1
|
Wei Z, Liu C, Liang J, Zhou X, Xue K, Wang K, Zhang X. Characterization of Mitoribosomal Small Subunit unit genes related immune and pharmacogenomic landscapes in renal cell carcinoma. IUBMB Life 2024; 76:647-665. [PMID: 38551358 DOI: 10.1002/iub.2818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 02/23/2024] [Indexed: 08/31/2024]
Abstract
Mitoribosomes are essential for the production of biological energy. The Human Mitoribosomal Small Subunit unit (MRPS) family, responsible for encoding mitochondrial ribosomal small subunits, is actively engaged in protein synthesis within the mitochondria. Intriguingly, MRPS family genes appear to play a role in cancer. A multistep process was employed to establish a risk model associated with MRPS genes, aiming to delineate the immune and pharmacogenomic landscapes in clear cell renal cell carcinoma (ccRCC). MRPScores were computed for individual patients to assess their responsiveness to various treatment modalities and their susceptibility to different therapeutic targets and drugs. While MRPS family genes have been implicated in various cancers as oncogenes, our findings reveal a contrasting tumor suppressor role for MRPS genes in ccRCC. Utilizing an MRPS-related risk model, we observed its excellent prognostic capability in predicting survival outcomes for ccRCC patients. Remarkably, the subgroup with high MRPS-related scores (MRPScore) displayed poorer prognosis but exhibited a more robust response to immunotherapy. Through in silico screening of 2183 drug targets and 1646 compounds, we identified two targets (RRM2 and OPRD1) and eight agents (AZ960, carmustine, lasalocid, SGI-1776, AZD8055_1059, BPD.00008900_1998, MK.8776_2046, and XAV939_1268) with potential therapeutic implications for high-MRPScore patients. Our study represents the pioneering effort in proposing that molecular classification, diagnosis, and treatment strategies can be formulated based on MRPScores. Indeed, a high MRPScore profile appears to elevate the risk of tumor progression and mortality, potentially through its influence on immune regulation. This suggests that the MRPS-related risk model holds promise as a prognostic predictor and may offer novel insights into personalized therapeutic strategies.
Collapse
Affiliation(s)
- Zhihao Wei
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenchen Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaqian Liang
- Department of Urology, Wuhan No.1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuan Zhou
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kaming Xue
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Keshan Wang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoping Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Zhao W, Fang H, Wang T, Yao C. Identification of mitochondria-related biomarkers in childhood allergic asthma. BMC Med Genomics 2024; 17:141. [PMID: 38783263 PMCID: PMC11112767 DOI: 10.1186/s12920-024-01901-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/06/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND The mechanism of mitochondria-related genes (MRGs) in childhood allergic asthma (CAS) was unclear. The aim of this study was to find new biomarkers related to MRGs in CAS. METHODS This research utilized two CAS-related datasets (GSE40888 and GSE40732) and extracted 40 MRGs from the MitoCarta3.0 Database. Initially, differential expression analysis was performed on CAS and control samples in the GSE40888 dataset to obtain the differentially expressed genes (DEGs). Differentially expressed MRGs (DE-MRGs) were obtained by overlapping the DEGs and MRGs. Protein protein interactions (PPI) network of DE-MRGs was created and the top 10 genes in the degree ranking of Maximal Clique Centrality (MCC) algorithm were defined as feature genes. Hub genes were obtained from the intersection genes from the Least absolute shrinkage and selection operator (LASSO) and EXtreme Gradient Boosting (XGBoost) algorithms. Additionally, the expression validation was conducted, functional enrichment analysis, immune infiltration analysis were finished, and transcription factors (TFs)-miRNA-mRNA regulatory network was constructed. RESULTS A total of 1505 DEGs were obtained from the GSE40888, and 44 DE-MRGs were obtained. A PPI network based on these 44 DE-MRGs was created and revealed strong interactions between ADCK5 and MFN1, BNIP3 and NBR1. Four hub genes (NDUFAF7, MTIF3, MRPS26, and NDUFAF1) were obtained by taking the intersection of genes from the LASSO and XGBoost algorithms based on 10 signature genes which obtained from PPI. In addition, hub genes-based alignment diagram showed good diagnostic performance. The results of Gene Set Enrichment Analysis (GSEA) suggested that hub genes were closely related to mismatch repair. The B cells naive cells were significantly expressed between CAS and control groups, and MTIF3 was most strongly negatively correlated with B cells naive. In addition, the expression of MTIF3 and MRPS26 may have influenced the inflammatory response in CAS patients by affecting mitochondria-related functions. The quantitative real-time polymerase chain reaction (qRT‒PCR) results showed that four hub genes were all down-regulated in the CAS samples. CONCLUSION NDUFAF7, MTIF3, MRPS26, and NDUFAF1 were identified as an MRGs-related biomarkers in CAS, which provides some reference for further research on CAS.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Pediatrics, The Second People's Hospital of Hefei, Hefei, Anhui, China.
| | - Hongjuan Fang
- Department of Pediatrics, The Second People's Hospital of Hefei, Hefei, Anhui, China
| | - Tao Wang
- Department of Pediatrics, The Second People's Hospital of Hefei, Hefei, Anhui, China
| | - Chao Yao
- Department of Pediatrics, The Second People's Hospital of Hefei, Hefei, Anhui, China
| |
Collapse
|
3
|
Ispoglou T, McCullough D, Windle A, Nair S, Cox N, White H, Burke D, Kanatas A, Prokopidis K. Addressing cancer anorexia-cachexia in older patients: Potential therapeutic strategies and molecular pathways. Clin Nutr 2024; 43:552-566. [PMID: 38237369 DOI: 10.1016/j.clnu.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/04/2024] [Accepted: 01/10/2024] [Indexed: 02/03/2024]
Abstract
Cancer cachexia (CC) syndrome, a feature of cancer-associated muscle wasting, is particularly pronounced in older patients, and is characterised by decreased energy intake and upregulated skeletal muscle catabolic pathways. To address CC, appetite stimulants, anabolic drugs, cytokine mediators, essential amino acid supplementation, nutritional counselling, cognitive behavioural therapy, and enteral nutrition have been utilised. However, pharmacological treatments that have also shown promising results, such as megestrol acetate, anamorelin, thalidomide, and delta-9-tetrahydrocannabinol, have been associated with gastrointestinal and cardiovascular complications. Emerging evidence on the efficacy of probiotics in modulating gut microbiota also presents a promising adjunct to traditional therapies, potentially enhancing nutritional absorption and systemic inflammation control. Additionally, low-dose olanzapine has demonstrated improved appetite and weight management in older patients undergoing chemotherapy, offering a potential refinement to current therapeutic approaches. This review aims to elucidate the molecular mechanisms underpinning CC, with a particular focus on the role of anorexia in exacerbating muscle wasting, and to propose pharmacological and non-pharmacological strategies to mitigate this syndrome, particularly emphasising the needs of an older demographic. Future research targeting CC should focus on refining appetite-stimulating drugs with fewer side-effects, specifically catering to the needs of older patients, and investigating nutritional factors that can either enhance appetite or minimise suppression of appetite in individuals with CC, especially within this vulnerable group.
Collapse
Affiliation(s)
| | | | - Angela Windle
- Department of Nursing and Midwifery, School of Human and Health Sciences, University of Huddersfield, Huddersfield, UK; School of Medicine, University of Leeds, Leeds, UK
| | | | - Natalie Cox
- Academic Geriatric Medicine, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Helen White
- School of Health, Leeds Beckett University, Leeds, UK
| | - Dermot Burke
- School of Medicine, University of Leeds, Leeds, UK
| | | | - Konstantinos Prokopidis
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK; Liverpool Centre for Cardiovascular Science, University of Liverpool, Liverpool, UK
| |
Collapse
|
4
|
Shen ZL, Chen WH, Liu Z, Yu DY, Chen WZ, Zang WF, Zhang P, Yan XL, Yu Z. A novel insight into the key gene signature associated with the immune landscape in the progression of sarcopenia. Exp Gerontol 2023; 179:112244. [PMID: 37343810 DOI: 10.1016/j.exger.2023.112244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/04/2023] [Accepted: 06/18/2023] [Indexed: 06/23/2023]
Abstract
Sarcopenia is an age-related skeletal muscle disorder that causes falls, disability and death in the elderly, but its exact mechanism remains unknown. In this study, we merged three GEO datasets into the expression profiles of 118 samples and screened 22 differentially expressed genes (DEGs) as candidate genes. Pathway analysis demonstrated that the functional enrichment of DEGs is mainly in the cellular response to insulin stimulus, PPAR signaling pathway and other metabolism-related pathways. Then, we identified six key genes by machine learning, which were confirmed to be closely associated with sarcopenia by bioinformatics analysis. It was experimentally verified that SCD1 exhibits the most substantial alterations in the progression of sarcopenia with disturbed lipid metabolism and myosteatosis. In addition, the immune microenvironment of sarcopenia was found to be affected by these key genes, with Th17 cells down-regulated and NK cells up-regulated. Sarcopenic patients consequently presented a more significant systemic inflammatory state with higher CAR (p = 0.028) and PAR (p = 0.018). For the first time, we identified key genes in sarcopenia with high-throughput data and demonstrated that key genes can regulate the progression of sarcopenia by affecting the immune microenvironment. Among them, SCD1 may influence lipid metabolism and myosteatosis process. Screening of key genes and analyzing of immune microenvironment provide a more accurate target for treating sarcopenia.
Collapse
Affiliation(s)
- Zi-Le Shen
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Wen-Hao Chen
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China; Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Zhang Liu
- Department of Cardio-Thoracic Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Ding-Ye Yu
- Department of General Surgery, Huadong Hospital, Fudan University, Shanghai 200040, China
| | - Wei-Zhe Chen
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Wang-Fu Zang
- Department of Cardio-Thoracic Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Peng Zhang
- Department of Cardio-Thoracic Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China.
| | - Xia-Lin Yan
- Department of Colorectal Anal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| | - Zhen Yu
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China; Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
5
|
Zhang W, Yu L, Xu C, Tang T, Cao J, Chen L, Pang X, Ren W. MRPL51 is a downstream target of FOXM1 in promoting the malignant behaviors of lung adenocarcinoma. Oncol Lett 2023; 26:298. [PMID: 37323822 PMCID: PMC10265367 DOI: 10.3892/ol.2023.13884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 04/21/2023] [Indexed: 06/17/2023] Open
Abstract
Mitochondrial ribosome protein L51 (MRPL51) is a 39S subunit protein of the mitochondrial ribosome. Its dysregulation may be involved in non-small cell lung cancer. The present study aimed to explore MRPL51 expression in lung adenocarcinoma (LUAD) and normal lung tissues, as well as its regulatory effects on malignant LUAD behaviors. In addition, the role of forkhead box protein M1 (FOXM1) in MRPL51 transcription was studied. Bioinformatics analysis and subsequent in vitro experiments, including western blotting, immunofluorescent staining, Transwell invasion assay, dual-luciferase assay and chromatin immunoprecipitation quantitative PCR were conducted. The results demonstrated that MRPL51 expression was upregulated at both the mRNA and protein levels in LUAD tissues compared with normal lung tissues. Gene Set Enrichment Analysis demonstrated that LUAD tissues with higher MRPL51 expression also had higher expression levels of genes enriched in multiple gene sets, including 'DNA_REPAIR', 'UNFOLDED_PROTEIN_RESPONSE', 'MYC_TARGETS_V1', 'OXIDATIVE_ PHOSPHORYLATION', 'MTORC1_SIGNALING', 'REACTIVE_OXYGEN_SPECIES_PATHWAY', 'MYC_ TARGETS_V2', 'E2F_TARGETS' and 'G2M_ CHECKPOINT'. MRPL51 expression was positively correlated with 'cell cycle', 'DNA damage', 'DNA repair', epithelial-mesenchymal transition ('EMT'), 'invasion' and 'proliferation' of LUAD cells at the single-cell level. Compared to the negative control, MRPL51 knockdown decreased N-cadherin and vimentin expression but increased E-cadherin expression in A549 and Calu-3 cells. MRPL51 knockdown suppressed cell proliferation, induced G1 phase arrest and decreased cell invasion. Patients with LUAD and higher MRPL51 expression had a significantly shorter overall survival (OS). FOXM1 could bind to the MRPL51 gene promoter and activate its transcription. In conclusion, MRPL51 was transcriptionally activated by FOXM1 in LUAD and contributed to the malignant behaviors of tumor cells, including EMT, cell cycle progression and invasion. High MRPL51 expression may be a prognostic biomarker indicating poor OS.
Collapse
Affiliation(s)
- Wenqian Zhang
- Department of Thoracic Surgery, Peking University Shougang Hospital, Beijing 100144, P.R. China
| | - Lei Yu
- Department of Thoracic Surgery, Peking University Shougang Hospital, Beijing 100144, P.R. China
| | - Cong Xu
- Department of Thoracic Surgery, Peking University Shougang Hospital, Beijing 100144, P.R. China
| | - Tian Tang
- Department of Thoracic Surgery, Peking University Shougang Hospital, Beijing 100144, P.R. China
| | - Jianguang Cao
- Department of Thoracic Surgery, Peking University Shougang Hospital, Beijing 100144, P.R. China
| | - Lei Chen
- Department of Thoracic Surgery, Peking University Shougang Hospital, Beijing 100144, P.R. China
| | - Xinya Pang
- Department of Thoracic Surgery, Peking University Shougang Hospital, Beijing 100144, P.R. China
| | - Weihao Ren
- Department of Thoracic Surgery, Peking University Shougang Hospital, Beijing 100144, P.R. China
| |
Collapse
|
6
|
Anderson G, Almulla AF, Reiter RJ, Maes M. Redefining Autoimmune Disorders' Pathoetiology: Implications for Mood and Psychotic Disorders' Association with Neurodegenerative and Classical Autoimmune Disorders. Cells 2023; 12:cells12091237. [PMID: 37174637 PMCID: PMC10177037 DOI: 10.3390/cells12091237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/28/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
Although previously restricted to a limited number of medical conditions, there is a growing appreciation that 'autoimmune' (or immune-mediated) processes are important aspects of a wide array of diverse medical conditions, including cancers, neurodegenerative diseases and psychiatric disorders. All of these classes of medical conditions are associated with alterations in mitochondrial function across an array of diverse cell types. Accumulating data indicate the presence of the mitochondrial melatonergic pathway in possibly all body cells, with important consequences for pathways crucial in driving CD8+ T cell and B-cell 'autoimmune'-linked processes. Melatonin suppression coupled with the upregulation of oxidative stress suppress PTEN-induced kinase 1 (PINK1)/parkin-driven mitophagy, raising the levels of the major histocompatibility complex (MHC)-1, which underpins the chemoattraction of CD8+ T cells and the activation of antibody-producing B-cells. Many factors and processes closely associated with autoimmunity, including gut microbiome/permeability, circadian rhythms, aging, the aryl hydrocarbon receptor, brain-derived neurotrophic factor (BDNF) and its receptor tyrosine receptor kinase B (TrkB) all interact with the mitochondrial melatonergic pathway. A number of future research directions and novel treatment implications are indicated for this wide collection of poorly conceptualized and treated medical presentations. It is proposed that the etiology of many 'autoimmune'/'immune-mediated' disorders should be conceptualized as significantly determined by mitochondrial dysregulation, with alterations in the mitochondrial melatonergic pathway being an important aspect of these pathoetiologies.
Collapse
Affiliation(s)
- George Anderson
- CRC Scotland & London, Eccleston Square, London SW1V 1PG, UK
| | - Abbas F Almulla
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf 54001, Iraq
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health Long School of Medicine, San Antonio, TX 78229, USA
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|