1
|
Vujosevic S, Limoli C, Nucci P. Novel artificial intelligence for diabetic retinopathy and diabetic macular edema: what is new in 2024? Curr Opin Ophthalmol 2024; 35:472-479. [PMID: 39259647 PMCID: PMC11426980 DOI: 10.1097/icu.0000000000001084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
PURPOSE OF REVIEW Given the increasing global burden of diabetic retinopathy and the rapid advancements in artificial intelligence, this review aims to summarize the current state of artificial intelligence technology in diabetic retinopathy detection and management, assessing its potential to improve care and visual outcomes in real-world settings. RECENT FINDINGS Most recent studies focused on the integration of artificial intelligence in the field of diabetic retinopathy screening, focusing on real-world efficacy and clinical implementation of such artificial intelligence models. Additionally, artificial intelligence holds the potential to predict diabetic retinopathy progression, enhance personalized treatment strategies, and identify systemic disease biomarkers from ocular images through 'oculomics', moving towards a more precise, efficient, and accessible care. The emergence of foundation model architectures and generative artificial intelligence, which more clearly reflect the clinical care process, may enable rapid advances in diabetic retinopathy care, research and medical education. SUMMARY This review explores the emerging technology of artificial intelligence to assess the potential to improve patient outcomes and optimize personalized management in healthcare delivery and medical research. While artificial intelligence is expected to play an increasingly important role in diabetic retinopathy care, ongoing research and clinical trials are essential to address implementation issues and focus on long-term patient outcomes for successful real-world adoption of artificial intelligence in diabetic retinopathy.
Collapse
Affiliation(s)
- Stela Vujosevic
- Department of Biomedical, Surgical and Dental Sciences, University of Milan
- Eye Clinic, IRCCS MultiMedica
| | - Celeste Limoli
- Department of Ophthalmology, University of Milan, Milan, Italy
| | - Paolo Nucci
- Department of Biomedical, Surgical and Dental Sciences, University of Milan
| |
Collapse
|
2
|
Wang Y, Liu C, Hu W, Luo L, Shi D, Zhang J, Yin Q, Zhang L, Han X, He M. Economic evaluation for medical artificial intelligence: accuracy vs. cost-effectiveness in a diabetic retinopathy screening case. NPJ Digit Med 2024; 7:43. [PMID: 38383738 PMCID: PMC10881978 DOI: 10.1038/s41746-024-01032-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/05/2024] [Indexed: 02/23/2024] Open
Abstract
Artificial intelligence (AI) models have shown great accuracy in health screening. However, for real-world implementation, high accuracy may not guarantee cost-effectiveness. Improving AI's sensitivity finds more high-risk patients but may raise medical costs while increasing specificity reduces unnecessary referrals but may weaken detection capability. To evaluate the trade-off between AI model performance and the long-running cost-effectiveness, we conducted a cost-effectiveness analysis in a nationwide diabetic retinopathy (DR) screening program in China, comprising 251,535 participants with diabetes over 30 years. We tested a validated AI model in 1100 different diagnostic performances (presented as sensitivity/specificity pairs) and modeled annual screening scenarios. The status quo was defined as the scenario with the most accurate AI performance. The incremental cost-effectiveness ratio (ICER) was calculated for other scenarios against the status quo as cost-effectiveness metrics. Compared to the status quo (sensitivity/specificity: 93.3%/87.7%), six scenarios were cost-saving and seven were cost-effective. To achieve cost-saving or cost-effective, the AI model should reach a minimum sensitivity of 88.2% and specificity of 80.4%. The most cost-effective AI model exhibited higher sensitivity (96.3%) and lower specificity (80.4%) than the status quo. In settings with higher DR prevalence and willingness-to-pay levels, the AI needed higher sensitivity for optimal cost-effectiveness. Urban regions and younger patient groups also required higher sensitivity in AI-based screening. In real-world DR screening, the most accurate AI model may not be the most cost-effective. Cost-effectiveness should be independently evaluated, which is most likely to be affected by the AI's sensitivity.
Collapse
Affiliation(s)
- Yueye Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Chi Liu
- Faculty of Data Science, City University of Macau, Macao SAR, China
| | - Wenyi Hu
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia
| | - Lixia Luo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Danli Shi
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Jian Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Qiuxia Yin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Lei Zhang
- Clinical Medical Research Center, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210008, China.
- Melbourne Sexual Health Centre, Alfred Health, Melbourne, VIC, Australia.
- Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia.
| | - Xiaotong Han
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China.
| | - Mingguang He
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China.
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong.
- Research Centre for SHARP Vision, The Hong Kong Polytechnic University, Kowloon, Hong Kong.
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Shatin, Hong Kong.
| |
Collapse
|
3
|
Heger KA, Waldstein SM. Artificial intelligence in retinal imaging: current status and future prospects. Expert Rev Med Devices 2024; 21:73-89. [PMID: 38088362 DOI: 10.1080/17434440.2023.2294364] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 12/09/2023] [Indexed: 12/19/2023]
Abstract
INTRODUCTION The steadily growing and aging world population, in conjunction with continuously increasing prevalences of vision-threatening retinal diseases, is placing an increasing burden on the global healthcare system. The main challenges within retinology involve identifying the comparatively few patients requiring therapy within the large mass, the assurance of comprehensive screening for retinal disease and individualized therapy planning. In order to sustain high-quality ophthalmic care in the future, the incorporation of artificial intelligence (AI) technologies into our clinical practice represents a potential solution. AREAS COVERED This review sheds light onto already realized and promising future applications of AI techniques in retinal imaging. The main attention is directed at the application in diabetic retinopathy and age-related macular degeneration. The principles of use in disease screening, grading, therapeutic planning and prediction of future developments are explained based on the currently available literature. EXPERT OPINION The recent accomplishments of AI in retinal imaging indicate that its implementation into our daily practice is likely to fundamentally change the ophthalmic healthcare system and bring us one step closer to the goal of individualized treatment. However, it must be emphasized that the aim is to optimally support clinicians by gradually incorporating AI approaches, rather than replacing ophthalmologists.
Collapse
Affiliation(s)
- Katharina A Heger
- Department of Ophthalmology, Landesklinikum Mistelbach-Gaenserndorf, Mistelbach, Austria
| | - Sebastian M Waldstein
- Department of Ophthalmology, Landesklinikum Mistelbach-Gaenserndorf, Mistelbach, Austria
| |
Collapse
|