1
|
Chung JY, Lee W, Lee OW, Ylaya K, Nambiar D, Sheehan-Klenk J, Fayn S, Hewitt SM, Choyke PL, Escorcia FE. Glypican-3 deficiency in liver cancer upregulates MAPK/ERK pathway but decreases cell proliferation. Am J Cancer Res 2024; 14:3348-3371. [PMID: 39113871 PMCID: PMC11301284 DOI: 10.62347/ttny4279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/20/2024] [Indexed: 08/10/2024] Open
Abstract
Glypican-3 (GPC3) is overexpressed in hepatocellular carcinomas and hepatoblastomas and represents an important therapeutic target but the biologic importance of GPC3 in liver cancer is unclear. To date, there are limited data characterizing the biological implications of GPC3 knockout (KO) in liver cancers that intrinsically express this target. Here, we report on the development and characterization of GPC3-KO liver cancer cell lines and compare to them to parental lines. GPC3-KO variants were established in HepG2 and Hep3B liver cancer cell lines using a lentivirus-mediated CRISPR/Cas9 system. We assessed the effects of GPC3 deficiency on oncogenic properties in vitro and in murine xenograft models. Downstream cellular signaling pathway changes induced by GPC3 deficiency were examined by RNAseq and western blot. To confirm the usefulness of the models for GPC3-targeted drug development, we evaluated the target engagement of a GPC3-selective antibody, GC33, conjugated to the positron-emitting zirconium-89 (89Zr) in subcutaneous murine xenografts of wild type (WT) and KO liver cancer cell lines. Deletion of GPC3 significantly reduced liver cancer cell proliferation, migration, and invasion compared to the parental cell lines. Additionally, the tumor growth of GPC3-KO liver cancer xenografts was significantly slower compared with control xenografts. RNA sequencing analysis also showed GPC3-KO resulted in a reduction in the expression of genes associated with cell cycle regulation, invasion, and migration. Specifically, we observed the downregulation of components in the AKT/NFκB/WNT signaling pathways and of molecules related to cell cycle regulation with GPC3-KO. In contrast, pMAPK/ERK1/2 was upregulated, suggesting an adaptive compensatory response. KO lines demonstrated increased sensitivity to ERK (GDC09994), while AKT (MK2206) inhibition was more effective in WT lines. Using antibody-based positron emission tomography (immunoPET) imaging, we confirmed that 89Zr-GC33 accumulated exclusively in GPC3-expression xenografts but not in GPC3-KO xenografts with high tumor uptake and tumor-to-liver signal ratio. We show that GPC3-KO liver cancer cell lines exhibit decreased tumorigenicity and altered signaling pathways, including upregulated pMAPK/ERK1/2, compared to parental lines. Furthermore, we successfully distinguished between GPC3+ and GPC3- tumors using the GPC3-targeted immunoPET imaging agent, demonstrating the potential utility of these cell lines in facilitating GPC3-selective drug development.
Collapse
Affiliation(s)
- Joon-Yong Chung
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of HealthBethesda, MD 20892, USA
| | - Woonghee Lee
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of HealthBethesda, MD 20892, USA
| | - Olivia W Lee
- Laboratory of Genetic Susceptibility, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of HealthBethesda, MD 20892, USA
| | - Kris Ylaya
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of HealthBethesda, MD 20892, USA
| | - Divya Nambiar
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of HealthBethesda, MD 20892, USA
| | - Julia Sheehan-Klenk
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of HealthBethesda, MD 20892, USA
| | - Stanley Fayn
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of HealthBethesda, MD 20892, USA
- Oxford Institute for Radiation Oncology, Department of Oncology, University of OxfordOxford OX3 7DQ, UK
| | - Stephen M Hewitt
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of HealthBethesda, MD 20892, USA
| | - Peter L Choyke
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of HealthBethesda, MD 20892, USA
| | - Freddy E Escorcia
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of HealthBethesda, MD 20892, USA
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of HealthBethesda, MD 20892, USA
| |
Collapse
|
2
|
Hekman L, Napierkowski E, Hartman NC, Ellis JL, Wagner RH, Bova D, Picken MM, Flanigan RC. Incidental Discovery of Hepatocellular Carcinoma on 18F-PSMA PET CT Performed for Prostate Cancer Reassessment. Case Rep Surg 2023; 2023:1458175. [PMID: 38125746 PMCID: PMC10733019 DOI: 10.1155/2023/1458175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 12/23/2023] Open
Abstract
Prostate-specific membrane antigen positron emission tomography (PSMA PET) has been approved by the Food and Drug Administration (FDA) to identify prostate cancer in the setting of biochemical recurrence but can also identify other malignancies. 18F-PSMA PET has not been studied as a potential tool for hepatocellular carcinoma (HCC). We describe the case of a 76-year-old male with a rising prostate-specific antigen (PSA) after definitive prostate cancer treatment and no prior liver pathology who was incidentally found to have HCC on 18F-PSMA PET.
Collapse
Affiliation(s)
- Lauren Hekman
- Loyola University Medical Center, Department of Urology, USA
| | | | | | | | - Robert H. Wagner
- Loyola University Medical Center, Department of Nuclear Medicine, USA
| | - Davide Bova
- Loyola University Medical Center, Department of Radiology, USA
| | - Maria M. Picken
- Loyola University Medical Center, Department of Pathology, USA
| | | |
Collapse
|
3
|
Greten TF, Villanueva A, Korangy F, Ruf B, Yarchoan M, Ma L, Ruppin E, Wang XW. Biomarkers for immunotherapy of hepatocellular carcinoma. Nat Rev Clin Oncol 2023; 20:780-798. [PMID: 37726418 DOI: 10.1038/s41571-023-00816-4] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2023] [Indexed: 09/21/2023]
Abstract
Immune-checkpoint inhibitors (ICIs) are now widely used for the treatment of patients with advanced-stage hepatocellular carcinoma (HCC). Two different ICI-containing regimens, atezolizumab plus bevacizumab and tremelimumab plus durvalumab, are now approved standard-of-care first-line therapies in this setting. However, and despite substantial improvements in survival outcomes relative to sorafenib, most patients with advanced-stage HCC do not derive durable benefit from these regimens. Advances in genome sequencing including the use of single-cell RNA sequencing (both of tumour material and blood samples), as well as immune cell identification strategies and other techniques such as radiomics and analysis of the microbiota, have created considerable potential for the identification of novel predictive biomarkers enabling the accurate selection of patients who are most likely to derive benefit from ICIs. In this Review, we summarize data on the immunology of HCC and the outcomes in patients receiving ICIs for the treatment of this disease. We then provide an overview of current biomarker use and developments in the past 5 years, including gene signatures, circulating tumour cells, high-dimensional flow cytometry, single-cell RNA sequencing as well as approaches involving the microbiome, radiomics and clinical markers. Novel concepts for further biomarker development in HCC are then discussed including biomarker-driven trials, spatial transcriptomics and integrated 'big data' analysis approaches. These concepts all have the potential to better identify patients who are most likely to benefit from ICIs and to promote the development of new treatment approaches.
Collapse
Affiliation(s)
- Tim F Greten
- Gastrointestinal Malignancies Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| | - Augusto Villanueva
- Divisions of Liver Disease and Hematology/Medical Oncology, Tisch Cancer Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Firouzeh Korangy
- Gastrointestinal Malignancies Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Benjamin Ruf
- Gastrointestinal Malignancies Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Mark Yarchoan
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lichun Ma
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Eytan Ruppin
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Xin W Wang
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
- Liver Carcinogenesis Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|