• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4669866)   Today's Articles (1883)
For: Shin H, Shim S, Oh S. Machine learning-based predictive model for prevention of metabolic syndrome. PLoS One 2023;18:e0286635. [PMID: 37267302 DOI: 10.1371/journal.pone.0286635] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/19/2023] [Indexed: 06/04/2023]  Open
Number Cited by Other Article(s)
1
Goldman O, Ben-Assuli O, Ababa S, Rogowski O, Berliner S. Predicting metabolic syndrome: Machine learning techniques for improved preventive medicine. Health Informatics J 2025;31:14604582251315602. [PMID: 39819060 DOI: 10.1177/14604582251315602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
2
Hossain MF, Hossain S, Akter MN, Nahar A, Liu B, Faruque MO. Metabolic syndrome predictive modelling in Bangladesh applying machine learning approach. PLoS One 2024;19:e0309869. [PMID: 39236041 PMCID: PMC11376561 DOI: 10.1371/journal.pone.0309869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 08/12/2024] [Indexed: 09/07/2024]  Open
3
Shin D. Prediction of metabolic syndrome using machine learning approaches based on genetic and nutritional factors: a 14-year prospective-based cohort study. BMC Med Genomics 2024;17:224. [PMID: 39232768 PMCID: PMC11373243 DOI: 10.1186/s12920-024-01998-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024]  Open
4
Lee M, Park T, Shin JY, Park M. A comprehensive multi-task deep learning approach for predicting metabolic syndrome with genetic, nutritional, and clinical data. Sci Rep 2024;14:17851. [PMID: 39090161 PMCID: PMC11294629 DOI: 10.1038/s41598-024-68541-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024]  Open
5
Huang AA, Huang SY. Application of a transparent artificial intelligence algorithm for US adults in the obese category of weight. PLoS One 2024;19:e0304509. [PMID: 38820332 PMCID: PMC11142543 DOI: 10.1371/journal.pone.0304509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 05/13/2024] [Indexed: 06/02/2024]  Open
6
Huang X, He Q, Hu H, Shi H, Zhang X, Xu Y. Integrating machine learning and nontargeted plasma lipidomics to explore lipid characteristics of premetabolic syndrome and metabolic syndrome. Front Endocrinol (Lausanne) 2024;15:1335269. [PMID: 38559697 PMCID: PMC10979736 DOI: 10.3389/fendo.2024.1335269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/14/2024] [Indexed: 04/04/2024]  Open
7
Jeong S, Choi YJ. Investigating the Influence of Heavy Metals and Environmental Factors on Metabolic Syndrome Risk Based on Nutrient Intake: Machine Learning Analysis of Data from the Eighth Korea National Health and Nutrition Examination Survey (KNHANES). Nutrients 2024;16:724. [PMID: 38474852 DOI: 10.3390/nu16050724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024]  Open
8
Boitor O, Stoica F, Mihăilă R, Stoica LF, Stef L. Automated Machine Learning to Develop Predictive Models of Metabolic Syndrome in Patients with Periodontal Disease. Diagnostics (Basel) 2023;13:3631. [PMID: 38132215 PMCID: PMC10743072 DOI: 10.3390/diagnostics13243631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]  Open
PrevPage 1 of 1 1Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA