seong Bin Park
- Experimental Seafood Processing Laboratory, Coastal Research & Extension Center, Mississippi State University, Pascagoula, MS 39567, USA
| | - Yan Zhang
- Experimental Seafood Processing Laboratory, Coastal Research & Extension Center, Mississippi State University, Pascagoula, MS 39567, USA
| |
Collapse
|
9
|
Wu Q, Li X, Zhang M, Xue X, Zhang T, Sun H, Xiong S, Lu R, Zhang Y, Zhou M. The phase variation between wrinkly and smooth colony phenotype affects the virulence of Vibrio parahaemolyticus. Arch Microbiol 2023; 205:382. [PMID: 37973623 DOI: 10.1007/s00203-023-03719-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 10/16/2023] [Accepted: 10/22/2023] [Indexed: 11/19/2023]
Abstract
Vibrio parahaemolyticus, the causative agent of seafood-associated gastroenteritis, undergoes wrinkly and smooth colony switching on the plate. The wrinkly spreader grew faster, had stronger motility and biofilm capacity when compared with the smooth one. However, whether the two phenotypes differ in their virulence still needs to be further investigated. In this study, the data showed that the smooth spreader had stronger virulence phenotypes, including the cytotoxicity against HeLa cells, antibacterial activity against E. coli, adhesive capacity toward HeLa cells, and lethality in zebrafish, relative to the wrinkly one. However, the colony morphology variation had no influence on the haemolytic activity. The mRNA levels of major virulence genes including T3SS1, T6SS1, and T6SS2 were significantly enhanced in the smooth colonies relative to those in the wrinkly colonies. Taken together, the presented work highlighted the different virulence profiles of the wrinkly and smooth colony phenotypes.
Collapse
Affiliation(s)
- Qimin Wu
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, 226006, Jiangsu, China
| | - Xue Li
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, 226006, Jiangsu, China
| | - Miaomiao Zhang
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, 226006, Jiangsu, China
- School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Xingfan Xue
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, 226006, Jiangsu, China
- School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Tingting Zhang
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, 226006, Jiangsu, China
| | - Hui Sun
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, 226006, Jiangsu, China
| | - Shuhui Xiong
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, 226006, Jiangsu, China
| | - Renfei Lu
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, 226006, Jiangsu, China.
| | - Yiquan Zhang
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, 226006, Jiangsu, China.
| | - Min Zhou
- Nantong Center for Disease Control and Prevention, Nantong, 226007, Jiangsu, China.
| |
Collapse
|
10
|
Zhang M, Luo X, Li X, Zhang T, Wu F, Li M, Lu R, Zhang Y. L-arabinose affects the growth, biofilm formation, motility, c-di-GMP metabolism, and global gene expression of Vibrio parahaemolyticus. J Bacteriol 2023; 205:e0010023. [PMID: 37655915 PMCID: PMC10521368 DOI: 10.1128/jb.00100-23] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/24/2023] [Indexed: 09/02/2023] Open
Abstract
The L-arabinose inducible pBAD vectors are commonly used to turn on and off the expression of specific genes in bacteria. The utilization of certain carbohydrates can influence bacterial growth, virulence factor production, and biofilm formation. Vibrio parahaemolyticus, the causative agent of seafood-associated gastroenteritis, can grow in media with L-arabinose as the sole carbon source. However, the effects of L-arabinose on V. parahaemolyticus physiology have not been investigated. In this study, we show that the growth rate, biofilm formation capacity, capsular polysaccharide production, motility, and c-di-GMP production of V. parahaemolyticus are negatively affected by L-arabinose. RNA-seq data revealed significant changes in the expression levels of 752 genes, accounting for approximately 15.6% of V. parahaemolyticus genes in the presence of L-arabinose. The affected genes included those associated with L-arabinose utilization, major virulence genes, known key biofilm-related genes, and numerous regulatory genes. In the majority of type III secretion system, two genes were upregulated in the presence of L-arabinose, whereas in those of type VI secretion system, two genes were downregulated. Ten putative c-di-GMP metabolism-associated genes were also significantly differentially expressed, which may account for the reduced c-di-GMP levels in the presence of L-arabinose. Most importantly, almost 40 putative regulators were significantly differentially expressed due to the induction by L-arabinose, indicating that the utilization of L-arabinose is strictly regulated by regulatory networks in V. parahaemolyticus. The findings increase the understanding of how L-arabinose affects the physiology of V. parahaemolyticus. Researchers should use caution when considering the use of L-arabinose inducible pBAD vectors in V. parahaemolyticus. IMPORTANCE The data in this study show that L-arabinose negatively affects the growth rate, biofilm formation, capsular polysaccharide production, motility, and c-di-GMP production of V. parahaemolyticus. The data also clarify the gene expression profiles of the bacterium in the presence of L-arabinose. Significantly differentially expressed genes in response to L-arabinose were involved in multiple cellular pathways, including L-arabinose utilization, virulence factor production, biofilm formation, motility, adaptation, and regulation. The collective findings indicate the significant impact of L-arabinose on the physiology of V. parahaemolyticus. There may be similar effects on other species of bacteria. Necessary controls should be established when pBAD vectors must be used for ectopic gene expression.
Collapse
Affiliation(s)
- Miaomiao Zhang
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, Jiangsu, China
| | - Xi Luo
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, Jiangsu, China
| | - Xue Li
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, Jiangsu, China
| | - Tingting Zhang
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, Jiangsu, China
- School of Medicine, Nantong University, Nantong, Jiangsu, China
| | - Fei Wu
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, Jiangsu, China
| | - Min Li
- Department of Gastroenterology and Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, Jiangsu, China
| | - Renfei Lu
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, Jiangsu, China
| | - Yiquan Zhang
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, Jiangsu, China
| |
Collapse
|
11
|
Zhang M, Cai L, Luo X, Li X, Zhang T, Wu F, Zhang Y, Lu R. Effect of sublethal dose of chloramphenicol on biofilm formation and virulence in Vibrio parahaemolyticus. Front Microbiol 2023; 14:1275441. [PMID: 37822746 PMCID: PMC10562556 DOI: 10.3389/fmicb.2023.1275441] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/08/2023] [Indexed: 10/13/2023] Open
Abstract
Vibrio parahaemolyticus isolates are generally very sensitive to chloramphenicol. However, it is usually necessary to transfer a plasmid carrying a chloramphenicol resistance gene into V. parahaemolyticus to investigate the function of a specific gene, and the effects of chloramphenicol on bacterial physiology have not been investigated. In this work, the effects of sublethal dose of chloramphenicol on V. parahaemolyticus were investigated by combined utilization of various phenotypic assays and RNA sequencing (RNA-seq). The results showed that the growth rate, biofilm formation capcity, c-di-GMP synthesis, motility, cytoxicity and adherence activity of V. parahaemolyticus were remarkably downregulated by the sublethal dose of chloramphenicol. The RNA-seq data revealed that the expression levels of 650 genes were significantly differentially expressed in the response to chloramphenicol stress, including antibiotic resistance genes, major virulence genes, biofilm-associated genes and putative regulatory genes. Majority of genes involved in the synthesis of polar flagellum, exopolysaccharide (EPS), mannose-sensitive haemagglutinin type IV pilus (MSHA), type III secretion systems (T3SS1 and T3SS2) and type VI secretion system 2 (T6SS2) were downregulated by the sublethal dose of chloramphenicol. Five putative c-di-GMP metabolism genes were significantly differentially expressed, which may be the reason for the decrease in intracellular c-di-GMP levels in the response of chloramphenicol stress. In addition, 23 genes encoding putative regulators were also significantly differentially expressed, suggesting that these regulators may be involved in the resistance of V. parahaemolyticus to chloramphenicol stress. This work helps us to understand how chloramphenicol effect on the physiology of V. parahaemolyticus.
Collapse
Affiliation(s)
- Miaomiao Zhang
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| | - Liyan Cai
- Physical Examination Center, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| | - Xi Luo
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| | - Xue Li
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| | - Tingting Zhang
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
- School of Medicine, Nantong University, Nantong, China
| | - Fei Wu
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| | - Yiquan Zhang
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| | - Renfei Lu
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| |
Collapse
|
12
|
Abioye OE, Nontongana N, Osunla CA, Okoh AI. Antibiotic resistance and virulence genes profiling of Vibrio cholerae and Vibrio mimicus isolates from some seafood collected at the aquatic environment and wet markets in Eastern Cape Province, South Africa. PLoS One 2023; 18:e0290356. [PMID: 37616193 PMCID: PMC10449182 DOI: 10.1371/journal.pone.0290356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/04/2023] [Indexed: 08/26/2023] Open
Abstract
The current study determines the density of Vibrio spp. and isolates V. cholerae and Vibrio mimicus from fish-anatomical-sites, prawn, crab and mussel samples recovered from fish markets, freshwater and brackish water. Virulence and antibiotic resistance profiling of isolates were carried out using standard molecular and microbiology techniques. Vibrio spp. was detected in more than 90% of samples [134/144] and its density was significantly more in fish than in other samples. Vibrio. cholerae and V. mimicus were isolated in at least one sample of each sample type with higher isolation frequency in fish samples. All the V. cholerae isolates belong to non-O1/non-O139 serogroup. One or more V. cholerae isolates exhibited intermediate or resistance against each of the eighteen panels of antibiotics used but 100% of the V. mimicus were susceptible to amikacin, gentamycin and chloramphenicol. Vibrio cholerae exhibited relatively high resistance against polymyxin, ampicillin and amoxicillin/clavulanate while V. mimicus isolates exhibited relatively high resistance against nitrofurantoin, ampicillin and polymixin. The multiple-antibiotic-resistance-index [MARI] for isolates ranges between 0 and 0.67 and 48% of the isolates have MARI that is >0.2 while 55% of the isolates exhibit MultiDrug Resistance Phenotypes. The percentage detection of acc, ant, drf18, sul1, mcr-1, blasvh, blaoxa, blatem, blaoxa48, gyrA, gyrB and parC resistance-associated genes were 2%, 9%, 14%, 7%, 2%, 25%, 7%, 2%, 2%, 32%, 25% and 27% respectively while that for virulence-associated genes in increasing other was ace [2%], tcp [11%], vpi [16%], ompU [34%], toxR [43%], rtxC [70%], rtxA [73%] and hyla [77%]. The study confirmed the potential of environmental non-O1/non-O139 V. cholerae and V. mimicus to cause cholera-like infection and other vibriosis which could be difficult to manage with commonly recommended antibiotics. Thus, regular monitoring of the environment to create necessary awareness for this kind of pathogens is important in the interest of public health.
Collapse
Affiliation(s)
| | - Nolonwabo Nontongana
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
| | - Charles A. Osunla
- Department of Microbiology, Adekunle Ajasin University, Akungba Akoko, Nigeria
| | - Anthony I. Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
| |
Collapse
|
13
|
Palamae S, Mittal A, Yingkajorn M, Saetang J, Buatong J, Tyagi A, Singh P, Benjakul S. Vibrio parahaemolyticus Isolates from Asian Green Mussel: Molecular Characteristics, Virulence and Their Inhibition by Chitooligosaccharide-Tea Polyphenol Conjugates. Foods 2022; 11:4048. [PMID: 36553790 PMCID: PMC9778124 DOI: 10.3390/foods11244048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 12/16/2022] Open
Abstract
Fifty isolates of Vibrio parahaemolyticus were tested for pathogenicity, biofilm formation, motility, and antibiotic resistance. Antimicrobial activity of chitooligosaccharide (COS)-tea polyphenol conjugates against all isolates was also studied. Forty-three isolates were randomly selected from 520 isolates from Asian green mussel (Perna viridis) grown on CHROMagarTM Vibrio agar plate. Six isolates were acquired from stool specimens of diarrhea patients. One laboratory strain was V. parahaemolyticus PSU.SCB.16S.14. Among all isolates tested, 12% of V. parahaemolyticus carried the tdh+trh- gene and were positive toward Kanagawa phenomenon test. All of V. parahaemolyticus isolates could produce biofilm and showed relatively strong motile ability. When COS-catechin conjugate (COS-CAT) and COS-epigallocatechin-3-gallate conjugate (COS-EGCG) were examined for their inhibitory effect against V. parahaemolyticus, the former showed the higher bactericidal activity with the MBC value of 1.024 mg/mL against both pathogenic and non-pathogenic strains. Most of the representative Asian green mussel V. parahaemolyticus isolates exhibited high sensitivity to all antibiotics, whereas one isolate showed the intermediate resistance to cefuroxime. However, the representative clinical isolates were highly resistant to nine types of antibiotics and had multiple antibiotic resistance (MAR) index of 0.64. Thus, COS-CAT could be used as potential antimicrobial agent for controlling V. parahaemolyticus-causing disease in Asian green mussel.
Collapse
Affiliation(s)
- Suriya Palamae
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Ajay Mittal
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Mingkwan Yingkajorn
- Department of Pathology, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Jirakrit Saetang
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Jirayu Buatong
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Anuj Tyagi
- College of Fisheries, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana 141004, India
| | - Prabjeet Singh
- College of Fisheries, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana 141004, India
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| |
Collapse
|