1
|
Luz VCC, Pereira SG. Celiac disease gut microbiome studies in the third millennium: reviewing the findings and gaps of available literature. FRONTIERS IN MEDICAL TECHNOLOGY 2024; 6:1413637. [PMID: 39355139 PMCID: PMC11444026 DOI: 10.3389/fmedt.2024.1413637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/29/2024] [Indexed: 10/03/2024] Open
Abstract
Celiac disease is an autoimmune enteropathy caused by the ingestion of minute amounts of gluten in a subset of genetically predisposed individuals. Its onset occurs at different ages and with variable symptoms. The gut microbiome may contribute to this variability. This review aims to provide an overview of the available research on celiac disease gut microbiome and identify the knowledge gap that could guide future studies. Following the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-analysis extension for Scoping Reviews (PRISMA-ScR), four electronic databases were searched for literature from January 2000 to July 2023 addressing celiac disease gut microbiome characterization using next-generation sequencing (NGS) approaches. From the 489 publications retrieved, 48 publications were selected and analyzed, focusing on sample characterization (patients, controls, and tissues) and methodologies used for NGS microbiome analysis and characterization. The majority of the selected publications regarded children and adults, and four were randomized clinical trials. The number of participants per study greatly varied and was typically low. Feces were the most frequently tested sample matrix, and duodenal samples were analyzed in one-third of the studies. Incomplete and diverse information on the methodological approaches and gut microbiome results was broadly observed. While similar trends regarding the relative abundance of some phyla, such as Pseudomonadota (former Proteobacteria), were detected in some studies, others contradicted those results. The observed high variability of technical approaches and possibly low power and sample sizes may prevent reaching a consensus on celiac disease gut microbiome composition. Standardization of research protocols to allow reproducibility and comparability is required, as interdisciplinary collaborations to further data analysis, interpretation, and, more importantly, health outcome prediction or improvement.
Collapse
Affiliation(s)
| | - Sónia Gonçalves Pereira
- Center for Innovative Care and Health Technology, School of Health Sciences, Polytechnic of Leiria, Leiria, Portugal
| |
Collapse
|
2
|
Galipeau HJ, Hinterleitner R, Leonard MM, Caminero A. Non-Host Factors Influencing Onset and Severity of Celiac Disease. Gastroenterology 2024; 167:34-50. [PMID: 38286392 DOI: 10.1053/j.gastro.2024.01.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 01/31/2024]
Abstract
Celiac disease (CeD) is a chronic autoimmune condition driven by gluten ingestion in genetically predisposed individuals, resulting in inflammatory lesions in the proximal small intestine. Although the presence of specific HLA-linked haplotypes and gluten consumption are necessary for disease development, they alone do not account for the variable onset of CeD in susceptible individuals. This review explores the multifaceted role of non-host factors in CeD development, including dietary and microbial influences. We discuss clinical associations and observations highlighting the impact of these factors on disease onset and severity. Furthermore, we discuss studies in CeD-relevant animal models that offer mechanistic insights into how diet, the microbiome, and enteric infections modulate CeD pathogenesis. Finally, we address the clinical implications and therapeutic potential of understanding these cofactors offering a promising avenue for preventive and therapeutic interventions in CeD management.
Collapse
Affiliation(s)
- Heather J Galipeau
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, Ontario, Canada.
| | - Reinhard Hinterleitner
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Maureen M Leonard
- Division of Pediatric Gastroenterology and Nutrition, Department of Pediatrics, MassGeneral Hospital for Children, Harvard Medical School, Boston, Massachusetts; Center for Celiac Research and Treatment, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Alberto Caminero
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
3
|
Rostami-Nejad M, Asri N, Bakhtiari S, Khalkhal E, Maleki S, Rezaei-Tavirani M, Jahani-Sherafat S, Rostami K. Metabolomics and lipidomics signature in celiac disease: a narrative review. Clin Exp Med 2024; 24:34. [PMID: 38340186 PMCID: PMC10858823 DOI: 10.1007/s10238-024-01295-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 01/12/2024] [Indexed: 02/12/2024]
Abstract
Celiac disease (CD) is a chronic immune-mediated inflammatory disease of the small intestine caused by aberrant immune responses to consumed gluten proteins. CD is diagnosed by a combination of the patients reported symptoms, serologic and endoscopic biopsy evaluation of the small intestine; and adherence to a strict gluten-free diet (GFD) is considered the only available therapeutic approach for this disorder. Novel approaches need to be considered for finding new biomarkers to help this disorder diagnosis and finding a new alternative therapeutic method for this group of patients. Metabolomics and lipidomics are powerful tools to provide highly accurate and sensitive biomarkers. Previous studies indicated a metabolic fingerprint for CD deriving from alterations in gut microflora or intestinal permeability, malabsorption, and energy metabolism. Moreover, since CD is characterized by increased intestinal permeability and due to the importance of membrane lipid components in controlling barrier integrity, conducting lipidomics studies in this disorder is of great importance. In the current study, we tried to provide a critical overview of metabolomic and lipidomic changes in CD.
Collapse
Affiliation(s)
- Mohammad Rostami-Nejad
- Celiac Disease and Gluten Related Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Nastaran Asri
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajjad Bakhtiari
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ensieh Khalkhal
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sepehr Maleki
- Department of Computer Science, University of Tabriz, Tabriz, Iran
| | - Mostafa Rezaei-Tavirani
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Somayeh Jahani-Sherafat
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kamran Rostami
- Department of Gastroenterology, MidCentral DHB, Palmerston North, 4442, New Zealand
| |
Collapse
|
4
|
DaFonte TM, Valitutti F, Kenyon V, Locascio JJ, Montuori M, Francavilla R, Passaro T, Crocco M, Norsa L, Piemontese P, Baldassarre M, Fasano A, Leonard MM. Zonulin as a Biomarker for the Development of Celiac Disease. Pediatrics 2024; 153:e2023063050. [PMID: 38062791 PMCID: PMC10754681 DOI: 10.1542/peds.2023-063050] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 12/31/2023] Open
Abstract
OBJECTIVES Increased intestinal permeability seems to be a key factor in the pathogenesis of autoimmune diseases, including celiac disease (CeD). However, it is unknown whether increased permeability precedes CeD onset. This study's objective was to determine whether intestinal permeability is altered before celiac disease autoimmunity (CDA) in at-risk children. We also examined whether environmental factors impacted zonulin, a widely used marker of gut permeability. METHODS We evaluated 102 children in the CDGEMM study from 2014-2022. We included 51 CDA cases and matched controls, who were enrolled for 12 months or more and consumed gluten. We measured serum zonulin from age 12 months to time of CDA onset, and the corresponding time point in controls, and examined clinical factors of interest. We ran a mixed-effects longitudinal model with dependent variable zonulin. RESULTS Children who developed CDA had a significant increase in zonulin in the 18.3 months (range 6-78) preceding CDA compared to those without CDA (slope differential = β = 0.1277, 95% CI: 0.001, 0.255). Among metadata considered, zonulin trajectory was only influenced by increasing number of antibiotic courses, which increased the slope of trajectory of zonulin over time in CDA subjects (P = .04). CONCLUSIONS Zonulin levels significantly rise in the months that precede CDA diagnosis. Exposure to a greater number of antibiotic courses was associated with an increase in zonulin levels in CDA subjects. This suggests zonulin may be used as a biomarker for preclinical CeD screening in at-risk children, and multiple antibiotic courses may increase their risk of CDA by increasing zonulin levels.
Collapse
Affiliation(s)
- Tracey M. DaFonte
- Division of Pediatric Gastroenterology and Nutrition, Department of Pediatrics, MassGeneral Hospital for Children, Harvard Medical School, Boston, Massachusetts
- Mucosal Immunology and Biology Research Center
- Center for Celiac Research and Treatment
| | | | - Victoria Kenyon
- Mucosal Immunology and Biology Research Center
- Center for Celiac Research and Treatment
| | - Joseph J. Locascio
- Departments of Biostatistics, Harvard Catalyst Biostatistical Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Monica Montuori
- Pediatric Gastroenterology Unit, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Ruggiero Francavilla
- Pediatric Unit “Bruno Trambusti,” Osp Pediatrico Giovanni XXIII, University of Bari, Bari, Italy
| | - Tiziana Passaro
- Celiac Disease Referral Center, “San Giovanni di Dio e Ruggi d’Aragona” University Hospital, Pole of Cava de' Tirreni, Salerno, Italy
| | - Marco Crocco
- Pediatrics, IRCCS Ospedale Giannina Gaslini, Genova, Italy
| | - Lorenzo Norsa
- Pediatric Hepatology, Gastroenterology, and Transplant Unit, Ospedale Papa Giovanni XXIII, Bergamo, Italy
| | - Pasqua Piemontese
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | | | - Alessio Fasano
- Division of Pediatric Gastroenterology and Nutrition, Department of Pediatrics, MassGeneral Hospital for Children, Harvard Medical School, Boston, Massachusetts
- Mucosal Immunology and Biology Research Center
- Center for Celiac Research and Treatment
- European Biomedical Research Institute of Salerno (EBRIS), Salerno, Italy
| | - Maureen M. Leonard
- Division of Pediatric Gastroenterology and Nutrition, Department of Pediatrics, MassGeneral Hospital for Children, Harvard Medical School, Boston, Massachusetts
- Mucosal Immunology and Biology Research Center
- Center for Celiac Research and Treatment
| | | |
Collapse
|
5
|
Zolnikova O, Dzhakhaya N, Bueverova E, Sedova A, Kurbatova A, Kryuchkova K, Butkova T, Izotov A, Kulikova L, Yurku K, Chekulaev P, Zaborova V. The Contribution of the Intestinal Microbiota to the Celiac Disease Pathogenesis along with the Effectiveness of Probiotic Therapy. Microorganisms 2023; 11:2848. [PMID: 38137992 PMCID: PMC10745538 DOI: 10.3390/microorganisms11122848] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
The development of many human disorders, including celiac disease (CD), is thought to be influenced by the microbiota of the gastrointestinal tract and its metabolites, according to current research. This study's goal was to provide a concise summary of the information on the contribution of the intestinal microbiota to the CD pathogenesis, which was actively addressed while examining the reported pathogenesis of celiac disease (CD). We assumed that a change in gluten tolerance is formed under the influence of a number of different factors, including genetic predisposition and environmental factors. In related investigations, researchers have paid increasing attention to the study of disturbances in the composition of the intestinal microbiota and its functional activity in CD. A key finding of our review is that the intestinal microbiota has gluten-degrading properties, which, in turn, may have a protective effect on the development of CD. The intestinal microbiota contributes to maintaining the integrity of the intestinal barrier, preventing the formation of a "leaky" intestine. On the contrary, a change in the composition of the microbiota can act as a significant link in the pathogenesis of gluten intolerance and exacerbate the course of the disease. The possibility of modulating the composition of the microbiota by prescribing probiotic preparations is being considered. The effectiveness of the use of probiotics containing Lactobacillus and Bifidobacterium bacteria in experimental and clinical studies as a preventive and therapeutic agent has been documented.
Collapse
Affiliation(s)
- Oxana Zolnikova
- Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (O.Z.); (N.D.); (E.B.); (A.S.); (A.K.); (P.C.)
| | - Natiya Dzhakhaya
- Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (O.Z.); (N.D.); (E.B.); (A.S.); (A.K.); (P.C.)
| | - Elena Bueverova
- Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (O.Z.); (N.D.); (E.B.); (A.S.); (A.K.); (P.C.)
| | - Alla Sedova
- Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (O.Z.); (N.D.); (E.B.); (A.S.); (A.K.); (P.C.)
| | - Anastasia Kurbatova
- Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (O.Z.); (N.D.); (E.B.); (A.S.); (A.K.); (P.C.)
| | - Kira Kryuchkova
- Institute of Public Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia;
| | - Tatyana Butkova
- Institute of Biomedical Chemistry, Biobanking Group, 109028 Moscow, Russia; (T.B.); (A.I.); (L.K.)
| | - Alexander Izotov
- Institute of Biomedical Chemistry, Biobanking Group, 109028 Moscow, Russia; (T.B.); (A.I.); (L.K.)
| | - Ludmila Kulikova
- Institute of Biomedical Chemistry, Biobanking Group, 109028 Moscow, Russia; (T.B.); (A.I.); (L.K.)
- Institute of Mathematical Problems of Biology RAS—The Branch of Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Kseniya Yurku
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, 123098 Moscow, Russia;
| | - Pavel Chekulaev
- Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (O.Z.); (N.D.); (E.B.); (A.S.); (A.K.); (P.C.)
| | - Victoria Zaborova
- Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (O.Z.); (N.D.); (E.B.); (A.S.); (A.K.); (P.C.)
| |
Collapse
|
6
|
Pepe A, Mandato C, Di Leo T, Boccia G, Lucaroni G, Franci G, Mauro C, Di Cara G, Valitutti F. Celiac Disease on the Bed-Side: Embedding Case Finding and Screening in Hospitalized Children. Nutrients 2023; 15:4899. [PMID: 38068757 PMCID: PMC10708066 DOI: 10.3390/nu15234899] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/19/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Strategies for diagnosing celiac disease (CD) include case-finding and population-screening programs. Case finding consists of testing individuals at increased risk for the disease due to symptoms or associated conditions. Screening programs are widespread campaigns, which definitely perform better in terms of unveiling CD diagnoses but nowadays are still debatable. The global prevalence of CD is around 1% but it almost doubles when considering screening programs among school children. Within this framework, we aimed to estimate the prevalence of CD among hospitalized children in the Pediatric Department of a Southern Italy University Hospital in the period from January 2018 through December 2021. In addition, we attempted to explore, at the time of diagnosis, the prevalence of leading clinical alerts due to malabsorption/malnutrition such as anemia or failure to thrive or due to systemic inflammation/immune dysfunction as hypertransaminasemia and thyroid dysfunction. METHODS Data records of pediatric patients admitted as inpatients and tested by anti-transglutaminase IgA antibodies (TGA-IgA) were retrospectively analyzed. CD was diagnosed according to either 2012 or 2020 ESPGHAN guidelines, depending on the year of diagnosis. CD autoimmunity (CDA) was a wider group defined within our protocol if patients had elevated TGA-IgA on at least one occasion, regardless of anti-endomysial antibodies (EMA-IgA) and without biopsy confirmation. RESULTS During the observation period, 3608 pediatric patients were admitted and 1320 were screened for CD (median age 5 years, IQR 2-9 years; CD test rate: 36.6% out of all admissions). The available prevalence of newly diagnosed CD was 1.59% (21 patients diagnosed) and the available prevalence of CDA was 3.86% (51 subjects). Among CD patients, underweight/malnourished children accounted for 28.6% (6 out of 21). CONCLUSIONS The estimated prevalence of CD diagnoses within our setting was comparable to the most recent population-screening programs. The estimated prevalence of CDA was even higher. A hospital-admission CD testing during routine blood draws might be a non-invasive, cost-effective and valuable approach to reduce discrepancy of prevalence between case-finding and population-screening programs.
Collapse
Affiliation(s)
- Angela Pepe
- Pediatrics Section, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (A.P.); (C.M.); (G.L.)
| | - Claudia Mandato
- Pediatrics Section, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (A.P.); (C.M.); (G.L.)
| | - Tiziana Di Leo
- Clinical Pathology and Biochemistry Unit, University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy;
| | - Giovanni Boccia
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (G.B.); (G.F.)
| | - Giulia Lucaroni
- Pediatrics Section, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (A.P.); (C.M.); (G.L.)
| | - Gianluigi Franci
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (G.B.); (G.F.)
| | - Carolina Mauro
- Pediatric Unit, Department of Maternal and Child Health, University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy;
| | - Giuseppe Di Cara
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, University of Perugia, 06123 Perugia, Italy;
| | - Francesco Valitutti
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, University of Perugia, 06123 Perugia, Italy;
- European Biomedical Research Institute of Salerno (EBRIS), Via De Renzi 50, 84125 Salerno, Italy
| |
Collapse
|
7
|
Kim K, Kang M, Cho BK. Systems and synthetic biology-driven engineering of live bacterial therapeutics. Front Bioeng Biotechnol 2023; 11:1267378. [PMID: 37929193 PMCID: PMC10620806 DOI: 10.3389/fbioe.2023.1267378] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023] Open
Abstract
The past decade has seen growing interest in bacterial engineering for therapeutically relevant applications. While early efforts focused on repurposing genetically tractable model strains, such as Escherichia coli, engineering gut commensals is gaining traction owing to their innate capacity to survive and stably propagate in the intestine for an extended duration. Although limited genetic tractability has been a major roadblock, recent advances in systems and synthetic biology have unlocked our ability to effectively harness native gut commensals for therapeutic and diagnostic purposes, ranging from the rational design of synthetic microbial consortia to the construction of synthetic cells that execute "sense-and-respond" logic operations that allow real-time detection and therapeutic payload delivery in response to specific signals in the intestine. In this review, we outline the current progress and latest updates on microbial therapeutics, with particular emphasis on gut commensal engineering driven by synthetic biology and systems understanding of their molecular phenotypes. Finally, the challenges and prospects of engineering gut commensals for therapeutic applications are discussed.
Collapse
Affiliation(s)
- Kangsan Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
- KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Minjeong Kang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
- KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
- KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
- Graduate School of Engineering Biology, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
8
|
Martín-Masot R, Jiménez-Muñoz M, Herrador-López M, Navas-López VM, Obis E, Jové M, Pamplona R, Nestares T. Metabolomic Profiling in Children with Celiac Disease: Beyond the Gluten-Free Diet. Nutrients 2023; 15:2871. [PMID: 37447198 DOI: 10.3390/nu15132871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Celiac disease (CD) is included in the group of complex or multifactorial diseases, i.e., those caused by the interaction of genetic and environmental factors. Despite a growing understanding of the pathophysiological mechanisms of the disease, diagnosis is still often delayed and there are no effective biomarkers for early diagnosis. The only current treatment, a gluten-free diet (GFD), can alleviate symptoms and restore intestinal villi, but its cellular effects remain poorly understood. To gain a comprehensive understanding of CD's progression, it is crucial to advance knowledge across various scientific disciplines and explore what transpires after disease onset. Metabolomics studies hold particular significance in unravelling the complexities of multifactorial and multisystemic disorders, where environmental factors play a significant role in disease manifestation and progression. By analyzing metabolites, we can gain insights into the reasons behind CD's occurrence, as well as better comprehend the impact of treatment initiation on patients. In this review, we present a collection of articles that showcase the latest breakthroughs in the field of metabolomics in pediatric CD, with the aim of trying to identify CD biomarkers for both early diagnosis and treatment monitoring. These advancements shed light on the potential of metabolomic analysis in enhancing our understanding of the disease and improving diagnostic and therapeutic strategies. More studies need to be designed to cover metabolic profiles in subjects at risk of developing the disease, as well as those analyzing biomarkers for follow-up treatment with a GFD.
Collapse
Affiliation(s)
- Rafael Martín-Masot
- Pediatric Gastroenterology and Nutrition Unit, Hospital Regional Universitario de Malaga, 29010 Málaga, Spain
- Institute of Nutrition and Food Technology "José MataixVerdú" (INYTA), Biomedical Research Centre (CIBM), University of Granada, 18071 Granada, Spain
| | - María Jiménez-Muñoz
- Pediatric Gastroenterology and Nutrition Unit, Hospital Regional Universitario de Malaga, 29010 Málaga, Spain
| | - Marta Herrador-López
- Pediatric Gastroenterology and Nutrition Unit, Hospital Regional Universitario de Malaga, 29010 Málaga, Spain
| | - Víctor Manuel Navas-López
- Pediatric Gastroenterology and Nutrition Unit, Hospital Regional Universitario de Malaga, 29010 Málaga, Spain
| | - Elia Obis
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), University of Lleida (UdL), 25198 Lleida, Spain
| | - Mariona Jové
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), University of Lleida (UdL), 25198 Lleida, Spain
| | - Reinald Pamplona
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), University of Lleida (UdL), 25198 Lleida, Spain
| | - Teresa Nestares
- Institute of Nutrition and Food Technology "José MataixVerdú" (INYTA), Biomedical Research Centre (CIBM), University of Granada, 18071 Granada, Spain
- Department of Physiology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain
| |
Collapse
|