1
|
Popov V, Mateju N, Jeske C, Lewis KO. Metaverse-based simulation: a scoping review of charting medical education over the last two decades in the lens of the 'marvelous medical education machine'. Ann Med 2024; 56:2424450. [PMID: 39535116 PMCID: PMC11562026 DOI: 10.1080/07853890.2024.2424450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 08/12/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Over the past two decades, the use of Metaverse-enhanced simulations in medical education has witnessed significant advancement. These simulations offer immersive environments and technologies, such as augmented reality, virtual reality, and artificial intelligence that have the potential to revolutionize medical training by providing realistic, hands-on experiences in diagnosing and treating patients, practicing surgical procedures, and enhancing clinical decision-making skills. This scoping review aimed to examine the evolution of simulation technology and the emergence of metaverse applications in medical professionals' training, guided by Friedman's three dimensions in medical education: physical space, time, and content, along with an additional dimension of assessment. METHODS In this scoping review, we examined the related literature in six major databases including PubMed, EMBASE, CINAHL, Scopus, Web of Science, and ERIC. A total of 173 publications were selected for the final review and analysis. We thematically analyzed these studies by combining Friedman's three-dimensional framework with assessment. RESULTS Our scoping review showed that Metaverse technologies, such as virtual reality simulation and online learning modules have enabled medical education to extend beyond physical classrooms and clinical sites by facilitating remote training. In terms of the Time dimension, simulation technologies have made partial but meaningful progress in supplementing traditional time-dependent curricula, helping to shorten learning curves, and improve knowledge retention. As for the Content dimension, high-quality simulation and metaverse content require alignment with learning objectives, interactivity, and deliberate practice that should be developmentally integrated from basic to advanced skills. With respect to the Assessment dimension, learning analytics and automated metrics from metaverse-enabled simulation systems have enhanced competency evaluation and formative feedback mechanisms. However, their integration into high-stakes testing is limited, and qualitative feedback and human observation remain crucial. CONCLUSION Our study provides an updated perspective on the achievements and limitations of using simulation to transform medical education, offering insights that can inform development priorities and research directions for human-centered, ethical metaverse applications that enhance healthcare professional training.
Collapse
Affiliation(s)
- Vitaliy Popov
- Department of Learning Health Sciences, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Natalie Mateju
- Department of Learning Health Sciences, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Caris Jeske
- Department of Learning Health Sciences, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Kadriye O. Lewis
- Children’s Mercy Kansas City, Department of Pediatrics, UMKC School of Medicine, Kansas City, MO, USA
| |
Collapse
|
2
|
Du K, Benavides LR, Isenstein EL, Tadin D, Busza AC. Virtual reality assessment of reaching accuracy in patients with recent cerebellar stroke. BMC DIGITAL HEALTH 2024; 2:50. [PMID: 39139706 PMCID: PMC11317447 DOI: 10.1186/s44247-024-00107-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/05/2024] [Indexed: 08/15/2024]
Abstract
Background Dysmetria, the inability to accurately estimate distance in motor tasks, is a characteristic clinical feature of cerebellar injury. Even though subjective dysmetria can be quickly detected during the neurological examination with the finger-to-nose test, objective quantification of reaching accuracy for clinical assessment is still lacking. Emerging VR technology allows for the delivery of rich multisensory environmental stimuli with a high degree of control. Furthermore, recent improvements in the hand-tracking feature offer an opportunity to closely examine the speed, accuracy, and consistency of fine hand movements and proprioceptive function. This study aims to investigate the application of virtual reality (VR) with hand tracking in the rapid quantification of reaching accuracy at the bedside for patients with cerebellar stroke (CS). Methods and results Thirty individuals (10 CS patients and 20 age-matched neurologically healthy controls) performed a simple task that allowed us to measure reaching accuracy using a VR headset (Oculus Quest 2). During this task, the participant was asked to reach for a target placed along a horizontal sixty-degree arc. Once the fingertip passed through the arc, the target immediately extinguished. 50% of the trials displayed a visible, real-time rendering of the hand as the participant reached for the target (visible hand condition), while the remaining 50% only showed the target being extinguished (invisible hand condition). The invisible hand condition isolates proprioception-guided movements by removing the visibility of the participant's hand. Reaching error was calculated as the difference in degrees between the location of the target, and where the fingertip contacted the arc. Both CS patients and age-matched controls displayed higher average reaching error and took longer to perform a reaching motion in the invisible hand condition than in the visible hand condition. Reaching error was higher in CS than in controls in the invisible hand condition but not in the visible hand condition. Average time taken to perform each trial was higher in CS than in controls in the invisible hand conditions but not in the visible hand condition. Conclusions Reaching accuracy assessed by VR offers a non-invasive and rapid approach to quantifying fine motor functions in clinical settings. Furthermore, this technology enhances our understanding of proprioceptive function in patients with visuomotor disabilities by allowing the isolation of proprioception from vision. Future studies with larger cohorts and longitudinal designs will examine the quantitative changes in reaching accuracy after stroke and explore the long-term benefits of VR in functional recovery.
Collapse
Affiliation(s)
- Khai Du
- Department of Neurology, University of Rochester Medical Center, Rochester, NY USA
| | | | - Emily L. Isenstein
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY USA
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY USA
- Center for Visual Science, University of Rochester, Rochester, NY USA
| | - Duje Tadin
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY USA
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY USA
- Center for Visual Science, University of Rochester, Rochester, NY USA
- Department of Ophthalmology, University of Rochester Medical Center, Rochester, NY USA
| | - Ania C. Busza
- Department of Neurology, University of Rochester Medical Center, Rochester, NY USA
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY USA
- Department of Physical Medicine and Rehabilitation, University of Rochester Medical Center, Rochester, NY USA
| |
Collapse
|
3
|
Craig TV, Rhodes RE, Sui W. Examining and Comparing the Energy Expenditure of Two Modes of a Virtual Reality Fitness Game (Supernatural): Indirect Calorimetry Study. JMIR Serious Games 2024; 12:e53999. [PMID: 38833285 PMCID: PMC11185914 DOI: 10.2196/53999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/30/2024] [Accepted: 02/09/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND The effectiveness of virtual reality (VR) fitness games as a form of moderate to vigorous physical activity has yet to be thoroughly quantified through gold standard energy expenditure measures. OBJECTIVE The purpose of this study was to examine the energy expenditure of 2 medium-intensity modes ("Flow and "Boxing") of a VR fitness game, Supernatural, using indirect calorimetry. METHODS Indirect calorimetry was used to examine relative and objective maximal oxygen consumption (VO2 max), metabolic equivalents of task (METs), and calories burned during medium-intensity bouts of both Flow and Boxing gameplay modes in young (mean age 25.42, SD 3.25 years), active individuals (n=12 female and n=11 male). METs and calories were also compared using a triaxial waist-worn accelerometer, an Apple smartwatch, and a VR headset. Mood states were assessed pre- and postbout using the shortened Profile of Mood States Questionnaire. Paired 2-tailed t tests were used to examine differences in game modes, between sexes, and pre-post exercise sessions. RESULTS Objective and relative VO2 max averaged 1.93 (SD 0.44) L/min and 27.61 (SD 5.60) mL/kg/min, respectively, between modes. Flow (mean 8.2, SD 1.54 METs) and Boxing (mean 7.6, SD 1.66 METs) are both classified as high energy expenditure, vigorous activities. Calorie expenditure data of the accelerometer and VR headset differed significantly from the metabolic cart. Mood changes pre- to post exercise were consistent with expected values for moderate- to vigorous-intensity physical activity, with participants reporting that they felt more "active," "full of pep," "vigorous," and "lively" (P<.05) following bouts. Male individuals reported higher objective oxygen consumption (VO2) for both Flow and Boxing modes; no other sex-specific differences were observed. CONCLUSIONS Both Flow and Boxing gameplay modes of Supernatural classify as vigorous physical activity and demonstrate the potential to promote mental and physical health benefits. Supernatural may be an effective exercise modality in a VO2 training program.
Collapse
Affiliation(s)
- Tabitha V Craig
- Department of Exercise Science, Physical & Health Education, University of Victoria, Victoria, BC, Canada
| | - Ryan E Rhodes
- Behavioural Medicine Lab, Department of Exercise Science, Physical & Health Education, University of Victoria, Victoria, BC, Canada
| | - Wuyou Sui
- Behavioural Medicine Lab, Department of Exercise Science, Physical & Health Education, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
4
|
Han S, Blake R, Aubuchon C, Tadin D. Binocular rivalry under naturalistic geometry: Evidence from worlds simulated in virtual reality. PNAS NEXUS 2024; 3:pgae054. [PMID: 38380058 PMCID: PMC10877069 DOI: 10.1093/pnasnexus/pgae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/30/2024] [Indexed: 02/22/2024]
Abstract
Binocular rivalry is a fascinating, widely studied visual phenomenon in which perception alternates between two competing images. This experience, however, is generally restricted to laboratory settings where two irreconcilable images are presented separately to the two eyes, an implausible geometry where two objects occupy the same physical location. Such laboratory experiences are in stark contrast to everyday visual behavior, where rivalry is almost never encountered, casting doubt on whether rivalry is relevant to our understanding of everyday binocular vision. To investigate the external validity of binocular rivalry, we manipulated the geometric plausibility of rival images using a naturalistic, cue-rich, 3D-corridor model created in virtual reality. Rival stimuli were presented in geometrically implausible, semi-plausible, or plausible layouts. Participants tracked rivalry fluctuations in each of these three layouts and for both static and moving rival stimuli. Results revealed significant and canonical binocular rivalry alternations regardless of geometrical plausibility and stimulus type. Rivalry occurred for layouts that mirrored the unnatural geometry used in laboratory studies and for layouts that mimicked real-world occlusion geometry. In a complementary 3D modeling analysis, we show that interocular conflict caused by geometrically plausible occlusion is a common outcome in a visual scene containing multiple objects. Together, our findings demonstrate that binocular rivalry can reliably occur for both geometrically implausible interocular conflicts and conflicts caused by a common form of naturalistic occlusion. Thus, key features of binocular rivalry are not simply laboratory artifacts but generalize to conditions that match the geometry of everyday binocular vision.
Collapse
Affiliation(s)
- Shui'er Han
- Center for Visual Science, University of Rochester, Rochester, NY 14642, USA
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY 14642, USA
- Institute for Infocomm Research Agency for Science, Technology and Research, Singapore 138632, Singapore
- Centre for Frontier AI Research, Agency for Science, Technology and Research, Singapore 138632, Singapore
| | - Randolph Blake
- Department of Psychology, Vanderbilt University, Nashville, TN 37240, USA
- Vanderbilt Vision Research Center, Vanderbilt University, Nashville, TN 37232, USA
| | - Celine Aubuchon
- Department of Cognitive Linguistic and Psychological Sciences, Brown University, Providence, RI 02912, USA
| | - Duje Tadin
- Center for Visual Science, University of Rochester, Rochester, NY 14642, USA
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY 14642, USA
- Department of Neuroscience, University of Rochester, Rochester, NY 14642, USA
- Department of Ophthalmology, University of Rochester, Rochester, NY 14642, USA
| |
Collapse
|
5
|
Bone M, Malik M, Crilly S. Identifying applications of virtual reality to benefit the stroke translational pipeline. Brain Neurosci Adv 2023; 7:23982128231182506. [PMID: 37360628 PMCID: PMC10288399 DOI: 10.1177/23982128231182506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/31/2023] [Indexed: 06/28/2023] Open
Abstract
As a leading cause of mortality and morbidity, stroke and its management have been studied extensively. Despite numerous pre-clinical studies identifying therapeutic targets, development of effective, specific pharmacotherapeutics remain limited. One significant limitation is a break in the translational pipeline - promising pre-clinical results have not always proven replicable in the clinic. Recent developments in virtual reality technology might help generate a better understanding of injury and recovery across the whole research pipeline in search of optimal stroke management. Here, we review the technologies that can be applied both clinically and pre-clinically to stroke research. We discuss how virtual reality technology is used to quantify clinical outcomes in other neurological conditions that have potential to be applied in stroke research. We also review current uses in stroke rehabilitation and suggest how immersive programmes would better facilitate the quantification of stroke injury severity and patient recovery comparable to pre-clinical study design. By generating continuous, standardised and quantifiable data from injury onset to rehabilitation, we propose that by paralleling pre-clinical outcomes, we can apply a better reverse-translational strategy and apply this understanding to animal studies. We hypothesise this combination of translational research strategies may improve the reliability of pre-clinical research outcomes and culminate in real-life translation of stroke management regimens and medications.
Collapse
Affiliation(s)
- Matan Bone
- School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre and The University of Manchester, Manchester, UK
| | - Maham Malik
- School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre and The University of Manchester, Manchester, UK
| | - Siobhan Crilly
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre and The University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance and The University of Manchester, Manchester, UK
| |
Collapse
|