1
|
Zhang X, Liu G, Sang Z, Jin X, Wang Y, Guo Q, Zhou Y, Song X. Pharmacokinetics, tissue distribution, and excretion study of GL-V9 and its glucuronide metabolite 5-O-glucuronide GL-V9 in Sprague-Dawley rats. Biomed Chromatogr 2024; 38:e5828. [PMID: 38321647 DOI: 10.1002/bmc.5828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/21/2023] [Accepted: 01/02/2024] [Indexed: 02/08/2024]
Abstract
The objective of this study is to explore the pharmacokinetics, tissue distribution, and excretion patterns of GL-V9 and its glucuronide metabolite, 5-O-glucuronide GL-V9, following the administration of GL-V9 to Sprague-Dawley (SD) rats. In this research, we developed and validated rapid, sensitive, and selective ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) methods for quantifying GL-V9 and 5-O-glucuronide GL-V9 in various biological samples, including SD rat plasma, tissue homogenate, bile, urine, and feces. Quantification of GL-V9 and 5-O-glucuronide GL-V9 in plasma, tissue homogenate, bile, urine, and feces was performed using the validated LC-MS/MS methods. The bioavailability of GL-V9 in SD rats ranged from 6.23% to 7.08%, and both GL-V9 and 5-O-glucuronide GL-V9 exhibited wide distribution and rapid elimination from tissues. The primary distribution tissues for GL-V9 and 5-O-glucuronide GL-V9 in rats were the duodenum, liver, and lung. GL-V9 was predominantly excreted in urine, while 5-O-glucuronide GL-V9 was primarily excreted in bile. GL-V9 exhibited easy absorption and rapid conversion to its glucuronide metabolite, 5-O-glucuronide GL-V9, following administration.
Collapse
Affiliation(s)
- Xuefeng Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
- TriApex Laboratories Co., Ltd, Nanjing, People's Republic of China
| | - Guanlan Liu
- TriApex Laboratories Co., Ltd, Nanjing, People's Republic of China
| | - Zechun Sang
- TriApex Laboratories Co., Ltd, Nanjing, People's Republic of China
| | - Xiaoxin Jin
- Fushun No.12 Senior High School, Fushun, People's Republic of China
| | - Yan Wang
- Fushun No.2 Senior High School, Fushun, People's Republic of China
| | - Qinglong Guo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yuxin Zhou
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Xiuming Song
- TriApex (Nanjing) Clinical Research Co., LTD, TriApex Laboratories Co., Ltd, Nanjing, People's Republic of China
| |
Collapse
|