1
|
Lv MQ, Yang YQ, Li YX, Zhou L, Ge P, Sun RF, Zhang J, Gao JC, Qu LQ, Jing QY, Li PC, Yan YJ, Wang HX, Li HC, Zhou DX. A detection model of testis-derived circular RNAs in serum for predicting testicular sperm retrieval rate in non-obstructive azoospermia patients. Andrology 2024; 12:1751-1763. [PMID: 38421140 DOI: 10.1111/andr.13617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/18/2024] [Accepted: 02/12/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Microdissection testicular sperm extraction is an effective method to retrieve sperm from non-obstructive azoospermia patients. However, its successful rate is less than 50%. OBJECTIVES To identify the predictive value of circular RNAs in serum for sperm retrieval rate in non-obstructive azoospermia patients. MATERIALS AND METHODS 180 non-obstructive azoospermia patients were recruited in this study, including 84 individuals with successful sperm retrieval and 96 individuals with failed sperm retrieval. Our study contained two phases. First, 20 patients, selected from the 180 patients, were included in screening cohort. In this cohort, the top 20 circular RNAs from our previous testicular circRNA profiles were verified between successful and failed sperm retrieval groups using real-time polymerase chain reaction. Six circular RNAs with the most significantly different expressions were selected for further verification. Second, the 180 patients were included as discovery cohort to verify the six circular RNAs. Circular RNAs were extracted from serum in each participant. Logistic regression analysis was further performed to identify the predictive value and the area under the curve analysis was used to evaluate diagnostic efficiency, sensitivity, and specificity. RESULTS Six circular RNAs including hsa_circ_0058058, hsa_circ_0008045, hsa_circ_0084789, hsa_circ_0000550, hsa_circ_0007422, and hsa_circ_0004099 showed aberrant expressions between the successful and failed sperm retrieval group. In addition, both single-circular RNA panels and multi-circular RNA panels were finally verified to be significant in predicting sperm retrieval rate. Notably, multi-circular RNAs panels demonstrated better predictive abilities compared with single-circRNA panels, and the combined panel of six-circular RNAs (risk score = 1.094×hsa_circ_0058058+0.697×hsa_circ_0008045+0.718×hsa_circ_0084789-0.591×hsa_circ_0000550-0.435×hsa_circ_0007422-1.017×hsa_circ_0004099-1.561) exhibited the best predictive ability in the present study with an AUC of 0.977, a sensitivity of 91.7% and a specificity of 86.5%. A higher risk score indicated a higher risk of failure in sperm retrieval. DISCUSSION AND CONCLUSION Our study was the first to report that testis-derived circular RNAs in serum have the ability to predict sperm retrieval rate in non-obstructive azoospermia patients, whether it is a single-circular RNA or a combination of multi-circular RNAs.
Collapse
Affiliation(s)
- Mo-Qi Lv
- Department of Pathology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
- Institute of Genetics and Development, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, China
| | - Yan-Qi Yang
- Department of Pathology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
- Institute of Genetics and Development, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, China
| | - Yi-Xin Li
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Liang Zhou
- Assisted Reproduction Center, Northwest Women's and Children's Hospital, Xi'an, China
- Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Pan Ge
- Department of Pathology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
- Institute of Genetics and Development, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, China
| | - Rui-Fang Sun
- Department of Pathology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
- Institute of Genetics and Development, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, China
| | - Jian Zhang
- Department of Pathology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
- Institute of Genetics and Development, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, China
| | - Jun-Cheng Gao
- School of Humanities and Social Development, Northwest A&F University, Xianyang, China
| | - Liu-Qing Qu
- Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Qi-Ya Jing
- Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Pin-Cheng Li
- Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yu-Jia Yan
- Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Hai-Xu Wang
- Assisted Reproduction Center, Xijing Hospital of Air Force Medical University (the former the Fourth Military Medical University), Xi'an, China
| | - He-Cheng Li
- Department of Urology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Dang-Xia Zhou
- Department of Pathology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
- Institute of Genetics and Development, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, China
| |
Collapse
|
3
|
Cui Y, Wu Y, Zhu Y, Liu W, Huang L, Hong Z, Zhang M, Zheng X, Sun G. The possible molecular mechanism underlying the involvement of the variable shear factor QKI in the epithelial-mesenchymal transformation of oesophageal cancer. PLoS One 2023; 18:e0288403. [PMID: 37428781 DOI: 10.1371/journal.pone.0288403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 06/26/2023] [Indexed: 07/12/2023] Open
Abstract
OBJECTIVE Based on the GEO, TCGA and GTEx databases, we reveal the possible molecular mechanism of the variable shear factor QKI in epithelial mesenchymal transformation (EMT) of oesophageal cancer. METHODS Based on the TCGA and GTEx databases, the differential expression of the variable shear factor QKI in oesophageal cancer samples was analysed, and functional enrichment analysis of QKI was performed based on the TCGA-ESCA dataset. The percent-spliced in (PSI) data of oesophageal cancer samples were downloaded from the TCGASpliceSeq database, and the genes and variable splicing types that were significantly related to the expression of the variable splicing factor QKI were screened out. We further identified the significantly upregulated circRNAs and their corresponding coding genes in oesophageal cancer, screened the EMT-related genes that were significantly positively correlated with QKI expression, predicted the circRNA-miRNA binding relationship through the circBank database, predicted the miRNA-mRNA binding relationship through the TargetScan database, and finally obtained the circRNA-miRNA-mRNA network through which QKI promoted the EMT process. RESULTS Compared with normal control tissue, QKI expression was significantly upregulated in tumour tissue samples of oesophageal cancer patients. High expression of QKI may promote the EMT process in oesophageal cancer. QKI promotes hsa_circ_0006646 and hsa_circ_0061395 generation by regulating the variable shear of BACH1 and PTK2. In oesophageal cancer, QKI may promote the production of the above two circRNAs by regulating variable splicing, and these circRNAs further competitively bind miRNAs to relieve the targeted inhibition of IL-11, MFAP2, MMP10, and MMP1 and finally promote the EMT process. CONCLUSION Variable shear factor QKI promotes hsa_circ_0006646 and hsa_circ_0061395 generation, and downstream related miRNAs can relieve the targeted inhibition of EMT-related genes (IL11, MFAP2, MMP10, MMP1) and promote the occurrence and development of oesophageal cancer, providing a new theoretical basis for screening prognostic markers of oesophageal cancer patients.
Collapse
Affiliation(s)
- Yishuang Cui
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei Province, China
- Department of Hebei Key Laboratory of Medical-Industrial Integration Precision Medicine, Tangshan, Hebei Province, China
| | - Yanan Wu
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei Province, China
- Department of Hebei Key Laboratory of Medical-Industrial Integration Precision Medicine, Tangshan, Hebei Province, China
| | - Yingze Zhu
- Department of Hebei Key Laboratory of Medical-Industrial Integration Precision Medicine, Tangshan, Hebei Province, China
- School of Clinical Medicine, North China University of Science and Technology, Tangshan, Hebei Province, China
- Affiliated Hospital, North China University of Science and Technology, Tangshan, Hebei Province, China
| | - Wei Liu
- Department of Hebei Key Laboratory of Medical-Industrial Integration Precision Medicine, Tangshan, Hebei Province, China
- School of Clinical Medicine, North China University of Science and Technology, Tangshan, Hebei Province, China
- Affiliated Hospital, North China University of Science and Technology, Tangshan, Hebei Province, China
| | - Lanxiang Huang
- Department of Hebei Key Laboratory of Medical-Industrial Integration Precision Medicine, Tangshan, Hebei Province, China
- School of Clinical Medicine, North China University of Science and Technology, Tangshan, Hebei Province, China
- Affiliated Hospital, North China University of Science and Technology, Tangshan, Hebei Province, China
| | - Ziqian Hong
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei Province, China
- Department of Hebei Key Laboratory of Medical-Industrial Integration Precision Medicine, Tangshan, Hebei Province, China
| | - Mengshi Zhang
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei Province, China
- Department of Hebei Key Laboratory of Medical-Industrial Integration Precision Medicine, Tangshan, Hebei Province, China
| | - Xuan Zheng
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei Province, China
- Department of Hebei Key Laboratory of Medical-Industrial Integration Precision Medicine, Tangshan, Hebei Province, China
| | - Guogui Sun
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei Province, China
- Department of Hebei Key Laboratory of Medical-Industrial Integration Precision Medicine, Tangshan, Hebei Province, China
- School of Clinical Medicine, North China University of Science and Technology, Tangshan, Hebei Province, China
- Affiliated Hospital, North China University of Science and Technology, Tangshan, Hebei Province, China
| |
Collapse
|
4
|
Siracusa C, Vono N, Morano MB, Sabatino J, Leo I, Eyileten C, Cianflone E, Postula M, Torella D, De Rosa S. Clinical Application of Circular RNAs as Biomarkers in Acute Ischemic Stroke. J Pers Med 2023; 13:jpm13050839. [PMID: 37241009 DOI: 10.3390/jpm13050839] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 05/28/2023] Open
Abstract
Despite the substantial improvement in diagnosis and treatment within the last decades, ischemic stroke still represents a challenge, responsible still for a high burden of morbidity and mortality. Among the unmet clinical needs are the difficulties in identifying those subjects with the greatest risk of developing a stroke, the challenges in obtaining a timely diagnosis, the prompt recognition of the different clinical forms of stroke, the assessment of the response to treatments and the prognostic assessment. All these issues might be improved with appropriate smart biomarkers that could better inform clinical management. The present article offers an overview of the potential role of circular RNAs as disease biomarkers in stroke. A systematic approach was adopted to gather all potentially relevant information in order to provide a panoramic view on this class of promising molecules.
Collapse
Affiliation(s)
- Chiara Siracusa
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy
| | - Niccolò Vono
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy
| | - Maria Benedetta Morano
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy
| | - Jolanda Sabatino
- Department of Children and Woman's Health, University of Padua, 35121 Padua, Italy
| | - Isabella Leo
- Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London SW3 5NP, UK
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
| | - Ceren Eyileten
- Centre for Preclinical Research and Technology, Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, 02-097 Warsaw, Poland
- Genomics Core Facility, Center of New Technologies, University of Warsaw, 00-927 Warsaw, Poland
| | - Eleonora Cianflone
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy
| | - Marek Postula
- Centre for Preclinical Research and Technology, Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
| | - Salvatore De Rosa
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy
| |
Collapse
|