1
|
Souza PFN, Zelaya EAE, da Silva EL, Brasil-Oliveira LL, de Oliveira FL, de Moraes MEA, Montenegro RC, Mesquita FP. PepGAT, a chitinase-derived peptide, alters the proteomic profile of colorectal cancer cells and perturbs pathways involved in cancer survival. Int J Biol Macromol 2025; 299:140204. [PMID: 39848367 DOI: 10.1016/j.ijbiomac.2025.140204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/17/2025] [Accepted: 01/20/2025] [Indexed: 01/25/2025]
Abstract
Colorectal cancer (CRC) affects the population worldwide, occupying the first place in terms of death and incidence. Synthetic peptides (SPs) emerged as alternative molecules due to their activity and low toxicity. Proteomic analysis of PepGAT-treated HCT-116 cells revealed a decreased abundance of proteins involved in ROS metabolism and energetic metabolisms, cell cycle, DNA repair, migration, invasion, cancer aggressiveness, and proteins involved in resistance to 5-FU. PepGAT induced earlier ROS and apoptosis in HCT-116 cells, cell cycle arrest, and inhibited HCT-116 migration. PepGAT enhances the action of 5-FU against HCT-116 cells by dropping down 6-fold the 5-FU toward HCT-116 and reduces its toxicity for non-cancerous cells. These findings strongly suggest the multiple mechanisms of action displayed by PepGAT against CRC cells and its potential to either be studied alone or in combination with 5-FU to develop new studies against CRC and might develop new drugs against it.
Collapse
Affiliation(s)
- Pedro Filho Noronha Souza
- Laboratory of Bioinformatics Applied to Health, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE 60430-275, Brazil; Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE 60430-275, Brazil; Cearense Foundation to Support Scientific and Technological Development, Brazil.
| | - Elmer Adilson Espino Zelaya
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE 60430-275, Brazil
| | - Emerson Lucena da Silva
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE 60430-275, Brazil
| | - Laís Lacerda Brasil-Oliveira
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE 60430-275, Brazil
| | - Francisco Laio de Oliveira
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE 60430-275, Brazil
| | - Maria Elisabete Amaral de Moraes
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE 60430-275, Brazil
| | - Raquel Carvalho Montenegro
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE 60430-275, Brazil
| | - Felipe Pantoja Mesquita
- Laboratory of Bioinformatics Applied to Health, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE 60430-275, Brazil; Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE 60430-275, Brazil.
| |
Collapse
|
2
|
Troisi J, Lombardi M, Trotta A, Abenante V, Ingenito A, Palmieri N, Richards SM, Symes SJK, Cavallo P. Double-Weighted Bayesian Model Combination for Metabolomics Data Description and Prediction. Metabolites 2025; 15:214. [PMID: 40278343 PMCID: PMC12029032 DOI: 10.3390/metabo15040214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/15/2025] [Accepted: 03/18/2025] [Indexed: 04/26/2025] Open
Abstract
BACKGROUND/OBJECTIVES This study presents a novel double-weighted Bayesian Ensemble Machine Learning (DW-EML) model aimed at improving the classification and prediction of metabolomics data. This discipline, which involves the comprehensive analysis of metabolites in a biological system, provides valuable insights into complex biological processes and disease states. As metabolomics assumes an increasingly prominent role in the diagnosis of human diseases and in precision medicine, there is a pressing need for more robust artificial intelligence tools that can offer enhanced reliability and accuracy in medical applications. The proposed DW-EML model addresses this by integrating multiple classifiers within a double-weighted voting scheme, which assigns weights based on the cross-validation accuracy and classification confidence, ensuring a more reliable prediction framework. METHODS The model was applied to publicly available datasets derived from studies on critical illness in children, chronic typhoid carriage, and early detection of ovarian cancer. RESULTS The results demonstrate that the DW-EML approach outperformed methods traditionally used in metabolomics, such as the Partial Least Squares Discriminant Analysis in terms of accuracy and predictive power. CONCLUSIONS The DW-EML model is a promising tool for metabolomic data analysis, offering enhanced robustness and reliability for diagnostic and prognostic applications and potentially contributing to the advancement of personalized and precision medicine.
Collapse
Affiliation(s)
- Jacopo Troisi
- Theoreo srl, Via degli Ulivi 3, 84090 Montecorvino Pugliano, SA, Italy; (M.L.); (A.T.); (V.A.); (A.I.); (N.P.)
- European Institute of Metabolomics (EIM) Foundation, Via G. Puccini, 3, 84081 Baronissi, SA, Italy
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, SA, Italy
| | - Martina Lombardi
- Theoreo srl, Via degli Ulivi 3, 84090 Montecorvino Pugliano, SA, Italy; (M.L.); (A.T.); (V.A.); (A.I.); (N.P.)
- European Institute of Metabolomics (EIM) Foundation, Via G. Puccini, 3, 84081 Baronissi, SA, Italy
| | - Alessio Trotta
- Theoreo srl, Via degli Ulivi 3, 84090 Montecorvino Pugliano, SA, Italy; (M.L.); (A.T.); (V.A.); (A.I.); (N.P.)
- European Institute of Metabolomics (EIM) Foundation, Via G. Puccini, 3, 84081 Baronissi, SA, Italy
| | - Vera Abenante
- Theoreo srl, Via degli Ulivi 3, 84090 Montecorvino Pugliano, SA, Italy; (M.L.); (A.T.); (V.A.); (A.I.); (N.P.)
- European Institute of Metabolomics (EIM) Foundation, Via G. Puccini, 3, 84081 Baronissi, SA, Italy
| | - Andrea Ingenito
- Theoreo srl, Via degli Ulivi 3, 84090 Montecorvino Pugliano, SA, Italy; (M.L.); (A.T.); (V.A.); (A.I.); (N.P.)
- European Institute of Metabolomics (EIM) Foundation, Via G. Puccini, 3, 84081 Baronissi, SA, Italy
| | - Nicole Palmieri
- Theoreo srl, Via degli Ulivi 3, 84090 Montecorvino Pugliano, SA, Italy; (M.L.); (A.T.); (V.A.); (A.I.); (N.P.)
- European Institute of Metabolomics (EIM) Foundation, Via G. Puccini, 3, 84081 Baronissi, SA, Italy
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, 84084 Salerno, SA, Italy
| | - Sean M. Richards
- Department of Biology, Geology and Environmental Sciences, University of Tennessee at Chattanooga, 615 McCallie Ave., Chattanooga, TN 37403, USA;
- Department of Obstetrics and Gynecology, Section on Maternal-Fetal Medicine, University of Tennessee College of Medicine, 979 East Third Street, Suite C-720, Chattanooga, TN 37403, USA;
| | - Steven J. K. Symes
- Department of Obstetrics and Gynecology, Section on Maternal-Fetal Medicine, University of Tennessee College of Medicine, 979 East Third Street, Suite C-720, Chattanooga, TN 37403, USA;
- Department of Chemistry and Physics, University of Tennessee at Chattanooga, 615 McCallie Ave., Chattanooga, TN 37403, USA
| | - Pierpaolo Cavallo
- Department of Physics, University of Salerno, 84084 Fisciano, SA, Italy;
- Istituto Sistemi Complessi—Consiglio Nazionale delle Ricerche, 00185 Rome, RM, Italy
| |
Collapse
|
3
|
Tripathi S, Sharma Y, Kumar D. Exploring New Structures of Kinase Inhibitors and Multitarget Strategies in Alzheimer's Disease Treatment. Protein Pept Lett 2025; 32:2-17. [PMID: 39716791 DOI: 10.2174/0109298665348075241121071614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 12/25/2024]
Abstract
Alzheimer's disease (AD) treatments currently available have ineffective results. Previously employed Acetylcholine esterase inhibitors and memantine, an NMDA receptor antagonist, target a single target structure that plays a complex role in the multifactorial progression of disease. Memantine moderates the toxic effects of excessive glutamate activity by blocking NMDA receptors, which decreases neurotoxicity in AD, while acetylcholine esterase inhibitors function by blocking cholinergic receptors (muscarinic and nicotinic), preventing the breakdown of acetylcholine, thereby enhancing cholinergic transmission, thus improving cognitive functions in mild to moderate stages of AD. Every drug class targets a distinct facet of the intricate pathophysiology of AD, indicating the diverse strategy required to counteract the advancement of this neurodegenerative disorder. Thus, patients are currently not getting much benefit from current drugs. A closer look at the course of AD revealed several potential target structures for future drug discovery. AD drug development strategies focus on developing new target structures in addition to well-established ones for combination treatment regimens, ideally with a single drug that can target two different target structures. Because of their roles in AD progression pathways like pathologic tau protein phosphorylations as well as amyloid β toxicity, protein kinases have been identified as potential targets. This review will give a quick rundown of the first inhibitors of single protein kinases, such as glycogen synthase kinase (gsk3) β, along with cyclin-dependent kinase 5. We will also look into novel inhibitors that target recently identified protein kinases in Alzheimer's disease, such as dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A). Additionally, multitargeting inhibitors, which target multiple protein kinases as well as those thought to be involved in other processes related to AD will be discussed. This kind of multitargeting offers prospective hope for improved patient outcomes down the road since it is the most effective way to impede multifactorial disease development.
Collapse
Affiliation(s)
- Siddhant Tripathi
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, 411038, India
| | - Yashika Sharma
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, 411038, India
| | - Dileep Kumar
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| |
Collapse
|
4
|
Taghizadeh MS, Niazi A, Retzl B, Gruber CW. Unveiling the insecticidal efficiency of Viola ignobilis against Macrosiphum rosae and Agonoscena pistaciae: From chemical composition to cytotoxicity analysis. Heliyon 2024; 10:e40636. [PMID: 39654760 PMCID: PMC11626740 DOI: 10.1016/j.heliyon.2024.e40636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 12/12/2024] Open
Abstract
Currently, there is a growing preference for eco-friendly bioinsecticides over chemical insecticides due to their safety. Plant extracts have emerged as a promising solution for this purpose. Therefore, this study aimed to evaluate the insecticidal effectiveness of Viola ignobilis extract against two key pests of rose aphid (Macrosiphum rosae) and pistachio psylla (Agonoscena pistaciae). Significant compounds were identified using GC-MS and MALDI-TOF MS. Three bioassay methods were employed to assess the extract's insecticidal potential, and its cytotoxicity was tested on HEK293 cells. Results revealed that the highest insecticidal efficacy occurred at a concentration of 20 mg/mL after a 72 h exposure. The contact bioassay method displayed greater efficiency against M. rosae than A. pistaciae, while the oral bioassay demonstrated the highest efficiency against A. pistaciae. The extract also acted as a feeding deterrent, with indices of 77.47 ± 7.98 % and 87.98 ± 3.84 % for A. pistaciae and M. rosae, respectively. Furthermore, the insecticidal potency of the extract was assessed, resulting in LC50 values of 3.58 mg/mL and 6.77 mg/mL for the contact bioassay, and 0.87 mg/mL and 0.61 mg/mL for the oral bioassay against M. rosae and A. pistaciae, respectively. Importantly, the extract showed no detrimental cytotoxic effects on the HEK293 cell line within the tested concentration range, indicating its potential safety as a bioinsecticide. Overall, these findings highlight the potential of V. ignobilis extract as a promising candidate for further development in pest control.
Collapse
Affiliation(s)
| | - Ali Niazi
- Institute of Biotechnology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Bernhard Retzl
- Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - Christian W. Gruber
- Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| |
Collapse
|
5
|
Sanches PHG, de Melo NC, Porcari AM, de Carvalho LM. Integrating Molecular Perspectives: Strategies for Comprehensive Multi-Omics Integrative Data Analysis and Machine Learning Applications in Transcriptomics, Proteomics, and Metabolomics. BIOLOGY 2024; 13:848. [PMID: 39596803 PMCID: PMC11592251 DOI: 10.3390/biology13110848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/19/2024] [Accepted: 07/25/2024] [Indexed: 11/29/2024]
Abstract
With the advent of high-throughput technologies, the field of omics has made significant strides in characterizing biological systems at various levels of complexity. Transcriptomics, proteomics, and metabolomics are the three most widely used omics technologies, each providing unique insights into different layers of a biological system. However, analyzing each omics data set separately may not provide a comprehensive understanding of the subject under study. Therefore, integrating multi-omics data has become increasingly important in bioinformatics research. In this article, we review strategies for integrating transcriptomics, proteomics, and metabolomics data, including co-expression analysis, metabolite-gene networks, constraint-based models, pathway enrichment analysis, and interactome analysis. We discuss combined omics integration approaches, correlation-based strategies, and machine learning techniques that utilize one or more types of omics data. By presenting these methods, we aim to provide researchers with a better understanding of how to integrate omics data to gain a more comprehensive view of a biological system, facilitating the identification of complex patterns and interactions that might be missed by single-omics analyses.
Collapse
Affiliation(s)
- Pedro H. Godoy Sanches
- MS4Life Laboratory of Mass Spectrometry, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista 12916-900, SP, Brazil
| | - Nicolly Clemente de Melo
- Graduate Program in Biomedicine, São Francisco University, Bragança Paulista 12916-900, SP, Brazil
| | - Andreia M. Porcari
- MS4Life Laboratory of Mass Spectrometry, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista 12916-900, SP, Brazil
| | - Lucas Miguel de Carvalho
- Post Graduate Program in Health Sciences, São Francisco University, Bragança Paulista 12916-900, SP, Brazil
| |
Collapse
|
6
|
Jiang JH, Li QZ, Luo X, Yu J, Zhou LW. Transcriptome and Metabolome Reveal Accumulation of Key Metabolites with Medicinal Properties of Phylloporia pulla. Int J Mol Sci 2024; 25:11070. [PMID: 39456849 PMCID: PMC11507218 DOI: 10.3390/ijms252011070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Phylloporia pulla, a macrofungal species in the Hymenochaetales, Basidiomycota, is known to enhance the nutritional and bioactive properties of rice through co-fermentation; however, its own secondary metabolites are not well understood. In this study, an integrative analysis of transcriptome and metabolome data revealed that the accumulation of steroids, steroid derivatives, and triterpenoids in P. pulla peaks during the mid-growth stage, while the genes associated with these metabolites show higher expression levels from the early to mid-growth stages. Weighted gene co-expression network analysis identified several modules containing candidate genes involved in the synthesis of steroids, steroid derivatives, and triterpenoids. Specifically, six key hub genes were identified, along with their connectivity to other related genes, as potential catalysts in converting the precursor lanosterol to celastrol. This study enhances our understanding of the secondary metabolites of P. pulla and is essential for the selective utilization of these bioactive compounds.
Collapse
Affiliation(s)
- Ji-Hang Jiang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (J.-H.J.)
| | - Qian-Zhu Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (J.-H.J.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xing Luo
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (J.-H.J.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia Yu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (J.-H.J.)
| | - Li-Wei Zhou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (J.-H.J.)
| |
Collapse
|
7
|
Zhou L, Sun X, Iqbal A, Yarra R, Wu Q, Li J, Lv X, Ye J, Yang Y. Revealing the aromatic sonata through terpenoid profiling and gene expression analysis of aromatic and non-aromatic coconut varieties. Int J Biol Macromol 2024; 280:135699. [PMID: 39288860 DOI: 10.1016/j.ijbiomac.2024.135699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/04/2024] [Accepted: 09/13/2024] [Indexed: 09/19/2024]
Abstract
Aromatic coconut represents an exceptional variety of coconut known for its distinct and delightful flavor and aroma, both of which are highly cherished by consumers. Despite its popularity, there has been a lack of systematic research on aroma components and the associated synthetic genes. In this report, we developed the metabolite profiles of terpenoids by targeted metabolomics and obtained the expression profile of genes related to terpenoid biosynthesis by RNA-seq during different coconut fruit developmental stages. Totally, we separated 26 different terpenoids in aromatic coconut pulp, among which, geranyl acetate and (-)-isosyngene emerged as the most abundant. The integrated analysis of metabolism and RNA-seq data showed that HMGS2, HMGS3, IPI/IDI1, HMGR1, HMGR3, and CMK2 as potentially key genes involved in the synthesis of terpenoids in aromatic coconut. To validate these findings, qRT-PCR was conducted on terpenoid-related genes. These findings lay a foundation for understanding aroma formation and the molecular mechanism of terpenoids in coconut fruit.
Collapse
Affiliation(s)
- Lixia Zhou
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China; Hainan Coconut International Joint Research Center, Wenchang 571339, China
| | - Xiwei Sun
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China; Hainan Coconut International Joint Research Center, Wenchang 571339, China
| | - Amjad Iqbal
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China; Department of Food Science & Technology, Abdul Wali Khan University Mardan, Pakistan; Hainan Coconut International Joint Research Center, Wenchang 571339, China
| | - Rajesh Yarra
- University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Qiufei Wu
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China; Hainan Coconut International Joint Research Center, Wenchang 571339, China
| | - Jing Li
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China; Hainan Coconut International Joint Research Center, Wenchang 571339, China
| | - Xiang Lv
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China; Hainan Coconut International Joint Research Center, Wenchang 571339, China
| | - Jianqiu Ye
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China; Hainan Coconut International Joint Research Center, Wenchang 571339, China.
| | - Yaodong Yang
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China; Hainan Coconut International Joint Research Center, Wenchang 571339, China.
| |
Collapse
|
8
|
Guo Y, Han Z, Zhang J, Lu Y, Li C, Liu G. Development of a high-speed and ultrasensitive UV/Vis-CM for detecting total triterpenes in traditional Chinese medicine and its application. Heliyon 2024; 10:e32239. [PMID: 38882362 PMCID: PMC11180301 DOI: 10.1016/j.heliyon.2024.e32239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/18/2024] Open
Abstract
This study proposes a novel colorimetric method based on the ultraviolet/visible spectrophotometry-colorimetric method (UV/Vis-CM) for detecting and quantifying total triterpenoids in traditional Chinese medicine. By incorporating the colourants 2-hydroxy-5-methylbenzaldehyde and concentrated sulfuric acid, triterpenoid compounds colour development became more sensitive, and the detection accuracy was significantly improved. 2-hydroxy-5-methylbenzaldehyde and concentrated sulfuric acid were incorporated in a 1:3 vol ratio at room temperature to react with the total triterpenes for 25 min, incorporated to an ice bath for 5 min, and then detected at the optimal absorption wavelength. The accuracy and reliability of this method were verified by comparison with high-performance liquid chromatography and four other colorimetric methods. Additionally, this approach has the advantages of not requiring heating during operation, high sensitivity, short usage time, low solvent usage, and low equipment costs. This study not only offers a reliable method for detecting total triterpenes in traditional Chinese medicine but also offers a rapid detection tool for on-site testing and large-scale screening, laying a foundation for the modernization of traditional Chinese medicine research, quality control, and drug development.
Collapse
Affiliation(s)
- Yuanyuan Guo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Zhe Han
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Jingwei Zhang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Yue Lu
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Chunfeng Li
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Guiyan Liu
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
9
|
Laftouhi A, Mahraz MA, Hmamou A, Assouguem A, Ullah R, Bari A, Lahlali R, Ercisli S, Kaur S, Idrissi AM, Eloutassi N, Rais Z, Taleb A, Taleb M. Analysis of Primary and Secondary Metabolites, Physical Properties, Antioxidant and Antidiabetic Activities, and Chemical Composition of Rosmarinus officinalis Essential Oils under Differential Water Stress Conditions. ACS OMEGA 2024; 9:16656-16664. [PMID: 38617605 PMCID: PMC11007863 DOI: 10.1021/acsomega.4c00653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/09/2024] [Accepted: 03/13/2024] [Indexed: 04/16/2024]
Abstract
This study investigated the effects of varying water stress levels on Rosmarinus officinalis essential oils (EO). Three samples (S1, S2, and S3) were cultivated under different stress levels (40, 60, and 80%). Increased water stress led to changes in primary and secondary metabolites, EO contents, and physical properties. Antioxidant activity varied, with S2 exhibiting the highest IC50 value. In terms of antidiabetic activity, S2 showed robust α-amylase inhibition, while S3 displayed a commendable influence. For α-galactosidase inhibition, S3 had a moderate effect, and S2 stood out with increased efficacy. Gas chromatography-mass spectrometry analysis revealed stress-induced changes in major compounds. The study enhances the understanding of plant responses to water stress, with potential applications in antioxidant therapy and diabetes management. The findings emphasize the importance of sustainable water management for optimizing the EO quality in its various uses.
Collapse
Affiliation(s)
- Abdelouahid Laftouhi
- Laboratory
of Electrochemistry, Modeling and Environment Engineering (LIEME)
Faculty of Sciences Fes, Sidi Mohamed Ben
Abdellah University, Fez 30000, Morocco
| | - Mohamed Adil Mahraz
- Laboratory
of Electrochemistry, Modeling and Environment Engineering (LIEME)
Faculty of Sciences Fes, Sidi Mohamed Ben
Abdellah University, Fez 30000, Morocco
| | - Anouar Hmamou
- Laboratory
of Electrochemistry, Modeling and Environment Engineering (LIEME)
Faculty of Sciences Fes, Sidi Mohamed Ben
Abdellah University, Fez 30000, Morocco
| | - Amine Assouguem
- Department
of Plant Protection and Environment, École
Nationale d’Agriculture de Meknès, Km.10, Route Haj Kaddour, B.P.S/40, Meknes 50001, Morocco
- Laboratory
of Functional Ecology and Environment, Faculty of Sciences and Technology, Sidi Mohamed Ben Abdellah University, Imouzzer Street, P.O. Box 2202, Fez 30000, Morocco
| | - Riaz Ullah
- Department
of Pharmacognosy, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Bari
- Department
of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Rachid Lahlali
- Department
of Plant Protection and Environment, École
Nationale d’Agriculture de Meknès, Km.10, Route Haj Kaddour, B.P.S/40, Meknes 50001, Morocco
| | - Sezai Ercisli
- Department
of Horticulture, Faculty of Agriculture, Ataturk University, Erzurum 25240, Turkey
| | - Sawinder Kaur
- Department
of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Amine Mounadi Idrissi
- Laboratory
of Electrochemistry, Modeling and Environment Engineering (LIEME)
Faculty of Sciences Fes, Sidi Mohamed Ben
Abdellah University, Fez 30000, Morocco
| | - Noureddine Eloutassi
- Laboratory
of Electrochemistry, Modeling and Environment Engineering (LIEME)
Faculty of Sciences Fes, Sidi Mohamed Ben
Abdellah University, Fez 30000, Morocco
| | - Zakia Rais
- Laboratory
of Electrochemistry, Modeling and Environment Engineering (LIEME)
Faculty of Sciences Fes, Sidi Mohamed Ben
Abdellah University, Fez 30000, Morocco
| | - Abdslam Taleb
- Environmental
Process Engineering Laboratory-Faculty of Science and Technology Mohammedia, Hassan II University of Casablanca, Casablanca 20000, Morocco
| | - Mustapha Taleb
- Laboratory
of Electrochemistry, Modeling and Environment Engineering (LIEME)
Faculty of Sciences Fes, Sidi Mohamed Ben
Abdellah University, Fez 30000, Morocco
| |
Collapse
|
10
|
Pezantes-Orellana C, German Bermúdez F, Matías De la Cruz C, Montalvo JL, Orellana-Manzano A. Essential oils: a systematic review on revolutionizing health, nutrition, and omics for optimal well-being. Front Med (Lausanne) 2024; 11:1337785. [PMID: 38435393 PMCID: PMC10905622 DOI: 10.3389/fmed.2024.1337785] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/25/2024] [Indexed: 03/05/2024] Open
Abstract
Purpose Essential oils from various plants have diverse therapeutic properties and are researched extensively. They have applications in medicine, aromatherapy, microbiology, agriculture, livestock, and the food industry, benefiting the population. Methods This systematic review followed the PRISMA verification protocol. The study focused on the anti-inflammatory effects, nutraceutical properties, antioxidant and antibacterial activity of essential oils in lemon, orange, cumin, cinnamon, coriander, rosemary, thyme, and parsley. We also looked at their presence in the diet, their effect, their mechanism of action on health, and the most important active compounds. The search was conducted in the PubMed database for the last 12 years of publications, including in vitro, in vivo, and online cell model tests. Results Essential oils have been shown to have multiple health benefits, primarily due to their antimicrobial and anti-inflammatory effects. The mechanism of action of cinnamon oil alters bacterial membranes, modifies lipid profiles, and inhibits cell division, giving a potential benefit in protection against colitis. On the other hand, a significant improvement was observed in the diastolic pressure of patients with metabolic syndrome when supplementing them with cumin essential oil. The antimicrobial properties of coriander essential oil, especially its application in seafood like tilapia, demonstrate efficacy in improving health and resistance to bacterial infections. Cumin essential oil treats inflammation. Parsley essential oil is an antioxidant. Orange peel oil is antibacterial, antifungal, antiparasitic, and pro-oxidative. Lemon essential oil affects mouse intestinal microbiota. Thyme essential oil protects the colon against damage and DNA methylation. Carnosic acid in rosemary oil can reduce prostate cancer cell viability by modifying the endoplasmic reticulum function. Conclusion and discussion Essential oils have many therapeutic and antiparasitic properties. They are beneficial to human health in many ways. However, to understand their potential benefits, more research is needed regarding essential oils such as coriander, parsley, rosemary, cumin, and thyme. These research gaps are relevant since they restrict understanding of the possible benefits of these crucial oils for health-related contexts.
Collapse
Affiliation(s)
| | - Fátima German Bermúdez
- Laboratorio para Investigaciones Biomédicas, Facultad de Ciencias de la Vida, Escuela Superior Politécnica del Litoral (ESPOL), Guayaquil, Ecuador
| | - Carmen Matías De la Cruz
- Laboratorio para Investigaciones Biomédicas, Facultad de Ciencias de la Vida, Escuela Superior Politécnica del Litoral (ESPOL), Guayaquil, Ecuador
| | | | - Andrea Orellana-Manzano
- Laboratorio para Investigaciones Biomédicas, Facultad de Ciencias de la Vida, Escuela Superior Politécnica del Litoral (ESPOL), Guayaquil, Ecuador
| |
Collapse
|