1
|
Wang SH, Wang SR, Luan NN, Sun XQ, Guo YR, Yan YB, Liang SX. Wnt/Ca 2+ pathway inhibits neural differentiation of human dental pulp stem cells in vitro. J Dent Sci 2024; 19:2090-2099. [PMID: 39347028 PMCID: PMC11437312 DOI: 10.1016/j.jds.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/11/2024] [Indexed: 10/01/2024] Open
Abstract
Background/purpose Dental pulp stem cells (DPSCs) have demonstrated significant potential for neuroregeneration. However, a full understanding of the specific mechanism underpinning the neural differentiation of DPSCs is still required. The Wnt signaling is crucial for the development of the embryonic neural system and the maintenance of adult neural homeostasis. This study aimed to investigate the role of the Wnt/Ca2+ pathway in the neural differentiation of human DPSCs (hDPSCs) and its modulation of the Wnt/β-catenin pathway. Materials and methods hDPSCs were cultured and divided into the control group and the neurogenic induction group (Neuro group). The mRNA and protein levels of neurogenic markers, Wnt/Ca2+, and Wnt/β-catenin pathway indicators were determined using Quantitative real-time PCR and Western blotting. After inhibition of the Wnt/Ca2+ pathway using a WNT5A short hairpin RNA (shRNA) plasmid and subsequent neurogenic induction, neurogenic markers and Wnt/β-catenin pathway indicators in the NC-sh-Neuro group and WNT5A-sh-Neuro group were determined using Quantitative real-time PCR and Western blotting. Results Compared with the control group, the expression of the Wnt/Ca2+ pathway indicators (WNT5A, Frizzled 2, calmodulin-dependent protein kinase IIa, and nuclear factor of active T cells 1) decreased in the Neuro group. Conversely, the expression of WNT3A, total β-catenin and active β-catenin in the Wnt/β-catenin pathway increased. Moreover, compared with the NC-sh-Neuro group, the WNT5A-sh-Neuro group exhibited a greater level of mature neural differentiation alongside elevated expression of the Wnt/β-catenin pathway indicators. Conclusion The Wnt/Ca2+ pathway inhibited neural differentiation of hDPSCs and has a negative effect on the Wnt/β-catenin pathway in vitro.
Collapse
Affiliation(s)
- Shi-Hua Wang
- Department of Operative Dentistry and Endodontics, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, China
| | - Shi-Rui Wang
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, China
| | - Na-Na Luan
- Department of Stomatology, Yancheng Third People's Hospital, Yancheng, China
| | - Xiao-Qian Sun
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, China
- Department of Oromaxillofacial-Head and Neck Surgery, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Yi-Ran Guo
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, China
| | - Ying-Bin Yan
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, China
- Department of Oromaxillofacial-Head and Neck Surgery, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Su-Xia Liang
- Department of Operative Dentistry and Endodontics, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, China
| |
Collapse
|
2
|
Tatullo M, Cocco T, Ferretta A, Caroppo R, Marrelli B, Spagnuolo G, Paduano F. Unveiling the Neurodegenerative Alterations through Oral Stem Cells. J Dent Res 2024; 103:1100-1108. [PMID: 39275988 DOI: 10.1177/00220345241265661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2024] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative condition characterized by the progressive and selective loss of dopaminergic (DAergic) neurons in the midbrain. The replacement of neuromelanin (NM)-containing DAergic neurons in the substantia nigra and the enhancement of NM concentration could offer a promising and safe approach to treating PD symptoms. The objective of this study was to investigate and compare the potential of human periapical-cysts mesenchymal stem cells (hPCy-MSCs) and dental pulp stem cells (DPSCs) to differentiate into DAergic NM-producing neurons and to generate functional 3-dimensional (3D) midbrain-like organoids in vitro. We assessed the changes in morphology and behavior of neuron-like cells (NLCs) as well as the expression of molecular markers characterizing the DAergic neurons. Furthermore, we observed electrically active and functionally mature DAergic neurons by means of electrophysiological assays, NM dosage assays, and the quantification of dopamine release by high-performance liquid chromatography. Our results demonstrate for the first time that both hPCy-MSCs and DPSCs are capable of differentiating into NLCs, further confirmed by the increase in lactate levels in the medium of cells exposed to neurogenic conditions. Importantly, we have induced such NLCs to further differentiate into functional DAergic NM-producing neurons. Finally, 3D midbrain-like organoids have been produced from oral stem cells: they appear as neurosphere-like structures diffusely expressing the neural marker β-III tubulin and containing NM-like granules. Our findings open up a novel and fascinating opportunity to rethink oral stem cells, and the derived 3D disease models, as a strategic and reliable tool for unveiling the neurodegenerative alterations.
Collapse
Affiliation(s)
- M Tatullo
- Department of Translational Biomedicine and Neuroscience, University of Bari "Aldo Moro," Bari, Italy
- School of Dentistry, University of Dundee, Dundee, Scotland, UK
| | - T Cocco
- Department of Translational Biomedicine and Neuroscience, University of Bari "Aldo Moro," Bari, Italy
| | - A Ferretta
- Department of Translational Biomedicine and Neuroscience, University of Bari "Aldo Moro," Bari, Italy
| | - R Caroppo
- Department of Biosciences, Biotechnology, and Environment, University of Bari "Aldo Moro," Bari, Italy
| | - B Marrelli
- Stem Cells and Medical Genetics Units, Tecnologica Research Institute and Marrelli Health, Crotone, Italy
| | - G Spagnuolo
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples "Federico II," Naples, Italy
| | - F Paduano
- Stem Cells and Medical Genetics Units, Tecnologica Research Institute and Marrelli Health, Crotone, Italy
| |
Collapse
|
3
|
Zhou Q, Lei Y. ARMCX3 regulates ROS signaling, affects neural differentiation and inflammatory microenvironment in dental pulp stem cells. Heliyon 2024; 10:e37079. [PMID: 39296219 PMCID: PMC11407977 DOI: 10.1016/j.heliyon.2024.e37079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/21/2024] Open
Abstract
Background The neural differentiation of dental pulp stem cells (DPSCs) exhibits great potential in the treatment of dental pulp repair and neurodegenerative diseases. However, the precise molecular mechanisms underlying this process remain unclear. This study was designed to reveal the roles and regulatory mechanisms of the armadillo repeat-containing X-linked 3 (ARMCX3) in neural differentiation and inflammatory microenvironment in human DPSCs (hDPSCs). Methods We treated hDPSCs with porphyromonas gingivalis lipopolysaccharide (Pg-LPS) to simulate the inflammatory microenvironment. Then the lentiviral vectors were introduced to construct stable cell lines with ARMCX3 knockdown or overexpression. The expression of neural-specific markers, ARMCX3 and inflammation factors were estimated by immunofluorescence (IF), quantitative real-time polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA) assays. Additionally, we used IF assays and specific kits to investigate the regulatory role of ARMCX3 on reactive oxygen species (ROS) signaling. Moreover, a ROS inhibitor was utilized to verify whether ROS inhibition reversed the effects of ARMCX3 in Pg-LPS-treated hDPSCs. Results This work illustrated that Pg-LPS treatment significantly enhanced ARMCX3 expression and inflammatory response, and inhibited neural differentiation in hDPSCs. ARMCX3 knockdown effectively accelerated neural differentiation and controlled inflammatory cytokines at a lower level in hDPSCs in the presence of Pg-LPS. Additionally, knockdown of ARMCX3 notably reduced ROS production and ROS inhibition effectively eliminated the roles of ARMCX3 overexpression in hDPSCs. Besides, all results were proved to be statistically significant. Conclusion This investigation proved that ARMCX3 affected neural differentiation and inflammation microenvironment in hDPSCs at least partly by mediating ROS signal. These findings provided a new perspective on the mechanism of neural differentiation of hDPSCs and help to better explore the therapeutic schedule of pulpitis and neurodegenerative diseases.
Collapse
Affiliation(s)
- Quanying Zhou
- Department of Stomatology, Wuhan Ninth Hospital, Wuhan, Hubei, 430080, China
| | - Yi Lei
- Department of Stomatology, Wuhan Ninth Hospital, Wuhan, Hubei, 430080, China
| |
Collapse
|
4
|
Enkhmandakh B, Joshi P, Robson P, Vijaykumar A, Mina M, Shin DG, Bayarsaihan D. Single-cell Transcriptome Landscape of DNA Methylome Regulators Associated with Orofacial Clefts in the Mouse Dental Pulp. Cleft Palate Craniofac J 2024; 61:1480-1492. [PMID: 37161276 DOI: 10.1177/10556656231172296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Abstract
OBJECTIVE Significant evidence links epigenetic processes governing the dynamics of DNA methylation and demethylation to an increased risk of syndromic and nonsyndromic cleft lip and/or cleft palate (CL/P). Previously, we characterized mesenchymal stem/stromal cells (MSCs) at different stages of osteogenic differentiation in the mouse incisor dental pulp. The main objective of this research was to characterize the transcriptional landscape of regulatory genes associated with DNA methylation and demethylation at a single-cell resolution. DESIGN We used single-cell RNA sequencing (scRNA-seq) data to characterize transcriptome in individual subpopulations of MSCs in the mouse incisor dental pulp. SETTINGS The biomedical research institution. PATIENTS/PARTICIPANTS This study did not include patients. INTERVENTIONS This study collected and analyzed data on the single-cell RNA expssion in the mouse incisor dental pulp. MAIN OUTCOME MEASURE(S) Molecular regulators of DNA methylation/demethylation exhibit differential transcriptional landscape in different subpopulations of osteogenic progenitor cells. RESULTS scRNA-seq analysis revealed that genes encoding DNA methylation and demethylation enzymes (DNA methyltransferases and members of the ten-eleven translocation family of methylcytosine dioxygenases), methyl-DNA binding domain proteins, as well as transcription factors and chromatin remodeling proteins that cooperate with DNA methylation machinery are differentially expressed within distinct subpopulations of MSCs that undergo different stages of osteogenic differentiation. CONCLUSIONS These findings suggest some mechanistic insights into a potential link between epigenetic alterations and multifactorial causes of CL/P phenotypes.
Collapse
Affiliation(s)
- Badam Enkhmandakh
- Center for Regenerative Medicine and Skeletal Development, Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Pujan Joshi
- Computer Science and Engineering Department, University of Connecticut, Storrs, CT, USA
| | - Paul Robson
- The Jackson Laboratory for Genomic Medicine, Single Cell Biology Laboratory, Farmington, CT, USA
| | - Anushree Vijaykumar
- Department of Craniofacial Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Mina Mina
- Department of Craniofacial Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Dong-Guk Shin
- Computer Science and Engineering Department, University of Connecticut, Storrs, CT, USA
| | - Dashzeveg Bayarsaihan
- Center for Regenerative Medicine and Skeletal Development, Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, CT, USA
- Institute for System Genomics, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
5
|
Wang X, He W, Huang H, Han J, Wang R, Li H, Long Y, Wang G, Han X. Recent Advances in Hydrogel Technology in Delivering Mesenchymal Stem Cell for Osteoarthritis Therapy. Biomolecules 2024; 14:858. [PMID: 39062572 PMCID: PMC11274544 DOI: 10.3390/biom14070858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/06/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Osteoarthritis (OA), a chronic joint disease affecting over 500 million individuals globally, is characterized by the destruction of articular cartilage and joint inflammation. Conventional treatments are insufficient for repairing damaged joint tissue, necessitating novel therapeutic approaches. Mesenchymal stem cells (MSCs), with their potential for differentiation and self-renewal, hold great promise as a treatment for OA. However, challenges such as MSC viability and apoptosis in the ischemic joint environment hinder their therapeutic effectiveness. Hydrogels with biocompatibility and degradability offer a three-dimensional scaffold that support cell viability and differentiation, making them ideal for MSC delivery in OA treatment. This review discusses the pathological features of OA, the properties of MSCs, the challenges associated with MSC therapy, and methods for hydrogel preparation and functionalization. Furthermore, it highlights the advantages of hydrogel-based MSC delivery systems while providing insights into future research directions and the clinical potential of this approach.
Collapse
Affiliation(s)
- Xiangjiang Wang
- The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan 511518, China; (X.W.); (W.H.); (J.H.); (R.W.); (H.L.); (Y.L.)
| | - Wentao He
- The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan 511518, China; (X.W.); (W.H.); (J.H.); (R.W.); (H.L.); (Y.L.)
| | - Hao Huang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Collage of Physics and Optoelectronics Engineering, Shenzhen University, Shenzhen 518060, China;
| | - Jiali Han
- The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan 511518, China; (X.W.); (W.H.); (J.H.); (R.W.); (H.L.); (Y.L.)
| | - Ruren Wang
- The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan 511518, China; (X.W.); (W.H.); (J.H.); (R.W.); (H.L.); (Y.L.)
| | - Hongyi Li
- The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan 511518, China; (X.W.); (W.H.); (J.H.); (R.W.); (H.L.); (Y.L.)
| | - Ying Long
- The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan 511518, China; (X.W.); (W.H.); (J.H.); (R.W.); (H.L.); (Y.L.)
| | - Guiqing Wang
- The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan 511518, China; (X.W.); (W.H.); (J.H.); (R.W.); (H.L.); (Y.L.)
| | - Xianjing Han
- The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan 511518, China; (X.W.); (W.H.); (J.H.); (R.W.); (H.L.); (Y.L.)
| |
Collapse
|
6
|
Jenkner S, Clark JM, Gronthos S, O’Hare Doig RL. Molars to Medicine: A Focused Review on the Pre-Clinical Investigation and Treatment of Secondary Degeneration following Spinal Cord Injury Using Dental Stem Cells. Cells 2024; 13:817. [PMID: 38786039 PMCID: PMC11119219 DOI: 10.3390/cells13100817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/01/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Spinal cord injury (SCI) can result in the permanent loss of mobility, sensation, and autonomic function. Secondary degeneration after SCI both initiates and propagates a hostile microenvironment that is resistant to natural repair mechanisms. Consequently, exogenous stem cells have been investigated as a potential therapy for repairing and recovering damaged cells after SCI and other CNS disorders. This focused review highlights the contributions of mesenchymal (MSCs) and dental stem cells (DSCs) in attenuating various secondary injury sequelae through paracrine and cell-to-cell communication mechanisms following SCI and other types of neurotrauma. These mechanistic events include vascular dysfunction, oxidative stress, excitotoxicity, apoptosis and cell loss, neuroinflammation, and structural deficits. The review of studies that directly compare MSC and DSC capabilities also reveals the superior capabilities of DSC in reducing the effects of secondary injury and promoting a favorable microenvironment conducive to repair and regeneration. This review concludes with a discussion of the current limitations and proposes improvements in the future assessment of stem cell therapy through the reporting of the effects of DSC viability and DSC efficacy in attenuating secondary damage after SCI.
Collapse
Affiliation(s)
- Sandra Jenkner
- School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, North Terrace, Adelaide 5000, Australia; (S.J.); (S.G.)
- Neil Sachse Centre for Spinal Cord Research, Lifelong Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide 5000, Australia;
| | - Jillian Mary Clark
- Neil Sachse Centre for Spinal Cord Research, Lifelong Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide 5000, Australia;
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, North Terrace, Adelaide 5000, Australia
| | - Stan Gronthos
- School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, North Terrace, Adelaide 5000, Australia; (S.J.); (S.G.)
- Mesenchymal Stem Cell Laboratory, Precision Medicine Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide 5000, Australia
| | - Ryan Louis O’Hare Doig
- Neil Sachse Centre for Spinal Cord Research, Lifelong Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide 5000, Australia;
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, North Terrace, Adelaide 5000, Australia
| |
Collapse
|
7
|
Zhang X, Li H, Tang L, Zhu B, Yang W, Li M, Zhao Y. Photobiomodulation therapy enhances neural differentiation of dental pulp stem cells via ERK1/2 signaling pathway. Photochem Photobiol 2024; 100:646-655. [PMID: 37815161 DOI: 10.1111/php.13864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/11/2023]
Abstract
Photobiomodulation therapy (PBMT) is the application of a low-level laser device to generate physiological changes and provide therapeutic effects. Till now, the effects of PBMT on the neural differentiation of mesenchymal stem cells have been rarely reported. Herein, the potential effect and mechanism of PBMT on the neural differentiation of dental pulp stem cells (DPSCs) were preliminarily investigated in our research. The optimal dose of 3.75 J/cm2 was first screened for use in the following neural-inducing studies. Then, DPSCs were cultured in neural induction medium and treated with laser irradiation for 7 days. From the results of morphology and immunofluorescence, we found that irradiation promoted the formation of neural stem cell-like spheroids derived from DPSCs and enhanced potential neural differentiation. Furthermore, neural differentiation gene expressions of Nestin, microtubule-associated protein-2, and neural cell adhesion molecule were increased after PBMT irradiation. The protein expressions of class III β-tubulin and neurogenic differentiation factor 1 were also improved. Meanwhile, the involvement of extracellular signal-regulated kinase (ERK1/2) was investigated by western blot. Our study showed that the neural differentiation of DPSCs was promoted by PBMT, and the underlying mechanism in this process was associated with activating the ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- Xinran Zhang
- Department of Stomatology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Haotian Li
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Lu Tang
- Department of Stomatology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Biao Zhu
- Department of Stomatology, Fu Xing Hospital, Capital Medical University, Beijing, China
| | - Wenwen Yang
- Department of Stomatology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Miao Li
- Department of Stomatology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ying Zhao
- Department of Stomatology, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
8
|
He H, Yang YH, Yang X, Huang Y. The growth factor multimodality on treating human dental mesenchymal stem cells: a systematic review. BMC Oral Health 2024; 24:290. [PMID: 38429689 PMCID: PMC10905837 DOI: 10.1186/s12903-024-04013-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/12/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND Ensuring the quantity, quality, and efficacy of human dental mesenchymal stem cells (MSCs) has become an urgent problem as their applications increase. Growth factors (GFs) have low toxicity, good biocompatibility, and regulate stem cell survival and differentiation. They bind to specific receptors on target cells, initiating signal transduction and triggering biological functions. So far, relatively few studies have been conducted to summarize the effect of different GFs on the application of dental MSCs. We have reviewed the literature from the past decade to examine the effectiveness and mechanism of applying one or multiple GFs to human dental MSCs. Our review is based on the premise that a single dental MSC cannot fulfill all applications and that different dental MSCs react differently to GFs. METHODS A search for published articles was carried out using the Web of Science core collection and PubMed. The study was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA 2020) guidelines. This review considered studies from 2014 to 2023 that examined the effects of GFs on human dental MSCs. The final selection of articles was made on the 15th of July 2023. RESULTS Three thousand eight hundred sixty-seven pieces of literature were gathered for this systematic review initially, only 56 of them were selected based on their focus on the effects of GFs during the application of human dental MSCs. Out of the 56, 32 literature pieces were focused on a single growth factor while 24 were focused on multiple growth factors. This study shows that GFs can regulate human dental MSCs through a multi-way processing manner. CONCLUSION Multimodal treatment of GFs can effectively regulate human dental MSCs, ensuring stem cell quality, quantity, and curative effects.
Collapse
Affiliation(s)
- Huiying He
- School of Stomatology, Jinan University, Guangzhou, 510632, China
| | - Yun-Hsuan Yang
- School of Stomatology, Jinan University, Guangzhou, 510632, China
| | - Xuesong Yang
- Clinical Research Center, Clifford Hospital, Guangzhou, 511495, China.
| | - Yue Huang
- School of Stomatology, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
9
|
Bryniarska-Kubiak N, Basta-Kaim A, Kubiak A. Mechanobiology of Dental Pulp Cells. Cells 2024; 13:375. [PMID: 38474339 DOI: 10.3390/cells13050375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/06/2024] [Accepted: 02/11/2024] [Indexed: 03/14/2024] Open
Abstract
The dental pulp is the inner part of the tooth responsible for properly functioning during its lifespan. Apart from the very big biological heterogeneity of dental cells, tooth microenvironments differ a lot in the context of mechanical properties-ranging from 5.5 kPa for dental pulp to around 100 GPa for dentin and enamel. This physical heterogeneity and complexity plays a key role in tooth physiology and in turn, is a great target for a variety of therapeutic approaches. First of all, physical mechanisms are crucial for the pain propagation process from the tooth surface to the nerves inside the dental pulp. On the other hand, the modulation of the physical environment affects the functioning of dental pulp cells and thus is important for regenerative medicine. In the present review, we describe the physiological significance of biomechanical processes in the physiology and pathology of dental pulp. Moreover, we couple those phenomena with recent advances in the fields of bioengineering and pharmacology aiming to control the functioning of dental pulp cells, reduce pain, and enhance the differentiation of dental cells into desired lineages. The reviewed literature shows great progress in the topic of bioengineering of dental pulp-although mainly in vitro. Apart from a few positions, it leaves a gap for necessary filling with studies providing the mechanisms of the mechanical control of dental pulp functioning in vivo.
Collapse
Affiliation(s)
- Natalia Bryniarska-Kubiak
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St., 31-343 Kraków, Poland
- Laboratory of Stem Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 7 Gronostajowa St., 30-387 Kraków, Poland
| | - Agnieszka Basta-Kaim
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St., 31-343 Kraków, Poland
| | - Andrzej Kubiak
- Laboratory of Stem Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 7 Gronostajowa St., 30-387 Kraków, Poland
| |
Collapse
|
10
|
Kuntz S, Kunz C, Borsch C, Hill D, Morrin S, Buck R, Rudloff S. Influence of microbially fermented 2´-fucosyllactose on neuronal-like cell activity in an in vitro co-culture system. Front Nutr 2024; 11:1351433. [PMID: 38389793 PMCID: PMC10881714 DOI: 10.3389/fnut.2024.1351433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/18/2024] [Indexed: 02/24/2024] Open
Abstract
Scope 2´-Fucosyllactose (2´-FL), the most abundant oligosaccharide in human milk, plays an important role in numerous biological functions, including improved learning. It is not clear, however, whether 2´-FL or a cleavage product could influence neuronal cell activity. Thus, we investigated the effects of 2´-FL, its monosaccharide fucose (Fuc), and microbial fermented 2´-FL and Fuc on the parameters of neuronal cell activity in an intestinal-neuronal transwell co-culture system in vitro. Methods Native 13C-labeled 2´-FL and 13C-Fuc or their metabolites, fermented with Bifidobacterium (B.) longum ssp. infantis and B. breve, which were taken from the lag-, log- and stationary (stat-) growth phases of batch cultures, were applied to the apical compartment of the co-culture system with Caco-2 cells representing the intestinal layer and all-trans-retinoic acid-differentiated SH-SY5Y (SH-SY5YATRA) cells mimicking neuronal-like cells. After 3 h of incubation, the culture medium in the basal compartment was monitored for 13C enrichment by using elemental analysis isotope-ratio mass spectrometry (EA-IRMS) and effects on cell viability, plasma, and mitochondrial membrane potential. The neurotransmitter activation (BDNF, GABA, choline, and glutamate) of SH-SY5YATRA cells was also determined. Furthermore, these effects were also measured by the direct application of 13C-2´-FL and 13C-Fuc to SH-SY5YATRA cells. Results While no effects on neuronal-like cell activities were observed after intact 2´-FL or Fuc was incubated with SH-SY5YATRA cells, supernatants from the stat-growth phase of 2´-FL, fermented by B. longum ssp. infantis alone and together with B. breve, significantly induced BDNF release from SH-SY5YATRA cells. No such effects were found for 2´-FL, Fuc, or their fermentation products from B. breve. The BDNF release occurred from an enhanced vesicular release, which was confirmed by the use of the Ca2+-channel blocker verapamil. Concomitant with this event, 13C enrichment was also observed in the basal compartment when supernatants from the stat-growth phase of fermentation by B. longum ssp. infantis alone or together with B. breve were used. Conclusion The results obtained in this study suggest that microbial products of 2´-FL rather than the oligosaccharide itself may influence neuronal cell activities.
Collapse
Affiliation(s)
- Sabine Kuntz
- Department of Nutritional Science, Justus Liebig University Giessen, Giessen, Germany
| | - Clemens Kunz
- Department of Nutritional Science, Justus Liebig University Giessen, Giessen, Germany
| | - Christian Borsch
- Department of Nutritional Science, Justus Liebig University Giessen, Giessen, Germany
| | - David Hill
- Abbott, Nutrition Division, Columbus, OH, United States
| | - Sinéad Morrin
- Abbott, Nutrition Division, Columbus, OH, United States
| | - Rachael Buck
- Abbott, Nutrition Division, Columbus, OH, United States
| | - Silvia Rudloff
- Department of Nutritional Science, Justus Liebig University Giessen, Giessen, Germany
- Department of Pediatrics, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
11
|
Jiang W, Glaeser JD, Kaneda G, Sheyn J, Wechsler JT, Stephan S, Salehi K, Chan JL, Tawackoli W, Avalos P, Johnson C, Castaneda C, Kanim LEA, Tanasansomboon T, Burda JE, Shelest O, Yameen H, Perry TG, Kropf M, Cuellar JM, Seliktar D, Bae HW, Stone LS, Sheyn D. Intervertebral disc human nucleus pulposus cells associated with back pain trigger neurite outgrowth in vitro and pain behaviors in rats. Sci Transl Med 2023; 15:eadg7020. [PMID: 38055799 DOI: 10.1126/scitranslmed.adg7020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 10/06/2023] [Indexed: 12/08/2023]
Abstract
Low back pain (LBP) is often associated with the degeneration of human intervertebral discs (IVDs). However, the pain-inducing mechanism in degenerating discs remains to be elucidated. Here, we identified a subtype of locally residing human nucleus pulposus cells (NPCs), generated by certain conditions in degenerating discs, that was associated with the onset of discogenic back pain. Single-cell transcriptomic analysis of human tissues showed a strong correlation between a specific cell subtype and the pain condition associated with the human degenerated disc, suggesting that they are pain-triggering. The application of IVD degeneration-associated exogenous stimuli to healthy NPCs in vitro recreated a pain-associated phenotype. These stimulated NPCs activated functional human iPSC-derived sensory neuron responses in an in vitro organ-chip model. Injection of stimulated NPCs into the healthy rat IVD induced local inflammatory responses and increased cold sensitivity and mechanical hypersensitivity. Our findings reveal a previously uncharacterized pain-inducing mechanism mediated by NPCs in degenerating IVDs. These findings could aid in the development of NPC-targeted therapeutic strategies for the clinically unmet need to attenuate discogenic LBP.
Collapse
Affiliation(s)
- Wensen Jiang
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Juliane D Glaeser
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Giselle Kaneda
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Julia Sheyn
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jacob T Wechsler
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Stephen Stephan
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Khosrowdad Salehi
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Julie L Chan
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Wafa Tawackoli
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Pablo Avalos
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Christopher Johnson
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Chloe Castaneda
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Linda E A Kanim
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Teerachat Tanasansomboon
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Center of Excellence in Biomechanics and Innovative Spine Surgery, Department of Orthopedics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Joshua E Burda
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Oksana Shelest
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Haneen Yameen
- Department of Biomedical Engineering, Israeli Institute of Technology Technion, Haifa 3200003, Israel
| | - Tiffany G Perry
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Michael Kropf
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jason M Cuellar
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Dror Seliktar
- Department of Biomedical Engineering, Israeli Institute of Technology Technion, Haifa 3200003, Israel
| | - Hyun W Bae
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Laura S Stone
- Department of Biomedical Engineering, Israeli Institute of Technology Technion, Haifa 3200003, Israel
| | - Dmitriy Sheyn
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
12
|
Bassett C, Triplett H, Lott K, Howard KM, Kingsley K. Differential Expression of MicroRNA (MiR-27, MiR-145) among Dental Pulp Stem Cells (DPSCs) Following Neurogenic Differentiation Stimuli. Biomedicines 2023; 11:3003. [PMID: 38002003 PMCID: PMC10669296 DOI: 10.3390/biomedicines11113003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
This study sought to evaluate the expression of previously identified microRNAs known to regulate neuronal differentiation in mesenchymal stem cells (MSCs), including miR-27, miR-125, miR-128, miR-135, miR-140, miR-145, miR-218 and miR-410, among dental pulp stem cells (DPSCs) under conditions demonstrated to induce neuronal differentiation. Using an approved protocol, n = 12 DPSCs were identified from an existing biorepository and treated with basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF), which were previously demonstrated to induce neural differentiation markers including Sox1, Pax6 and NFM among these DPSCs. This study revealed that some microRNAs involved in the neuronal differentiation of MSCs were also differentially expressed among the DPSCs, including miR-27 and miR-145. In addition, this study also revealed that administration of bFGF and EGF was sufficient to modulate miR-27 and miR-145 expression in all of the stimulus-responsive DPSCs but not among all of the non-responsive DPSCs-suggesting that further investigation of the downstream targets of these microRNAs may be needed to fully evaluate and understand these observations.
Collapse
Affiliation(s)
- Charlton Bassett
- School of Medicine, University of Nevada, Las Vegas 1700 West Charleston Boulevard, Las Vegas, NV 89106, USA; (C.B.); (H.T.); (K.L.)
| | - Hunter Triplett
- School of Medicine, University of Nevada, Las Vegas 1700 West Charleston Boulevard, Las Vegas, NV 89106, USA; (C.B.); (H.T.); (K.L.)
| | - Keegan Lott
- School of Medicine, University of Nevada, Las Vegas 1700 West Charleston Boulevard, Las Vegas, NV 89106, USA; (C.B.); (H.T.); (K.L.)
| | - Katherine M. Howard
- School of Dental Medicine, University of Nevada, Las Vegas 1001 Shadow Lane, Las Vegas, NV 89106, USA;
| | - Karl Kingsley
- School of Dental Medicine, University of Nevada, Las Vegas 1001 Shadow Lane, Las Vegas, NV 89106, USA;
| |
Collapse
|
13
|
Kim JH, Irfan M, Hossain MA, George A, Chung S. BDNF/TrkB Is a Crucial Regulator in the Inflammation-Mediated Odontoblastic Differentiation of Dental Pulp Stem Cells. Cells 2023; 12:1851. [PMID: 37508514 PMCID: PMC10378460 DOI: 10.3390/cells12141851] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
The odontoblastic differentiation of dental pulp stem cells (DPSCs) associated with caries injury happens in an inflammatory context. We recently demonstrated that there is a link between inflammation and dental tissue regeneration, identified via enhanced DPSC-mediated dentinogenesis in vitro. Brain-derived neurotrophic factor (BDNF) is a nerve growth factor-related gene family molecule which functions through tropomyosin receptor kinase B (TrkB). While the roles of BDNF in neural tissue repair and other regeneration processes are well identified, its role in dentinogenesis has not been explored. Furthermore, the role of BDNF receptor-TrkB in inflammation-induced dentinogenesis remains unknown. The role of BDNF/TrkB was examined during a 17-day odontogenic differentiation of DPSCs. Human DPSCs were subjected to odontogenic differentiation in dentinogenic media treated with inflammation inducers (LTA or TNFα), BDNF, and a TrkB agonist (LM22A-4) and/or antagonist (CTX-B). Our data show that BDNF and TrkB receptors affect the early and late stages of the odontogenic differentiation of DPSCs. Immunofluorescent data confirmed the expression of BDNF and TrkB in DPSCs. Our ELISA and qPCR data demonstrate that TrkB agonist treatment increased the expression of dentin matrix protein-1 (DMP-1) during early DPSC odontoblastic differentiation. Coherently, the expression levels of runt-related transcription factor 2 (RUNX-2) and osteocalcin (OCN) were increased. TNFα, which is responsible for a diverse range of inflammation signaling, increased the levels of expression of dentin sialophosphoprotein (DSPP) and DMP1. Furthermore, BDNF significantly potentiated its effect. The application of CTX-B reversed this effect, suggesting TrkB`s critical role in TNFα-mediated dentinogenesis. Our studies provide novel findings on the role of BDNF-TrkB in the inflammation-induced odontoblastic differentiation of DPSCs. This finding will address a novel regulatory pathway and a therapeutic approach in dentin tissue engineering using DPSCs.
Collapse
Affiliation(s)
| | | | | | | | - Seung Chung
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL 60612, USA; (J.-H.K.); (M.I.); (M.A.H.); (A.G.)
| |
Collapse
|
14
|
Chi S, Li S, Cao G, Guo J, Han Y, Zhou Y, Zhang X, Li Y, Luo Z, Li X, Rong L, Zhang M, Li L, Tang S. The interplay of common genetic variants NRG1 rs2439302 and RET rs2435357 increases the risk of developing Hirschsprung's disease. Front Cell Dev Biol 2023; 11:1184799. [PMID: 37484916 PMCID: PMC10361661 DOI: 10.3389/fcell.2023.1184799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 06/14/2023] [Indexed: 07/25/2023] Open
Abstract
Introduction: As a congenital and genetically related disease, many single nucleotide polymorphisms (SNPs) have been reported to be associated with the risk of HSCR. Our previous research showed that SNP rs2439302 (NRG1) interacted with rs2435357 (RET) to increase the risk of HSCR development. However, the underlying molecular mechanism is still not well understood. Methods: SNP rs2439302 (NRG1) and rs2435357 (RET) were genotyped in 470 HSCR cases. The expression of NRG1 and RET was investigated in the colon of HSCR patients. Knockdown of the NRG1 and RET homologs was performed in zebrafish to investigate their synergistic effect on ENS development. The effect of SNP rs2439302 and rs2435357 polymorphism on neuron proliferation, migration, and differentiation were investigated in SHSY-5Y cells and IPSCs. Results: Significant downregulation of NRG1 and RET expression was noticed in the aganglionic segment of HSCR patients and SHSY-5Y cells with rs2439302 GG/rs2435357 TT genotype. NRG1 and RET double mutants caused the most severe reduction in enteric neuron numbers than NRG1 single mutant or RET single mutant in the hindgut of zebrafish. SHSY-5Y cells and IPSCs with rs2439302 GG/rs2435357 TT genotype exhibited a decreased proliferative, migration, and differentiative capacity. CTCF showed a considerably higher binding ability to SNP rs2439302 CC than GG. NRG1 reduction caused a further decrease in SOX10 expression via the PI3K/Akt pathway, which regulates RET expression by directly binding to rs2435357. Discussion: SNP rs2439302 (NRG1) GG increases the risk of developing HSCR by affecting the binding of transcription factor CTCF and interacting with rs2435357 (RET) to regulate RET expression via the PI3K/Akt/SOX10 pathway.
Collapse
Affiliation(s)
- Shuiqing Chi
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuai Li
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guoqing Cao
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jialing Guo
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yunqiao Han
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yun Zhou
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Zhang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yibo Li
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhibin Luo
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangyang Li
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liying Rong
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengxin Zhang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Linglu Li
- China Zebrafish Resource Center, National Aquatic Biological Resource Center, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Shaotao Tang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
15
|
Lampiasi N. The Migration and the Fate of Dental Pulp Stem Cells. BIOLOGY 2023; 12:biology12050742. [PMID: 37237554 DOI: 10.3390/biology12050742] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/16/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023]
Abstract
Human dental pulp stem cells (hDPSCs) are adult mesenchymal stem cells (MSCs) obtained from dental pulp and derived from the neural crest. They can differentiate into odontoblasts, osteoblasts, chondrocytes, adipocytes and nerve cells, and they play a role in tissue repair and regeneration. In fact, DPSCs, depending on the microenvironmental signals, can differentiate into odontoblasts and regenerate dentin or, when transplanted, replace/repair damaged neurons. Cell homing depends on recruitment and migration, and it is more effective and safer than cell transplantation. However, the main limitations of cell homing are the poor cell migration of MSCs and the limited information we have on the regulatory mechanism of the direct differentiation of MSCs. Different isolation methods used to recover DPSCs can yield different cell types. To date, most studies on DPSCs use the enzymatic isolation method, which prevents direct observation of cell migration. Instead, the explant method allows for the observation of single cells that can migrate at two different times and, therefore, could have different fates, for example, differentiation and self-renewal. DPSCs use mesenchymal and amoeboid migration modes with the formation of lamellipodia, filopodia and blebs, depending on the biochemical and biophysical signals of the microenvironment. Here, we present current knowledge on the possible intriguing role of cell migration, with particular attention to microenvironmental cues and mechanosensing properties, in the fate of DPSCs.
Collapse
Affiliation(s)
- Nadia Lampiasi
- Istituto per la Ricerca e l'Innovazione Biomedica, Consiglio Nazionale delle Ricerche, Via Ugo La Malfa 153, 90146 Palermo, Italy
| |
Collapse
|
16
|
Victor AK, Hedgecock T, Donaldson M, Johnson D, Rand CM, Weese-Mayer DE, Reiter LT. Analysis and comparisons of gene expression changes in patient- derived neurons from ROHHAD, CCHS, and PWS. Front Pediatr 2023; 11:1090084. [PMID: 37234859 PMCID: PMC10206321 DOI: 10.3389/fped.2023.1090084] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 04/19/2023] [Indexed: 05/28/2023] Open
Abstract
Background Rapid-onset obesity with hypothalamic dysfunction, hypoventilation, and autonomic dysregulation (ROHHAD) syndrome is an ultra-rare neurocristopathy with no known genetic or environmental etiology. Rapid-onset obesity over a 3-12 month period with onset between ages 1.5-7 years of age is followed by an unfolding constellation of symptoms including severe hypoventilation that can lead to cardiorespiratory arrest in previously healthy children if not identified early and intervention provided. Congenital Central Hypoventilation syndrome (CCHS) and Prader-Willi syndrome (PWS) have overlapping clinical features with ROHHAD and known genetic etiologies. Here we compare patient neurons from three pediatric syndromes (ROHHAD, CCHS, and PWS) and neurotypical control subjects to identify molecular overlap that may explain the clinical similarities. Methods Dental pulp stem cells (DPSC) from neurotypical control, ROHHAD, and CCHS subjects were differentiated into neuronal cultures for RNA sequencing (RNAseq). Differential expression analysis identified transcripts variably regulated in ROHHAD and CCHS vs. neurotypical control neurons. In addition, we used previously published PWS transcript data to compare both groups to PWS patient-derived DPSC neurons. Enrichment analysis was performed on RNAseq data and downstream protein expression analysis was performed using immunoblotting. Results We identified three transcripts differentially regulated in all three syndromes vs. neurotypical control subjects. Gene ontology analysis on the ROHHAD dataset revealed enrichments in several molecular pathways that may contribute to disease pathology. Importantly, we found 58 transcripts differentially expressed in both ROHHAD and CCHS patient neurons vs. control neurons. Finally, we validated transcript level changes in expression of ADORA2A, a gene encoding for an adenosine receptor, at the protein level in CCHS neurons and found variable, although significant, changes in ROHHAD neurons. Conclusions The molecular overlap between CCHS and ROHHAD neurons suggests that the clinical phenotypes in these syndromes likely arise from or affect similar transcriptional pathways. Further, gene ontology analysis identified enrichments in ATPase transmembrane transporters, acetylglucosaminyltransferases, and phagocytic vesicle membrane proteins that may contribute to the ROHHAD phenotype. Finally, our data imply that the rapid-onset obesity seen in both ROHHAD and PWS likely arise from different molecular mechanisms. The data presented here describes important preliminary findings that warrant further validation.
Collapse
Affiliation(s)
- A. Kaitlyn Victor
- IPBS Program, Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, United States
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Tayler Hedgecock
- IPBS Program, Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, United States
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Martin Donaldson
- Department of Pediatric Dentistry and Community Oral Health, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Daniel Johnson
- Molecular Bioinformatics Core, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Casey M. Rand
- Department of Pediatrics, Division of Autonomic Medicine, Ann & Robert H. Lurie Children’s Hospital of Chicago and Stanley Manne Children’s Research Institute, Chicago, IL, United States
| | - Debra E. Weese-Mayer
- Department of Pediatrics, Division of Autonomic Medicine, Ann & Robert H. Lurie Children’s Hospital of Chicago and Stanley Manne Children’s Research Institute, Chicago, IL, United States
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Lawrence T. Reiter
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, United States
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
17
|
Yang C, Du XY, Luo W. Clinical application prospects and transformation value of dental follicle stem cells in oral and neurological diseases. World J Stem Cells 2023; 15:136-149. [PMID: 37181000 PMCID: PMC10173814 DOI: 10.4252/wjsc.v15.i4.136] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/18/2023] [Accepted: 03/21/2023] [Indexed: 04/26/2023] Open
Abstract
Since dental pulp stem cells (DPSCs) were first reported, six types of dental SCs (DSCs) have been isolated and identified. DSCs originating from the craniofacial neural crest exhibit dental-like tissue differentiation potential and neuro-ectodermal features. As a member of DSCs, dental follicle SCs (DFSCs) are the only cell type obtained at the early developing stage of the tooth prior to eruption. Dental follicle tissue has the distinct advantage of large tissue volume compared with other dental tissues, which is a prerequisite for obtaining a sufficient number of cells to meet the needs of clinical applications. Furthermore, DFSCs exhibit a significantly higher cell proliferation rate, higher colony-formation capacity, and more primitive and better anti-inflammatory effects than other DSCs. In this respect, DFSCs have the potential to be of great clinical significance and translational value in oral and neurological diseases, with natural advantages based on their origin. Lastly, cryopreservation preserves the biological properties of DFSCs and enables them to be used as off-shelf products for clinical applications. This review summarizes and comments on the properties, application potential, and clinical transformation value of DFSCs, thereby inspiring novel perspectives in the future treatment of oral and neurological diseases.
Collapse
Affiliation(s)
- Chao Yang
- Research and Development Department, Shenzhen Uni-medica Technology Co., Ltd, Shenzhen 518051, Guangdong Province, China
- Department of Stomatology, The People’s Hospital of Longhua, Shenzhen 518109, Guangdong Province, China
| | - Xin-Ya Du
- Department of Stomatology, The People’s Hospital of Longhua, Shenzhen 518109, Guangdong Province, China
| | - Wen Luo
- Department of Stomatology, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, Hainan Province, China
- School of Stomatology, Hainan Medical University, Haikou 571199, Hainan Province, China
| |
Collapse
|
18
|
Carvalho S, Santos JI, Moreira L, Gonçalves M, David H, Matos L, Encarnação M, Alves S, Coutinho MF. Neurological Disease Modeling Using Pluripotent and Multipotent Stem Cells: A Key Step towards Understanding and Treating Mucopolysaccharidoses. Biomedicines 2023; 11:biomedicines11041234. [PMID: 37189853 DOI: 10.3390/biomedicines11041234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/17/2023] Open
Abstract
Despite extensive research, the links between the accumulation of glycosaminoglycans (GAGs) and the clinical features seen in patients suffering from various forms of mucopolysaccharidoses (MPSs) have yet to be further elucidated. This is particularly true for the neuropathology of these disorders; the neurological symptoms are currently incurable, even in the cases where a disease-specific therapeutic approach does exist. One of the best ways to get insights on the molecular mechanisms driving that pathogenesis is the analysis of patient-derived cells. Yet, not every patient-derived cell recapitulates relevant disease features. For the neuronopathic forms of MPSs, for example, this is particularly evident because of the obvious inability to access live neurons. This scenario changed significantly with the advent of induced pluripotent stem cell (iPSC) technologies. From then on, a series of differentiation protocols to generate neurons from iPSC was developed and extensively used for disease modeling. Currently, human iPSC and iPSC-derived cell models have been generated for several MPSs and numerous lessons were learnt from their analysis. Here we review most of those studies, not only listing the currently available MPS iPSC lines and their derived models, but also summarizing how they were generated and the major information different groups have gathered from their analyses. Finally, and taking into account that iPSC generation is a laborious/expensive protocol that holds significant limitations, we also hypothesize on a tempting alternative to establish MPS patient-derived neuronal cells in a much more expedite way, by taking advantage of the existence of a population of multipotent stem cells in human dental pulp to establish mixed neuronal and glial cultures.
Collapse
Affiliation(s)
- Sofia Carvalho
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal
- Center for the Study of Animal Science-Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences, AL4AnimalS, Faculdade de Medicina Veterinária Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Faculty of Pharmacy, University of Coimbra, Polo das Ciências da Saúde, Azinhaga de SantaComba, 3000-548 Coimbra, Portugal
| | - Juliana Inês Santos
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal
- Center for the Study of Animal Science-Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences, AL4AnimalS, Faculdade de Medicina Veterinária Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Luciana Moreira
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal
- Center for the Study of Animal Science-Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences, AL4AnimalS, Faculdade de Medicina Veterinária Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Mariana Gonçalves
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal
- Center for the Study of Animal Science-Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences, AL4AnimalS, Faculdade de Medicina Veterinária Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Inov4Agro, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Hugo David
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal
- Center for the Study of Animal Science-Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences, AL4AnimalS, Faculdade de Medicina Veterinária Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Liliana Matos
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal
- Center for the Study of Animal Science-Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences, AL4AnimalS, Faculdade de Medicina Veterinária Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Marisa Encarnação
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal
- Center for the Study of Animal Science-Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences, AL4AnimalS, Faculdade de Medicina Veterinária Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Sandra Alves
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal
- Center for the Study of Animal Science-Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences, AL4AnimalS, Faculdade de Medicina Veterinária Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Maria Francisca Coutinho
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal
- Center for the Study of Animal Science-Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences, AL4AnimalS, Faculdade de Medicina Veterinária Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| |
Collapse
|