1
|
Liu G, Chen ZG, Yang LR, Rong YX, Wang Q, Li L, Lu QW, Jiang MD, Qi HY. Z-ligustilide preferentially caused mitochondrial dysfunction in AML HL-60 cells by activating nuclear receptors NUR77 and NOR1. Chin Med 2023; 18:123. [PMID: 37735686 PMCID: PMC10512564 DOI: 10.1186/s13020-023-00808-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/18/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND Nuclear receptors NUR77 and NOR1 were identified as critical targets in acute myeloid leukemia (AML) therapy. Previously, we showed that Z-ligustilide (Z-LIG) selectively targeted AML by restoring NUR77 and NOR1. However, its downstream mechanisms are yet to be elucidated. METHODS SRB staining assay was used to measure cell viability. Cell apoptosis, mitochondrial membrane potential and mitochondrial reactive oxygen species were analyzed using flow cytometry. The potential targets of Z-LIG in AML HL-60 cells were evaluated by RNA sequencing. Changes in RNA levels were measured using quantitative RT-qPCR and western blot analysis was used to detect the expression of proteins. RESULTS Z-LIG preferentially induced mitochondrial dysfunction in HL-60 cells compared with 293T cells. Furthermore, RNA sequencing revealed that mitochondrial transcription and translation might be potential Z-LIG targets inhibiting HL-60 cells. NUR77/NOR1 overexpression significantly reduced the mitochondrial ATP and mitochondrial membrane potential and increased mitochondrial reactive oxygen species in HL-60 cells but not in 293T cells. Moreover, Z-LIG induced mitochondrial dysfunction by restoring NUR77 and NOR1 in HL-60 cells. Compared with HL-60 cells, the apoptosis-inducing activities of NUR77/NOR1 and Z-LIG were significantly reduced in HL-60 ρ0 cells depleted in mitochondrial DNA (mt-DNA). Moreover, NUR77/NOR1 and Z-LIG downregulated mitochondrial transcription and translation related proteins in HL-60 cells. Notably, Z-LIG remarkably reduced mitochondrial ATP in primary AML cells and showed anti-AML activity in mouse models of human AML. CONCLUSIONS Collectively, our findings suggested that Z-LIG selectively induces mitochondrial dysfunction in AML HL-60 cells by restoring NUR77 and NOR1, a process associated with interference in mtDNA transcription.
Collapse
Affiliation(s)
- Gen Liu
- College of Pharmaceutical Sciences, College of Chinese Medicine, Southwest University, 2 Tiansheng Road, Beibei District, Chongqing, 400715, China
| | - Zhi-Gang Chen
- College of Pharmaceutical Sciences, College of Chinese Medicine, Southwest University, 2 Tiansheng Road, Beibei District, Chongqing, 400715, China
| | - Li-Rong Yang
- College of Pharmaceutical Sciences, College of Chinese Medicine, Southwest University, 2 Tiansheng Road, Beibei District, Chongqing, 400715, China
| | - Yu-Xia Rong
- College of Pharmaceutical Sciences, College of Chinese Medicine, Southwest University, 2 Tiansheng Road, Beibei District, Chongqing, 400715, China
| | - Qin Wang
- College of Pharmaceutical Sciences, College of Chinese Medicine, Southwest University, 2 Tiansheng Road, Beibei District, Chongqing, 400715, China
| | - Li Li
- College of Pharmaceutical Sciences, College of Chinese Medicine, Southwest University, 2 Tiansheng Road, Beibei District, Chongqing, 400715, China
| | - Qian-Wei Lu
- Radiotherapy Department, Chongqing Ninth People's Hospital, Chongqing, China
| | - Ming-Dong Jiang
- Radiotherapy Department, Chongqing Ninth People's Hospital, Chongqing, China
| | - Hong-Yi Qi
- College of Pharmaceutical Sciences, College of Chinese Medicine, Southwest University, 2 Tiansheng Road, Beibei District, Chongqing, 400715, China.
| |
Collapse
|
2
|
Sharifi M, Farahani MK, Salehi M, Atashi A, Alizadeh M, Kheradmandi R, Molzemi S. Exploring the Physicochemical, Electroactive, and Biodelivery Properties of Metal Nanoparticles on Peripheral Nerve Regeneration. ACS Biomater Sci Eng 2023; 9:106-138. [PMID: 36545927 DOI: 10.1021/acsbiomaterials.2c01216] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Despite the advances in the regeneration/rehabilitation field of damaged tissues, the functional recovery of peripheral nerves (PNs), especially in a long gap injury, is considered a great medical challenge. Recent progress in nanomedicine has provided great hope for PN regeneration through the strategy of controlling cell behavior by metal nanoparticles individually or loaded on scaffolds/conduits. Despite the confirmed toxicity of metal nanoparticles due to long-term accumulation in nontarget tissues, they play a role in the damaged PN regeneration based on the topography modification of scaffolds/conduits, enhancing neurotrophic factor secretion, the ion flow improvement, and the regulation of electrical signals. Determining the fate of neural progenitor cells would be a major achievement in PN regeneration, which seems to be achievable by metal nanoparticles through altering cell vital approaches and controlling their functions. Therefore, in this literature, an attempt was made to provide an overview of the effective activities of metal nanoparticles on the PN regeneration, until the vital clues of the PN regeneration and how they are changed by metal nanoparticles are revealed to the researcher.
Collapse
Affiliation(s)
- Majid Sharifi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran.,Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran
| | - Mohammad Kamalabadi Farahani
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran
| | - Majid Salehi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran.,Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran
| | - Amir Atashi
- Stem Cell and Tissue Engineering Research Center, Faculty of Allied Medical Sciences, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran
| | - Morteza Alizadeh
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran
| | - Rasoul Kheradmandi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran.,Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran
| | - Sahar Molzemi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran.,Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran
| |
Collapse
|