1
|
Lovett J, McColl RS, Durcan P, Vechetti I, Myburgh KH. Analysis of plasma-derived small extracellular vesicle characteristics and microRNA cargo following exercise-induced skeletal muscle damage in men. Physiol Rep 2024; 12:e70056. [PMID: 39304515 PMCID: PMC11415274 DOI: 10.14814/phy2.70056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/23/2024] [Accepted: 09/02/2024] [Indexed: 09/22/2024] Open
Abstract
Extracellular vesicle (EV) cargo is known to change in response to stimuli such as muscle damage. This study aimed to assess particle size, concentration and microRNA (miR) content within small EV-enriched separations prepared from human blood taken before and after unaccustomed eccentric-biased exercise-induced muscle damage. Nine male volunteers underwent plyometric jumping and downhill running, with blood samples taken at baseline, 2, and 24 h post-exercise. EVs were separated using size exclusion chromatography (SEC) and their characteristics evaluated by nanoparticle tracking. No changes in EV size or concentration were seen following the muscle-damaging exercise. Small RNA sequencing identified 240 miRs to be consistently present within the EVs. RT-qPCR analysis was performed: specifically, for known muscle-enriched/important miRs, including miR-1, -206, -133a, -133b, -31, -208b, -451a, -486 and - 499 and the immune-important miR-21, -146a and - 155. Notably, none of the immune-important miRs within the EVs tested changed in response to the muscle damage. Of the muscle-associated miRs tested, only the levels of miR-31-5p were seen to change with decreased levels at 24 h compared to baseline and 2 h, indicating involvement in the damage response. These findings shed light on the dynamic role of EV miRs in response to exercise-induced muscle damage.
Collapse
Affiliation(s)
- Jason Lovett
- Department of Physiological SciencesStellenbosch UniversityStellenboschSouth Africa
| | - Rhys S. McColl
- Department of Physiological SciencesStellenbosch UniversityStellenboschSouth Africa
| | - Peter Durcan
- Department of Physiological SciencesStellenbosch UniversityStellenboschSouth Africa
| | - Ivan Vechetti
- Department of Nutrition and Health SciencesUniversity of Nebraska‐LincolnLincolnNebraskaUSA
| | - Kathryn H. Myburgh
- Department of Physiological SciencesStellenbosch UniversityStellenboschSouth Africa
| |
Collapse
|
2
|
Fiorentino M, Philippe R, Palumbo CA, Prenna S, Cantaluppi V, Rosa SD. Epigenetic Mechanisms in Sepsis-Associated Acute Kidney Injury. Semin Respir Crit Care Med 2024; 45:491-502. [PMID: 39208853 DOI: 10.1055/s-0044-1789240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Sepsis, the dysregulated immune response of the host to infections, leads to numerous complications, including multiple organ dysfunction with sepsis-associated acute kidney injury (SA-AKI) being a frequent complication associated with increased risk of mortality and the progression toward chronic kidney disease (CKD). Several mechanisms have been widely investigated in understanding the complex pathophysiology of SA-AKI, including hemodynamic alterations, inflammation, oxidative stress, and direct cellular injury driven by pathogens or cell-derived products (pathogen-associated molecular patterns and damage-associated molecular patterns). Despite advancements in the management of septic patients, the prognosis of SA-AKI patients remains significantly poor and is associated with high in-hospital mortality and adverse long-term outcomes. Therefore, recent research has focused on the early identification of specific SA-AKI endotypes and subphenotypes through epigenetic analysis and the use of potential biomarkers, either alone or in combination with clinical data, to improve prognosis. Epigenetic regulation, such as DNA methylation, histone modifications, and noncoding RNA modulation, is crucial in modulating gene expression in response to stress and renal injury in SA-AKI. At the same time, these modifications are dynamic and reversible processes that can alter gene expression in several pathways implicated in the context of SA-AKI, including inflammation, immune response, and tolerance status. In addition, specific epigenetic modifications may exacerbate renal damage by causing persistent inflammation or cellular metabolic reprogramming, leading to progression toward CKD. This review aims to provide a comprehensive understanding of the epigenetic characteristics that define SA-AKI, also exploring targeted therapies that can improve patient outcomes and limit the chronic progression of this syndrome.
Collapse
Affiliation(s)
- Marco Fiorentino
- Nephrology, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro," Bari, Italy
| | - Reginald Philippe
- Centre for Medical Sciences - CISMed, University of Trento, Trento, Italy
| | - Carmen A Palumbo
- Nephrology, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro," Bari, Italy
| | - Stefania Prenna
- Department of Anesthesia and Intensive Care, Santa Chiara Hospital, APSS Trento, Trento, Italy
| | - Vincenzo Cantaluppi
- Nephrology and Kidney Transplantation Unit, Department of Translational Medicine (DIMET), University of Piemonte Orientale (UPO), "Maggiore della Carità" University Hospital, Novara, Italy
| | - Silva De Rosa
- Centre for Medical Sciences - CISMed, University of Trento, Trento, Italy
| |
Collapse
|
3
|
Perpiñá-Clérigues C, Mellado S, Galiana-Roselló C, Fernández-Regueras M, Marcos M, García-García F, Pascual M. Novel insight into the lipid network of plasma extracellular vesicles reveal sex-based differences in the lipidomic profile of alcohol use disorder patients. Biol Sex Differ 2024; 15:10. [PMID: 38273378 PMCID: PMC10809459 DOI: 10.1186/s13293-024-00584-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/11/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Alcohol use disorder (AUD) is one of the most common psychiatric disorders, with the consumption of alcohol considered a leading cause of preventable deaths worldwide. Lipids play a crucial functional role in cell membranes; however, we know little about the role of lipids in extracellular vesicles (EVs) as regulatory molecules and disease biomarkers. METHODS We employed a sensitive lipidomic strategy to characterize lipid species from the plasma EVs of AUD patients to evaluate functional roles and enzymatic activity networks to improve the knowledge of lipid metabolism after alcohol consumption. We analyzed plasma EV lipids from AUD females and males and healthy individuals to highlight lipids with differential abundance and biologically interpreted lipidomics data using LINEX2, which evaluates enzymatic dysregulation using an enrichment algorithm. RESULTS Our results show, for the first time, that AUD females exhibited more significant substrate-product changes in lysophosphatidylcholine/phosphatidylcholine lipids and phospholipase/acyltransferase activity, which are potentially linked to cancer progression and neuroinflammation. Conversely, AUD males suffer from dysregulated ceramide and sphingomyelin lipids involving sphingomyelinase, sphingomyelin phosphodiesterase, and sphingomyelin synthase activity, which relates to hepatotoxicity. Notably, the analysis of plasma EVs from AUD females and males demonstrates enrichment of lipid ontology terms associated with "negative intrinsic curvature" and "positive intrinsic curvature", respectively. CONCLUSIONS Our methodological developments support an improved understanding of lipid metabolism and regulatory mechanisms, which contribute to the identification of novel lipid targets and the discovery of sex-specific clinical biomarkers in AUD.
Collapse
Affiliation(s)
- Carla Perpiñá-Clérigues
- Computational Biomedicine Laboratory, Príncipe Felipe Research Center, C/Eduardo Primo Yúfera, 3, 46012, Valencia, Spain
- Department of Physiology, School of Medicine and Dentistry, University of Valencia, Avda. Blasco Ibáñez, 15, 46010, Valencia, Spain
| | - Susana Mellado
- Department of Physiology, School of Medicine and Dentistry, University of Valencia, Avda. Blasco Ibáñez, 15, 46010, Valencia, Spain
| | - Cristina Galiana-Roselló
- Department of Inorganic Chemistry, Institute of Molecular Science, University of Valencia, 46980, Paterna, Spain
| | - María Fernández-Regueras
- Hospital Universitario de Burgos, 09006, Burgos, Spain
- Hospital Universitario de Salamanca, 37007, Salamanca, Spain
| | - Miguel Marcos
- Department of Internal Medicine, University Hospital of Salamanca, University of Salamanca, Institute of Biomedical Research of Salamanca (IBSAL), 37007, Salamanca, Spain
| | - Francisco García-García
- Computational Biomedicine Laboratory, Príncipe Felipe Research Center, C/Eduardo Primo Yúfera, 3, 46012, Valencia, Spain.
| | - María Pascual
- Department of Physiology, School of Medicine and Dentistry, University of Valencia, Avda. Blasco Ibáñez, 15, 46010, Valencia, Spain.
| |
Collapse
|
4
|
Bettio V, Mazzucco E, Aleni C, Cracas S, Rinaldi C, Antona A, Varalda M, Venetucci J, Ferrante D, Rimedio A, Capello D. UPO Biobank: The Challenge of Integrating Biobanking into the Academic Environment to Support Translational Research. J Pers Med 2023; 13:911. [PMID: 37373900 DOI: 10.3390/jpm13060911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/18/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Biobanks are driving motors of precision and personalized medicine by providing high-quality biological material/data through the standardization and harmonization of their collection, preservation, and distribution. UPO Biobank was established in 2020 as an institutional, disease, and population biobank within the University of Piemonte Orientale (UPO) for the promotion and support of high-quality, multidisciplinary studies. UPO Biobank collaborates with UPO researchers, sustaining academic translational research, and supports the Novara Cohort Study, a longitudinal cohort study involving the population in the Novara area that will collect data and biological specimens that will be available for epidemiological, public health, and biological studies on aging. UPO Biobank has been developed by implementing the quality standards for the field and the ethical and legal issues and normative about privacy protection, data collection, and sharing. As a member of the "Biobanking and Biomolecular Resources Research Infrastructure" (BBMRI) network, UPO Biobank aims to expand its activity worldwide and launch cooperation with new national and international partners and researchers. The objective of this manuscript is to report an institutional and operational experience through the description of the technical and procedural solutions and ethical and scientific implications associated with the establishment of this university research biobank.
Collapse
Affiliation(s)
- Valentina Bettio
- UPO Biobank, University of Piemonte Orientale, 28100 Novara, Italy
- Department of Translational Medicine, Center of Excellence in Aging Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Eleonora Mazzucco
- UPO Biobank, University of Piemonte Orientale, 28100 Novara, Italy
- Department of Translational Medicine, Center of Excellence in Aging Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Chiara Aleni
- Department of Sustainable Development and Ecological Transition, University of Piemonte Orientale, 13100 Vercelli, Italy
| | - Silvia Cracas
- Department of Translational Medicine, Center of Excellence in Aging Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Carmela Rinaldi
- Department of Translational Medicine, Center of Excellence in Aging Sciences, University of Piemonte Orientale, 28100 Novara, Italy
- Learning and Research Area, A.O.U. Maggiore della Carità, 28100 Novara, Italy
| | - Annamaria Antona
- Department of Translational Medicine, Center of Excellence in Aging Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Marco Varalda
- Department of Translational Medicine, Center of Excellence in Aging Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Jacopo Venetucci
- Department of Translational Medicine, Center of Excellence in Aging Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Daniela Ferrante
- Department of Translational Medicine, Center of Excellence in Aging Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Antonio Rimedio
- Ethics Committee of the University "Hospital Major of Charity" in Novara, Local Health Authorities Biella, 28100 Novara, Italy
| | - Daniela Capello
- UPO Biobank, University of Piemonte Orientale, 28100 Novara, Italy
- Department of Translational Medicine, Center of Excellence in Aging Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| |
Collapse
|