1
|
Mondal R, Ritu RB, Kitaoka K, Azahar NM, Moniruzzaman M, Ogata S, Kiyoshige E, Tohara H, Kobayashi Y, Kashihara N, Naito T, Nakashima N, Tamura K, Nishimura K, Viera AJ, Yano Y. Oral microbiome alpha diversity and all-cause, cardiovascular, and non-cardiovascular mortality in US adults: Evidence from the NHANES 2009-2019. Atherosclerosis 2025; 401:119074. [PMID: 39644613 DOI: 10.1016/j.atherosclerosis.2024.119074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/24/2024] [Accepted: 11/27/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND AND AIMS Knowledge about the association between oral microbiome diversity within individuals and cardiovascular disease (CVD) and non-CVD mortality is scarce. Besides, variation by sex and racial and ethnic groups, and the potential mediators of these associations remain unclear. We aimed to investigate the associations of oral microbiome alpha diversity with all-cause, CVD, and non-CVD mortality, and the interaction effects of sex and racial and ethnic groups and potential mediators in the associations. METHODS The National Health and Nutrition Examination Survey (NHANES) is a population-based observational study, conducted periodically in Mexican American, Other Hispanic, Non-Hispanic (NH) White, NH Black, and other racial/ethnic participants. We linked 2009-12 survey data of 8199 adults to the mortality data until 2019. By analyzing RNA gene sequences from oral rinse samples, microbiome alpha diversity within individuals was assessed using operational taxonomic unit (OTU) richness. Potential mediators included obesity, diabetes mellitus, dyslipidemia, hypertension, and periodontitis. Multivariable Cox proportional hazards regression and causal mediation analysis were used. RESULTS Baseline mean ± standard deviation (SD) age was 42.1 ± 15.1 years. Over a median follow-up of 9.1 years, 405 all-cause mortality occurred (CVD, 105; non-CVD, 300). Each 1-SD increment in OTU richness was inversely associated with all-cause mortality (hazard ratio [HR] 0.92, 95 % confidence interval [CI] 0.90-0.95), CVD mortality (HR, 0.92; 95 % CI, 0.90-0.95), and non-CVD mortality (HR, 0.92; 95 % CI, 0.90-0.95). With evidence of significant racial and ethnic groups-interaction (p <0.05), these associations were evident in Mexican American, NH White, and others racial/ethnic participants. None of the potential mediators significantly mediated the associations of OTU richness with all-cause, CVD, and non-CVD mortality. CONCLUSIONS Lower oral microbiome alpha diversity is associated with higher risk for all-cause, CVD, and non-CVD mortality, and the associations are varied by racial and ethnic groups.
Collapse
Affiliation(s)
- Rajib Mondal
- Department of Preventive Medicine, NCD Epidemiology Research Center, Shiga University of Medical Science, Shiga, Japan; Department of Preventive Medicine and Epidemiology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Rani Baroi Ritu
- Department of Preventive Medicine, NCD Epidemiology Research Center, Shiga University of Medical Science, Shiga, Japan
| | - Kaori Kitaoka
- Department of Advanced Epidemiology, NCD Epidemiology Research Center, Shiga University of Medical Science, Shiga, Japan
| | - Nazar Mohd Azahar
- NCD Epidemiology Research Center, Shiga University of Medical Science, Shiga, Japan; Faculty of Health Sciences, Universiti Teknologi MARA, Cawangan Pulau Pinang, Kampus Bertam, Pulau Pinang, Malaysia
| | - Mohammad Moniruzzaman
- NCD Epidemiology Research Center, Shiga University of Medical Science, Shiga, Japan; Socio-Spatial Determinants of Health (SSDH) Laboratory, Population and Community Health Sciences Branch, Division of Intramural Research, National Institute on Minority Health and Health Disparities, National Institutes of Health, Bethesda, MD, USA
| | - Soshiro Ogata
- Department of Preventive Medicine and Epidemiology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Eri Kiyoshige
- Department of Preventive Medicine and Epidemiology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Haruka Tohara
- Department of Dysphagia Rehabilitation, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
| | - Yusuke Kobayashi
- YCU Co-Creation Innovation Center, Yokohama City University, Yokohama, Japan
| | | | - Toshio Naito
- Department of General Medicine, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Naoki Nakashima
- Medical Information Center, Kyushu University Hospital, Japan
| | - Kosuke Tamura
- Socio-Spatial Determinants of Health (SSDH) Laboratory, Population and Community Health Sciences Branch, Division of Intramural Research, National Institute on Minority Health and Health Disparities, National Institutes of Health, Bethesda, MD, USA
| | - Kunihiro Nishimura
- Department of Preventive Medicine and Epidemiology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Anthony J Viera
- Department of Family Medicine and Community Health, Duke University, NC, USA
| | - Yuichiro Yano
- Department of General Medicine, Faculty of Medicine, Juntendo University, Tokyo, Japan; Department of Family Medicine and Community Health, Duke University, NC, USA.
| |
Collapse
|
2
|
Brucato N, Lisant V, Kinipi C, Kik A, Besnard G, Leavesley M, Ricaut FX. Influence of betel nut chewing on oral microbiome in Papua New Guinea. Evol Med Public Health 2024; 13:36-44. [PMID: 40124740 PMCID: PMC11928724 DOI: 10.1093/emph/eoae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 10/24/2024] [Indexed: 03/25/2025] Open
Abstract
Background and objectives For thousands of years, betel nut has been used as a psychoactive agent in Asian and Oceanian populations. Betel nut chewing was associated with the alteration of human oral microbiome and with diseases such as oral cancer and periodontitis, but only in populations of Asian cultural background. We studied the influence of betel nut chewing on the oral microbiome in Papua New Guinea, where half of the population uses betel nut and the prevalence of these diseases is one of the highest in the world. Methodology We characterized the oral microbiomes of 100 Papua New Guineans. We defined two cohorts of betel chewers (n = 50) and non-chewers (n = 50) based on a genetic approach to identify the presence of betel nut in saliva. We statistically compared the alpha and beta microbial diversities between the two cohorts. We performed linear discriminant analyses to identify bacterial species more prevalent in each cohort. Results We found that oral microbial diversity is significantly different between betel chewers and non-chewers. The dysbiosis observed in betel chewers, led to an increase of pathogenic bacterial species including Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia, known to be in the aetiology of periodontal diseases. Conclusions and implications Our study strongly supports the alteration of human oral microbiome by betel nut use, potentially leading to periodontal diseases. It also shows the need to consider local specificities (e.g. different habits, betel nut types, and oral microbial diversities) to better characterize the impact of betel nut chewing on health.
Collapse
Affiliation(s)
- Nicolas Brucato
- Centre de Recherche sur la Biodiversité et l’Environnement (CRBE), Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 - Paul Sabatier (UT3), Toulouse, France
| | - Valentine Lisant
- Centre de Recherche sur la Biodiversité et l’Environnement (CRBE), Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 - Paul Sabatier (UT3), Toulouse, France
| | - Christopher Kinipi
- Strand of Anthropology, Sociology and Archaeology, School of Humanities and Social Sciences, University of Papua New Guinea, PO Box 320, University 134, National Capital District, Papua New Guinea
| | - Alfred Kik
- New Guinea Binatang Research Centre, PO Box 604, 511 Madang, Papua New Guinea
- Biology Centre, Czech Academy of Sciences, 37011, Ceske Budejovice, Czech Republic
| | - Guillaume Besnard
- Centre de Recherche sur la Biodiversité et l’Environnement (CRBE), Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 - Paul Sabatier (UT3), Toulouse, France
| | - Matthew Leavesley
- Strand of Anthropology, Sociology and Archaeology, School of Humanities and Social Sciences, University of Papua New Guinea, PO Box 320, University 134, National Capital District, Papua New Guinea
- College of Arts, Society and Education, James Cook University, P.O. Box 6811, Cairns, Queensland, 4870, Australia
- ARC Centre of Excellence for Australian Biodiversity and Heritage, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| | - François-Xavier Ricaut
- Centre de Recherche sur la Biodiversité et l’Environnement (CRBE), Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 - Paul Sabatier (UT3), Toulouse, France
| |
Collapse
|
3
|
Senaratne NLM, Yung on C, Shetty NY, Gopinath D. Effect of different forms of tobacco on the oral microbiome in healthy adults: a systematic review. FRONTIERS IN ORAL HEALTH 2024; 5:1310334. [PMID: 38445094 PMCID: PMC10912582 DOI: 10.3389/froh.2024.1310334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/11/2024] [Indexed: 03/07/2024] Open
Abstract
Objective The study aimed to evaluate the impact of tobacco use on the composition and functions of the oral microbiome in healthy adult humans. Methods We conducted a systematic search on PubMed, Web of Science, and Cinhal databases for literature published until 15 December 2023, to identify studies that have evaluated the oral microbiome with culture-independent next-generation techniques comparing the oral microbiome of tobacco users and non-users. The search followed the PECO format. The outcomes included changes in microbial diversity and abundance of microbial taxa. The quality assessment was performed using the Newcastle-Ottawa Scale (NOS) (PROSPERO ID CRD42022340151). Results Out of 2,435 articles screened, 36 articles satisfied the eligibility criteria and were selected for full-text review. Despite differences in design, quality, and population characteristics, most studies reported an increase in bacterial diversity and richness in tobacco users. The most notable bacterial taxa enriched in users were Fusobacteria and Actinobacteria at the phylum level and Streptococcus, Prevotella, and Veillonella at the genus level. At the functional level, more similarities could be noted; amino acid metabolism and xenobiotic biodegradation pathways were increased in tobacco users compared to non-users. Most of the studies were of good quality on the NOS scale. Conclusion Tobacco smoking influences oral microbial community harmony, and it shows a definitive shift towards a proinflammatory milieu. Heterogeneities were detected due to sampling and other methodological differences, emphasizing the need for greater quality research using standardized methods and reporting. Systematic Review Registration CRD42022340151.
Collapse
Affiliation(s)
- Nikitha Lalindri Mareena Senaratne
- School of Medicine, International Medical University, Kuala Lumpur, Malaysia
- Faculty of Medicine and Health, UNSW, Sydney, NSW, Australia
| | - Cheng Yung on
- Sungai Rengit Dental Clinic, Johor Health Department, Ministry of Health Malaysia, Kota Tinggi, Malaysia
| | - Naresh Yedthare Shetty
- Clinical Sciences Department, Ajman University, Ajman, United Arab Emirates
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Divya Gopinath
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
- Basic Medical and Dental Sciences Department, Ajman University, Ajman, United Arab Emirates
| |
Collapse
|
4
|
Chiang H, Hughes M, Chang W. The role of microbiota in esophageal squamous cell carcinoma: A review of the literature. Thorac Cancer 2023; 14:2821-2829. [PMID: 37675608 PMCID: PMC10542467 DOI: 10.1111/1759-7714.15096] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 08/23/2023] [Indexed: 09/08/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) exhibits high incidence with poor prognosis. Alcohol drinking, cigarette smoking, and betel nut chewing are well-known risk factors. Dysbiosis, an imbalance of the microbiota residing in a local environment, is known to be associated with human diseases, especially cancer. This article reviews the current evidence of esophageal microbiota in ESCC carcinogenesis, including initiation, progression, and drug resistance. Articles involving the esophageal microbiota, diagnosis, treatment, and the progression of esophageal cancer were acquired using a comprehensive literature search in PubMed in recent 10 years. Based on 16S rRNA sequencing of human samples, cell, and animal studies, current evidence suggests dysbiosis of the esophagus promotes ESCC progression and chemotherapy resistance, leading to a poor prognosis. Smoking and drinking are associated with esophageal dysbiosis. Specific bacteria have been reported to promote carcinogenesis, involving either progression or drug resistance in ESCC, for example Porphyromonas gingivalis and Fusobacterium nucleatum. These bacteria promote ESCC cell proliferation and migration via the TLR4/NF-κB and IL-6/STAT3 pathways. F. nucleatum induces cisplatin resistance via the enrichment of immunosuppressive myeloid-derived suppressor cells (MDSCs). Correcting the dysbiosis and reducing the abundance of specific esophageal pathogens may help in suppressing cancer progression. In conclusion, esophageal dysbiosis is associated with ESCC progression and chemoresistance. Screening the oral and esophageal microbiota is a potential diagnostic tool for predicting ESCC development or drug-resistance. Repairing esophageal dysbiosis is a novel treatment for ESCC. Clinical trials with probiotics in addition to current chemotherapy are warranted to study the therapeutic effects.
Collapse
Affiliation(s)
- Hsueh‐Chien Chiang
- Department of Internal MedicineNational Cheng Kung University Hospital, College of Medicine, National Cheng Kung UniversityTainanTaiwan
- Institute of Clinical Medicine, College of MedicineNational Cheng Kung UniversityTainanTaiwan
| | - Michael Hughes
- Institute of Clinical Medicine, College of MedicineNational Cheng Kung UniversityTainanTaiwan
- International Center for Wound Repair and Regeneration (iWRR), College of MedicineNational Cheng Kung UniversityTainanTaiwan
- Department of Life SciencesNational Cheng Kung UniversityTainanTaiwan
| | - Wei‐Lun Chang
- Department of Internal MedicineNational Cheng Kung University Hospital, College of Medicine, National Cheng Kung UniversityTainanTaiwan
- Institute of Clinical Medicine, College of MedicineNational Cheng Kung UniversityTainanTaiwan
| |
Collapse
|
5
|
Diwan P, Nirwan M, Bahuguna M, Kumari SP, Wahlang J, Gupta RK. Evaluating Alterations of the Oral Microbiome and Its Link to Oral Cancer among Betel Quid Chewers: Prospecting Reversal through Probiotic Intervention. Pathogens 2023; 12:996. [PMID: 37623956 PMCID: PMC10459687 DOI: 10.3390/pathogens12080996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/18/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023] Open
Abstract
Areca nut and slaked lime, with or without tobacco wrapped in Piper betle leaf, prepared as betel quid, is extensively consumed as a masticatory product in many countries across the world. Betel Quid can promote the malignant transformation of oral lesions as well as trigger benign cellular and molecular changes. In the oral cavity, it causes changes at the compositional level in oral microbiota called dysbiosis. This dysbiosis may play an important role in Oral Cancer in betel quid chewers. The abnormal presence and increase of bacteria Fusobacterium nucleatum, Capnocytophaga gingivalis, Prevotella melaninogenica, Peptostreptococcus sp., Porphyromonas gingivalis, and Streptococcus mitis in saliva and/or other oral sites of the cancer patients has attracted frequent attention for its association with oral cancer development. In the present review, the authors have analysed the literature reports to revisit the oncogenic potential of betel quid and oral microbiome alterations, evaluating the potential of oral microbiota both as a driver and biomarker of oral cancer. The authors have also shared a perspective that the restoration of local microbiota can become a potentially therapeutic or prophylactic strategy for the delay or reversal of lip and oral cavity cancers, especially in high-risk population groups.
Collapse
Affiliation(s)
- Prerna Diwan
- Department of Microbiology, Ram Lal Anand College, University of Delhi, New Delhi 110021, India; (M.N.); (M.B.); (S.P.K.); (R.K.G.)
| | - Mohit Nirwan
- Department of Microbiology, Ram Lal Anand College, University of Delhi, New Delhi 110021, India; (M.N.); (M.B.); (S.P.K.); (R.K.G.)
| | - Mayank Bahuguna
- Department of Microbiology, Ram Lal Anand College, University of Delhi, New Delhi 110021, India; (M.N.); (M.B.); (S.P.K.); (R.K.G.)
| | - Shashi Prabha Kumari
- Department of Microbiology, Ram Lal Anand College, University of Delhi, New Delhi 110021, India; (M.N.); (M.B.); (S.P.K.); (R.K.G.)
| | - James Wahlang
- Department of Biochemistry, St. Edmund’s College, Shillong 793003, India;
| | - Rakesh Kumar Gupta
- Department of Microbiology, Ram Lal Anand College, University of Delhi, New Delhi 110021, India; (M.N.); (M.B.); (S.P.K.); (R.K.G.)
| |
Collapse
|
6
|
Priyadharsini JV. Potential role of circulating bacterial DNA as diagnostic indicator of oral cancer. Future Microbiol 2023; 18:695-697. [PMID: 37477522 DOI: 10.2217/fmb-2022-0253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023] Open
Affiliation(s)
- Jayaseelan Vijayashree Priyadharsini
- Clinical Genetics Lab, Center for Cellular & Molecular Research, Saveetha Dental College & Hospital, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai, 600077, India
| |
Collapse
|