1
|
Shen Y, He Y, Pan Y, Liu L, Liu Y, Jia J. Role and mechanisms of autophagy, ferroptosis, and pyroptosis in sepsis-induced acute lung injury. Front Pharmacol 2024; 15:1415145. [PMID: 39161900 PMCID: PMC11330786 DOI: 10.3389/fphar.2024.1415145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/25/2024] [Indexed: 08/21/2024] Open
Abstract
Sepsis-induced acute lung injury (ALI) is a major cause of death among patients with sepsis in intensive care units. By analyzing a model of sepsis-induced ALI using lipopolysaccharide (LPS) and cecal ligation and puncture (CLP), treatment methods and strategies to protect against ALI were discussed, which could provide an experimental basis for the clinical treatment of sepsis-induced ALI. Recent studies have found that an imbalance in autophagy, ferroptosis, and pyroptosis is a key mechanism that triggers sepsis-induced ALI, and regulating these death mechanisms can improve lung injuries caused by LPS or CLP. This article summarized and reviewed the mechanisms and regulatory networks of autophagy, ferroptosis, and pyroptosis and their important roles in the process of LPS/CLP-induced ALI in sepsis, discusses the possible targeted drugs of the above mechanisms and their effects, describes their dilemma and prospects, and provides new perspectives for the future treatment of sepsis-induced ALI.
Collapse
Affiliation(s)
- Yao Shen
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Yingying He
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Ying Pan
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Li Liu
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Yulin Liu
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Jing Jia
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| |
Collapse
|
2
|
Paulus MC, Drent M, Kouw IWK, Balvers MGJ, Bast A, van Zanten ARH. Vitamin K: a potential missing link in critical illness-a scoping review. Crit Care 2024; 28:212. [PMID: 38956732 PMCID: PMC11218309 DOI: 10.1186/s13054-024-05001-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Vitamin K is essential for numerous physiological processes, including coagulation, bone metabolism, tissue calcification, and antioxidant activity. Deficiency, prevalent in critically ill ICU patients, impacts coagulation and increases the risk of bleeding and other complications. This review aims to elucidate the metabolism of vitamin K in the context of critical illness and identify a potential therapeutic approach. METHODS In December 2023, a scoping review was conducted using the PRISMA Extension for Scoping Reviews. Literature was searched in PubMed, Embase, and Cochrane databases without restrictions. Inclusion criteria were studies on adult ICU patients discussing vitamin K deficiency and/or supplementation. RESULTS A total of 1712 articles were screened, and 13 met the inclusion criteria. Vitamin K deficiency in ICU patients is linked to malnutrition, impaired absorption, antibiotic use, increased turnover, and genetic factors. Observational studies show higher PIVKA-II levels in ICU patients, indicating reduced vitamin K status. Risk factors include inadequate intake, disrupted absorption, and increased physiological demands. Supplementation studies suggest vitamin K can improve status but not normalize it completely. Vitamin K deficiency may correlate with prolonged ICU stays, mechanical ventilation, and increased mortality. Factors such as genetic polymorphisms and disrupted microbiomes also contribute to deficiency, underscoring the need for individualized nutritional strategies and further research on optimal supplementation dosages and administration routes. CONCLUSIONS Addressing vitamin K deficiency in ICU patients is crucial for mitigating risks associated with critical illness, yet optimal management strategies require further investigation. IMPACT RESEARCH To the best of our knowledge, this review is the first to address the prevalence and progression of vitamin K deficiency in critically ill patients. It guides clinicians in diagnosing and managing vitamin K deficiency in intensive care and suggests practical strategies for supplementing vitamin K in critically ill patients. This review provides a comprehensive overview of the existing literature, and serves as a valuable resource for clinicians, researchers, and policymakers in critical care medicine.
Collapse
Affiliation(s)
- Michelle Carmen Paulus
- Department of Intensive Care Medicine & Research, Gelderse Vallei Hospital, Willy Brandtlaan 10, 6716 RP, Ede, The Netherlands
- Division of Human Nutrition and Health, Nutritional Biology, Wageningen University & Research, HELIX (Building 124), Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Marjolein Drent
- Department of Pharmacology and Toxicology, Faculty of Health, Medicine, and Life Science, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, The Netherlands
- Interstitial Lung Diseases (ILD) Center of Excellence, St. Antonius Hospital, Nieuwegein, Koekoekslaan 1, 3435 CM, Nieuwegein, The Netherlands
- ILD Care Foundation Research Team, Heideoordlaan 8, 6711NR, Ede, The Netherlands
| | - Imre Willemijn Kehinde Kouw
- Department of Intensive Care Medicine & Research, Gelderse Vallei Hospital, Willy Brandtlaan 10, 6716 RP, Ede, The Netherlands
- Division of Human Nutrition and Health, Nutritional Biology, Wageningen University & Research, HELIX (Building 124), Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Michiel Gerard Juliaan Balvers
- Division of Human Nutrition and Health, Nutritional Biology, Wageningen University & Research, HELIX (Building 124), Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Aalt Bast
- Department of Pharmacology and Toxicology, Faculty of Health, Medicine, and Life Science, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, The Netherlands
- ILD Care Foundation Research Team, Heideoordlaan 8, 6711NR, Ede, The Netherlands
| | - Arthur Raymond Hubert van Zanten
- Department of Intensive Care Medicine & Research, Gelderse Vallei Hospital, Willy Brandtlaan 10, 6716 RP, Ede, The Netherlands.
- Division of Human Nutrition and Health, Nutritional Biology, Wageningen University & Research, HELIX (Building 124), Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
| |
Collapse
|
3
|
Yang W, Wang Y, Liu L, Liu L, Li S, Li Y. Protective Effect of Vitamin K2 (MK-7) on Acute Lung Injury Induced by Lipopolysaccharide in Mice. Curr Issues Mol Biol 2024; 46:1700-1712. [PMID: 38534726 DOI: 10.3390/cimb46030110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 03/28/2024] Open
Abstract
Vitamin K2 (MK-7) has been shown to cause significant changes in different physiological processes and diseases, but its role in acute lung injury (ALI) is unclear. Therefore, in this study, we aimed to evaluate the protective effects of VK2 against LPS-induced ALI in mice. The male C57BL/6J mice were randomly divided into six groups (n = 7): the control group, LPS group, negative control group (LPS + Oil), positive control group (LPS + DEX), LPS + VK2 (L) group (VK2, 1.5 mg/kg), and LPS + VK2 (H) group (VK2, 15 mg/kg). Hematoxylin-eosin (HE) staining of lung tissue was performed. Antioxidant superoxide dismutase (SOD) and total antioxidant capacity (T-AOC) activities, and the Ca2+ level in the lung tissue were measured. The effects of VK2 on inflammation, apoptosis, tight junction (TJ) injury, mitochondrial dysfunction, and autophagy were quantitatively assessed using Western blot analysis. Compared with the LPS group, VK2 improved histopathological changes; alleviated inflammation, apoptosis, and TJ injury; increased antioxidant enzyme activity; reduced Ca2+ overload; regulated mitochondrial function; and inhibited lung autophagy. These results indicate that VK2 could improve tight junction protein loss, inflammation, and cell apoptosis in LPS-induced ALI by inhibiting the mitochondrial dysfunction and excessive autophagy, indicating that VK2 plays a beneficial role in ALI and might be a potential therapeutic strategy.
Collapse
Affiliation(s)
- Weidong Yang
- College of Basic Medical Science, Dalian Medical University, Dalian 116041, China
| | - Yulian Wang
- College of Basic Medical Science, Dalian Medical University, Dalian 116041, China
| | - Lulu Liu
- College of Basic Medical Science, Dalian Medical University, Dalian 116041, China
| | - Lihong Liu
- College of Basic Medical Science, Dalian Medical University, Dalian 116041, China
| | - Shuzhuang Li
- College of Basic Medical Science, Dalian Medical University, Dalian 116041, China
| | - Yuyuan Li
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116041, China
| |
Collapse
|
4
|
Zhao P, Yang W, Xiao H, Zhang S, Gao C, Piao H, Liu L, Li S. Vitamin K2 protects mice against non-alcoholic fatty liver disease induced by high-fat diet. Sci Rep 2024; 14:3075. [PMID: 38321064 PMCID: PMC10847165 DOI: 10.1038/s41598-024-53644-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/03/2024] [Indexed: 02/08/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most common liver diseases worldwide and there is a huge unmet need to find safer and more effective drugs. Vitamin K has been found to regulate lipid metabolism in the liver. However, the effects of vitamin K2 on NAFLD is unclear. This study aims to evaluate the preventive and therapeutic effects of vitamin K2 in the process of fatty liver formation and to explore molecular mechanisms the associated with lipid metabolism. A non-alcoholic fatty liver model was established by high-fat diet administration for three months. Vitamin K2 significantly reduced the body weight, abdominal circumference and body fat percentage of NAFLD mice. Vitamin K2 also showed histological benefits in reducing hepatic steatosis. NAFLD mice induced by high-fat diet showed increased HMGR while vitamin K2 intervention could reverse the pathological lterations. Adiponectin (APN) is an endogenous bioactive polypeptide or protein secreted by adipocytes. We detected APN, SOD, AlaDH and other indicators that may affect the state of high-fat diet mice, but the experimental results showed that the above indicators did not change significantly. It is worth noting that the effect of vitamin K2 supplementation on the lipid-lowering effect of uc OC in vivo needs to be further explored. This study first reported the protective effect of vitamin K2 on high-fat diet-induced NAFLD in mice. The protective effect of vitamin K2 may be related to the improvement of lipid metabolism disorder in NAFLD.
Collapse
Affiliation(s)
- Peizuo Zhao
- Department of Physiology, Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Weidong Yang
- Department of Physiology, Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Huiyu Xiao
- Department of Physiology, Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Shuaishuai Zhang
- Department of Physiology, Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Chuanzhou Gao
- Central Laboratory, Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Hua Piao
- Department of Physiology, Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Lihong Liu
- Department of Physiology, Dalian Medical University, Dalian, Liaoning, People's Republic of China.
| | - Shuzhuang Li
- Department of Physiology, Dalian Medical University, Dalian, Liaoning, People's Republic of China.
| |
Collapse
|