1
|
Alexander CAD, Alameddine I, Machin D, Alex K. A Weight-of-Evidence Approach for Understanding the Recovery of Okanagan Sockeye Salmon. ENVIRONMENTAL MANAGEMENT 2024; 74:1063-1085. [PMID: 39249109 PMCID: PMC11549111 DOI: 10.1007/s00267-024-02031-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/05/2024] [Indexed: 09/10/2024]
Abstract
The productivity of Pacific Sockeye salmon (Oncorhynchus nerka) in the Columbia River has been declining over the past century. Yet, the Okanagan River Sockeye salmon population, which spawns in the Okanagan River, a Canadian tributary of the Columbia River, has seen a remarkable turnaround in abundance. Different hypotheses and lines of evidence covering multiple spatial scales have been proposed to explain this recovery; but they have never been comprehensively assessed. We adopted a weight-of-evidence approach to systematically assess the relative likelihood that each of these causal hypotheses contributed to the observed recovery. Our analysis disentangles the relative consequences of a set of environmental management actions that have been implemented to augment the Sockeye salmon freshwater productivity, while accounting for changes in freshwater and marine environmental conditions. Our list of potentially explanatory causal factors (anthropogenic and natural) included: (1) changes in escapement concurrent with improving local fish passage, (2) the implementation of fish-friendly flows in the Okanagan River, (3) initiating a hatchery restocking program, (4) potential improvements to Columbia dam operations to support higher relative survival of out-migrating juvenile fish, (5) possible shifts in survival-favorable conditions in the coastal marine environment for ocean-going life stages, and (6) broader changes to multi-stock harvest regimes in the Columbia River. Our assessment leveraged comparisons with the population dynamics of another Sockeye salmon stock in the Columbia River basin to differentiate between the impacts of management actions taken within the Okanagan watershed (our focus) from those occurring over the broader basin and marine scale. The results suggest that while shifts towards survival-favorable conditions in the coastal marine environment in 2007 played an important role in the upturn of the Okanagan population, alone it cannot explain the rate at which the Okanagan River Sockeye salmon recovered. Strong evidence supports the combined effect of increased escapement in conjunction with establishing and securing fish-friendly flows during spawning, incubation, and alevin emergence. Additionally, Sockeye salmon restocking improved the resilience of the stock against density-independent mortality events. These combined basin-level management actions played a pivotal role in magnifying the recovery trajectory afforded by improved marine survivorship. The spectacular response of the Okanagan River Sockeye salmon to the holistic perspectives and management interventions of Indigenous and other caretakers provides hope that other Pacific salmon stocks can be stabilized and recovered.
Collapse
Affiliation(s)
| | | | - Dawn Machin
- Okanagan Nation Alliance, Westbank, BC, Canada
| | | |
Collapse
|
2
|
May SA, Shedd KR, Gruenthal KM, Hard JJ, Templin WD, Waters CD, Adkison MD, Ward EJ, Habicht C, Wilson LI, Wertheimer AC, Westley PAH. Salmon hatchery strays can demographically boost wild populations at the cost of diversity: quantitative genetic modelling of Alaska pink salmon. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240455. [PMID: 39076353 PMCID: PMC11286167 DOI: 10.1098/rsos.240455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 07/31/2024]
Abstract
Hatcheries are vital to many salmon fisheries, with inherent risks and rewards. While hatcheries can increase the returns of adult fish, the demographic and evolutionary consequences for natural populations interacting with hatchery fish on spawning grounds remain unclear. This study examined the impacts of stray hatchery-origin pink salmon on natural population productivity and resilience. We explored temporal assortative mating dynamics using a quantitative genetic model that assumed the only difference between hatchery- and natural-origin adults was their return timing to natural spawning grounds. This model was parameterized with empirical data from an intensive multi-generational study of hatchery-wild interactions in the world's largest pink salmon fisheries enhancement program located in Prince William Sound, Alaska. Across scenarios of increasing hatchery fish presence on spawning grounds, our findings underscore a trade-off between demographic enhancement and preservation of natural population diversity. While enhancement bolstered natural population sizes towards local carrying capacities, hatchery introgression reduced variation in adult return timing by up to 20%. Results indicated that hatchery-origin alleles can rapidly assimilate into natural populations, despite the reduced fitness of hatchery fish attributable to phenotypic mismatches. These findings elucidate the potential for long-term demographic and evolutionary consequences arising from specific hatchery-wild interactions, emphasizing the need for management strategies that balance demographic enhancement with the conservation of natural diversity.
Collapse
Affiliation(s)
- Samuel A. May
- College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Kyle R. Shedd
- Alaska Department of Fish & Game, Anchorage, AK, USA
| | | | - Jeffrey J. Hard
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | | | - Charles D. Waters
- Auke Bay Laboratories, Alaska Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration Juneau, Juneau, AK, USA
| | | | - Eric J. Ward
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | | | | | | | - Peter A. H. Westley
- College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Fairbanks, AK, USA
| |
Collapse
|
3
|
Furlan EM, Baumgartner LJ, Duncan M, Ellis I, Gruber B, Harrisson K, Michie L, Thiem JD, Stuart I. Swinging back from the brink? Polygamous mating strategies revealed for an iconic threatened freshwater fish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170808. [PMID: 38336046 DOI: 10.1016/j.scitotenv.2024.170808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
Catastrophic fish death events are increasing in frequency and severity globally. A series of major recent fish deaths in the semi-arid lower Darling-Baaka river system (LDBR) of Australia are emblematic of these issues with tens of millions of native fish perishing. In 2018-2019 there was a major death event for Australia's largest freshwater fish, Murray cod (Maccullochella peelii). To aid the recovery and guide restoration activities of local Murray cod populations, it is essential to gather information on the mating strategies and effective population size following the fish death event. After the fish deaths, we collected larvae during the 2020 and 2021 breeding seasons and used single nucleotide polymorphisms (SNPs) to provide insight mating strategies and to estimate effective population size. Larvae were detected in both years along the entire length of the LDBR. Sixteen percent of the inferred breeding individuals were found to contribute to multiple pairings, confirming a complex and polygamous mating system. A high frequency of polygamy was evident both within and between years with 100 % polygamy identified among parents that produced offspring in both 2020 and 2021 and 95 % polygamy identified among parents involved in multiple spawning events within years. Post-larval Murray cod samples collected between 2016 and 2021 were co-analysed to further inform kinship patterns. Again, monogamy was rare with no confirmed cases of the same male-female pair contributing to multiple breeding events within or between seasons. Effective population size based on Murray cod collected after the fish death event was estimated at 721.6 (CI 471-1486), though this has likely declined following a subsequent catastrophic fish death event in the LDBR in March 2023. Our data provide insight into the variability of Murray cod mating strategies, and we anticipate that this knowledge will assist in planning conservation actions to ultimately help recover a species in crisis.
Collapse
Affiliation(s)
- Elise M Furlan
- Centre for Conservation Ecology and Genomics, Institute for Applied Ecology, University of Canberra, University Drive, Bruce, ACT 2617, Australia; Gulbali Institute for Agriculture, Water and Environment, Charles Sturt University, P.O. Box 789, Albury, NSW 2640, Australia.
| | - Lee J Baumgartner
- Gulbali Institute for Agriculture, Water and Environment, Charles Sturt University, P.O. Box 789, Albury, NSW 2640, Australia
| | - Meaghan Duncan
- Department of Primary Industries, Narrandera Fisheries Centre, Narrandera, New South Wales, Australia
| | - Iain Ellis
- Department of Primary Industries, Buronga, New South Wales, Australia
| | - Bernd Gruber
- Centre for Conservation Ecology and Genomics, Institute for Applied Ecology, University of Canberra, University Drive, Bruce, ACT 2617, Australia
| | - Katherine Harrisson
- Department of Environment and Genetics, La Trobe University, Melbourne, Australia; Research Centre for Future Landscapes, La Trobe University, Melbourne, Australia; Arthur Rylah Institute for Environmental Research, Department of Energy, Environment and Climate Action, Victoria, Australia
| | - Laura Michie
- Department of Primary Industries, Narrandera Fisheries Centre, Narrandera, New South Wales, Australia
| | - Jason D Thiem
- Department of Primary Industries, Narrandera Fisheries Centre, Narrandera, New South Wales, Australia
| | - Ivor Stuart
- Gulbali Institute for Agriculture, Water and Environment, Charles Sturt University, P.O. Box 789, Albury, NSW 2640, Australia
| |
Collapse
|