1
|
Fu S, Feng Z, Li A, Ma Z, Zhang H, Zhao Z. Using integrative bioinformatics approaches and machine-learning strategies to identify potential signatures for atrial fibrillation. IJC HEART & VASCULATURE 2025; 56:101592. [PMID: 39850778 PMCID: PMC11754484 DOI: 10.1016/j.ijcha.2024.101592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/16/2024] [Accepted: 12/23/2024] [Indexed: 01/25/2025]
Abstract
Atrial fibrillation (AF) is the most common tachyarrhythmia and seriously affects human health. Key targets of AF bioinformatics analysis can help to better understand the pathogenesis of AF and develop therapeutic targets. The left atrial appendage tissue of 20 patients with AF and 10 patients with sinus rhythm were collected for sequencing, and the expression data of the atrial tissue were obtained. Based on this, 2578 differentially expressed genes were obtained through differential analysis. Different express genes (DEGs) were functionally enriched on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG), mainly focusing on neuroactive ligand-receptor interactions, neuronal cell body pathways, regulation of neurogenesis, and neuronal death, regulation of neuronal death, etc. Secondly, 14 significant module genes were obtained by analyzing the weighted gene co-expression network of DEGs. Next, LASSO and SVM analyzes were performed on the differential genes, and the results were in good agreement with the calibration curve of the nomogram model for predicting AF constructed by the weighted gene co-expression network key genes. The significant module genes obtained by the area under the ROC curve (AUC) analysis were analyzed. Through crossover, two key disease characteristic genes related to AF, HOXA2 and RND2, were screened out. RND2 was selected for further research, and qPCR verified the expression of RND2 in sinus rhythm patients and AF patients. Patients with sinus rhythm were significantly higher than those in AF patients. Our research indicates that RND2 is significantly associated with the onset of AF and can serve as a potential target for studying its pathogenesis.
Collapse
Affiliation(s)
- Shihao Fu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Zian Feng
- Department of Cardiology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Ao Li
- Department of Cardiovascular Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Zhenxiao Ma
- Department of Cardiovascular Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Haiyang Zhang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Zhiwei Zhao
- Department of Cardiovascular Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| |
Collapse
|
2
|
Yilmaz A, Ari Yuka S. The role of ceRNAs in breast cancer microenvironmental regulation and therapeutic implications. J Mol Med (Berl) 2025; 103:33-49. [PMID: 39641797 DOI: 10.1007/s00109-024-02503-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 11/09/2024] [Accepted: 11/17/2024] [Indexed: 12/07/2024]
Abstract
The tumor microenvironment, which is the tailored physiological milieu of heterogeneous cancer cell populations surrounded by stromal and immune cells as well as extracellular matrix components, is a leading modulator of critical cancer hallmarks and one of the most significant prognostic indicators in breast cancer. In the last few decades, with the discovery of the interactions of ncRNAs with diverse cellular molecules, considerable emphasis has been devoted to understanding their direct and indirect roles in specific functions in breast cancer. Collectively, all of these have revealed that the competitive action of protein-coding RNAs and ncRNAs such as circRNAs and lncRNAs, which have a shared affinity for miRNAs, play a vital role in the molecular regulation of breast cancer. This phenomenon, termed as competing endogenous RNAs (ceRNAs), facilitates modeling the microenvironment through intercellular shuttles. Microenvironment ceRNA interactions have emerged as a frontier in the deep understanding of the complex mechanisms of breast cancer. In this review, we first discuss cellular ceRNAs in four key biological processes critical for microenvironmental regulation in breast cancer tissues: hypoxia, angiogenesis, immune regulations, and ECM remodeling. Further, we draw a complete portrait of microenvironment regulation by cell-to-cell cross-talk of shuttled ceRNAs and offer a framework of potential applications and challenges in overcoming the aggressive phenotype of the breast cancer microenvironment.
Collapse
Affiliation(s)
- Alper Yilmaz
- Department of Molecular Biology and Genetics, Yildiz Technical University, Istanbul, 34220, Turkey
| | - Selcen Ari Yuka
- Department of Genetics and Bioengineering, Alanya Alaaddin Keykubat University, Antalya, 07425, Turkey.
- Health Biotechnology Joint Research and Application Center of Excellence, Yildiz Technical University, Istanbul, 34220, Turkey.
| |
Collapse
|
3
|
Huang Z, Li X, Liu J, Wang H. of Potential Noncoding RNAs Related to Spinal Cord Injury Based on Competing Endogenous RNAs. Mol Neurobiol 2024; 61:10901-10915. [PMID: 38809369 DOI: 10.1007/s12035-024-04189-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 04/13/2024] [Indexed: 05/30/2024]
Abstract
This study aims to elucidate the key regulatory molecules, specifically messenger RNAs (mRNAs), long noncoding RNAs (lncRNAs), and microRNAs (miRNAs) and their roles in the development and progression of spinal cord injury (SCI). Expression profiles (GSE45006, GSE19890, and GSE125630) for SCI were sourced from the Gene Expression Omnibus (GEO) database. By comparing rats with SCI at various time points against those without SCI, we identified differentially expressed mRNAs (DEmRNAs), lncRNAs (DElncRNAs), and miRNAs (DEmiRNAs). The GSE45006 dataset facilitated the production of DEmRNAs, which were then clustered using Mfuzz. Subsequently, we constructed a protein-protein interaction (PPI) network and anticipated interaction pairs between miRNA-mRNA and lncRNA-mRNA. These pairs were instrumental in forming a regulatory network involving lncRNA-miRNA-mRNA interactions. Additionally, we conducted functional enrichment studies on the DEmRNAs within these gene networks. A total of 2313 DEmRNAs were identified using the GSE45006 dataset, alongside 111 DEmiRNAs from GSE19890. From GSE125630, we extracted 154 DElncRNAs and 2322 DEmRNAs. Our analysis revealed 294 up-regulated DEmRNAs, grouped into the up-cluster, and 407 down-regulated DEmRNAs, forming the down-cluster. Key hub genes in the PPI network, such as Rhof, Vav1, Lyz2, Rab3a, Lyn, Cyfip1, Gns, and Nckap1l, were identified. Additionally, the study successfully constructed a competing endogenous RNA (ceRNA) network, revealing 55 unique lncRNA-miRNA-mRNA link pairs. Our research established a ceRNA network associated with SCI, identifying several critical lncRNA-miRNA-mRNA connection pairs integral to the disease's onset and progression. Notably, significant associations, including the AABR07041411.1-miR-125a-5p-Slc4a7 and the Smg1-rno-miR-331-3p-Tlr4 pairs, were observed to exert a significant influence within this biological context.
Collapse
Affiliation(s)
- Zhehao Huang
- Department of Neurosurgery, The Second Hospital of Jilin University, Changchun, 130021, China
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, 130000, China
| | - Xianglan Li
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, 130000, China.
| | - Jun Liu
- Department of Neurosurgery, The Second Hospital of Jilin University, Changchun, 130021, China.
| | - Hailiang Wang
- Department of Neurosurgery, The Second Hospital of Jilin University, Changchun, 130021, China
| |
Collapse
|
4
|
Alharbi KS. Non-coding RNAs as therapeutic targets in Parkinson's Disease: A focus on dopamine. Pathol Res Pract 2024; 263:155641. [PMID: 39395297 DOI: 10.1016/j.prp.2024.155641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/14/2024]
Abstract
Parkinson's Disease is a highly complicated neurological disorder, with a key manifestation of loss of dopaminergic neurons. Despite the plethora of medicines that alleviate the symptoms, there is an urgent need for new treatments acting on the fundamental pathology of PD. Non-coding RNAs are becoming increasingly important in gene regulation and various cellular processes and are found to play a role in PD pathophysiology. This review analyzes the cross-talk of distinct ncRNAs with dopamine signaling. We attempt to constrain the various ncRNA networks that can activate dopamine production. First, we describe the deregulation of miRNAs that target dopamine receptors and have been implicated in PD. Next, we turn to the functions of lncRNAs in dopaminergic neurons and the connections to susceptibility genes for PD. Finally, we will analyze the novel circRNAs, such as ciRS-7, which may modulate dopamine-linked processes and serve as possible PD biomarkers. In this review, we describe recent progress in dopamine neuron revival to treat PD and the therapeutic potential of ncRNA. This review critically evaluates the available data, and we predict the role of some ncRNAs, such as PTBP1, to become candidate treatment targets in the future. Thus, this review aims to summarize the molecular causes for the deficit in dopamine signaling in PD and point to novel ncRNAs-linked therapeutic directions in neuroscience.
Collapse
Affiliation(s)
- Khalid Saad Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, AL Qassim 51452, Saudi Arabia.
| |
Collapse
|
5
|
Li P, Cui P, Yue Q, Xu Z, Liu Z. Exploring the potential biological significance of KDELR family genes in lung adenocarcinoma. Sci Rep 2024; 14:14820. [PMID: 38937522 PMCID: PMC11211404 DOI: 10.1038/s41598-024-65425-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024] Open
Abstract
The Lys-Asp-Glu-Leu receptor (KDELR) family genes play critical roles in a variety of biological processes in different tumors. Our study aimed to provide a comprehensive analysis of the potential roles of KDELRs in lung adenocarcinoma (LUAD). Utilizing data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database, as well as clinical samples, we conducted a series of analyses and validations using R software tools and various online resources. The results showed that KDELR family genes and proteins were highly expressed and associated with a poor prognosis of LUAD. Promoter hypomethylation and the competing endogenous RNA (ceRNA) network of PCAT6/hsa-miR-326/KDELR1 might be potential causes of aberrant KDELR1 overexpression in LUAD. Three key Transcription factors (TFs) (SPI1, EP300, and MAZ) and a TFs-miRNAs-KDELRs network (involving 11 TFs) might be involved in modulating KDELRs expression abnormalities. Gene Set Enrichment Analysis (GSEA) indicated enrichment of genes highly expressing KDELR1, KDELR2, and KDELR3 in MTORC1_SIGNALING, P53_PATHWAY, and ANGIOGENESIS. Negative correlations between KDELRs expression and CD8 + T cell infiltration, as well as CTLA-4 expression. Our multiple analyses suggested that the KDELRs are important signaling molecules in LUAD. These results provided novel insights for developing prognostic markers and novel therapies of LUAD.
Collapse
Affiliation(s)
- Peitong Li
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Pengfei Cui
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Qing Yue
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Zijun Xu
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Ziling Liu
- Cancer Center, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
6
|
Abtin M, Nafisi N, Hosseinzadeh A, Kadkhoda S, Omranipour R, Sahebi L, Razipour M, Ghafouri-Fard S, Shakoori A. Inhibition of breast cancer cell growth and migration through siRNA-mediated modulation of circ_0009910/miR-145-5p/MUC1 axis. Noncoding RNA Res 2024; 9:367-375. [PMID: 38511058 PMCID: PMC10950563 DOI: 10.1016/j.ncrna.2024.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/14/2024] [Accepted: 01/24/2024] [Indexed: 03/22/2024] Open
Abstract
Circular RNAs (circRNAs) characterize a novel kind of regulatory RNAs distinguished by great evolutionary conservation and constancy. Although their exact role in malignancies is not fully understood, they mainly work through specific axes. Circular RNA/miRNA/mRNA axes affect the pathogenesis of human cancers including breast cancer. We assessed the expression and function of circ_0009910/miR-145-5p/MUC1 axis in Breast Cancer tissues and MCF-7 cells. Expression levels of circ_0009910 and MUC1 were notably increased in breast cancer tissues compared with control tissues, parallel with the down-regulation of miR-145-5p. Clinicopathological analysis indicated that up-regulation of circ_0009910 in breast tumors is related to invasion of the tumor to lymph node (P value = 0.011). Also, the downregulation of miR-145-5p was significantly correlated with tumor invasion to lymph nodes (P value = 0.04) and HER2-negative tumors (P value = 0.037). Finally, overexpression of MUC1 was correlated with age under 45 years (P value = 0.002). More importantly, circ_0009910-siRNA decreased the proliferation and migration ability of breast cancer cells, enhanced expression of miR-145-5p, and decreased levels of MUC1. Taken together, the circ_0009910/miR-145-5p/MUC1 axis has been demonstrated to affect the pathogenesis of breast cancer and might provide a target for breast cancer treatment.
Collapse
Affiliation(s)
- Maryam Abtin
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nahid Nafisi
- Surgery Department, Rasoul Akram Hospital Clinical Research Development Center (RCRDC), Iran University of Medical Sciences, Tehran, Iran
| | - Asghar Hosseinzadeh
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Kadkhoda
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramesh Omranipour
- Breast Disease Research Center (BDRC), Tehran University of Medical Sciences, Tehran, Iran
- Department of Surgical Oncology, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Leyla Sahebi
- Maternal, Fetal and Neonatal Research Center, Family Health Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Razipour
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Shakoori
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Medical Genetics, Cancer Institute of Iran, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Dr. Qarib St., Keshavarz Blvd, Tehran, Iran
| |
Collapse
|
7
|
Jia S, Yu L, Wang L, Peng L. The functional significance of circRNA/miRNA/mRNA interactions as a regulatory network in lung cancer biology. Int J Biochem Cell Biol 2024; 169:106548. [PMID: 38360264 DOI: 10.1016/j.biocel.2024.106548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/22/2024] [Accepted: 02/02/2024] [Indexed: 02/17/2024]
Abstract
Lung cancer, the leading cause of cancer-related deaths, presents significant challenges to patients due to its poor prognosis. Recent research has increasingly implicated circular RNAs in the development and progression of lung cancer. These circular RNAs have been found to impact various aspects of tumor behavior, including proliferation, metastasis, cell cycle regulation, apoptosis, cancer stem cells, therapy response, and the tumor microenvironment. One of the key mechanisms by which circular RNAs exert their influence is through their ability to act as miRNA sponges, sequestering microRNAs and preventing them from targeting other RNA molecules. Accumulating evidence suggests that circular RNAs can function as competing endogenous RNAs, affecting the expression of target mRNAs by sequestering microRNAs. Dysregulation of competing endogenous RNAs networks involving circular RNAs, microRNAs, and mRNAs leads to the aberrant expression of oncogenes and tumor suppressors involved in lung cancer pathogenesis. Understanding the dynamic interplay and molecular mechanisms among circular RNAs, microRNAs, and mRNAs holds great promise for advancing early diagnosis, personalized therapeutic interventions, and improved patient outcomes in lung cancer. Therefore, this study aims to provide an in-depth exploration of the executive roles of circular RNAs/microRNAs/ mRNAs interactions in lung cancer pathogenesis and their potential utility for diagnosing lung cancer, predicting patient prognosis, and guiding targeted therapies. By offering a comprehensive overview of the dysregulation of the axes as driving factors in lung cancer, we aim to pave the way for their translation into clinical practice in the future.
Collapse
Affiliation(s)
- Shengnan Jia
- Department of Respiratory Medicine, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, Jilin 130021, China; Department of Hepatopancreatobiliary Medicine, The Second Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Ling Yu
- Department of Pharmacy, The Second Hospital of Jilin University, Changchun 130041, China
| | - Lihui Wang
- Department of Respiratory Medicine, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, Jilin 130021, China.
| | - Liping Peng
- Department of Respiratory Medicine, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, Jilin 130021, China.
| |
Collapse
|