1
|
Shimogawa MM, Jonnalagadda K, Hill KL. FAP20 is required for flagellum assembly in Trypanosoma brucei. Mol Biol Cell 2024; 35:br22. [PMID: 39382839 PMCID: PMC11617092 DOI: 10.1091/mbc.e23-12-0497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/10/2024] Open
Abstract
Trypanosoma brucei is a human and animal pathogen that depends on flagellar motility for transmission and infection. The trypanosome flagellum is built around a canonical "9+2" axoneme, containing nine doublet microtubules (DMTs) surrounding two singlet microtubules. Each DMT contains a 13-protofilament A-tubule and a 10-protofilament B-tubule, connected to the A-tubule by a conserved, non-tubulin inner junction (IJ) filament made up of alternating PACRG and FAP20 subunits. Here we investigate FAP20 in procyclic form T. brucei. A FAP20-NeonGreen fusion protein localized to the axoneme as expected. Surprisingly, FAP20 knockdown led to a catastrophic failure in flagellum assembly and concomitant lethality. This differs from other organisms, where FAP20 is required for normal flagellum motility, but generally dispensable for flagellum assembly and viability. Transmission electron microscopy demonstrates failed flagellum assembly in FAP20 mutants is associated with a range of DMT defects and defective assembly of the paraflagellar rod, a lineage-specific flagellum filament that attaches to DMT 4-7 in trypanosomes. Our studies reveal a lineage-specific requirement for FAP20 in trypanosomes, offering insight into adaptations for flagellum stability and motility in these parasites and highlighting pathogen versus host differences that might be considered for therapeutic intervention in trypanosome diseases.
Collapse
Affiliation(s)
- Michelle M. Shimogawa
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA 90095
| | - Keya Jonnalagadda
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA 90095
| | - Kent L. Hill
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA 90095
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA 90095
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095
| |
Collapse
|
2
|
de Souza TP, Orlando LMR, Lara LDS, Paes VB, Dutra LP, dos Santos MS, Pereira MCDS. Synthesis and Anti- Trypanosoma cruzi Activity of New Pyrazole-Thiadiazole Scaffolds. Molecules 2024; 29:3544. [PMID: 39124949 PMCID: PMC11314410 DOI: 10.3390/molecules29153544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Chagas disease, a silent but widespread disease that mainly affects a socioeconomically vulnerable population, lacks innovative safe drug therapy. The available drugs, benznidazole and nifurtimox, are more than fifty years old, have limited efficacy, and carry harmful side effects, highlighting the need for new therapeutics. This study presents two new series of pyrazole-thiadiazole compounds evaluated for trypanocidal activity using cellular models predictive of efficacy. Derivatives 1c (2,4-diCl) and 2k (4-NO2) were the most active against intracellular amastigotes. Derivative 1c also showed activity against trypomastigotes, with the detachment of the flagellum from the parasite body being a predominant effect at the ultrastructural level. Analogs have favorable physicochemical parameters and are predicted to be orally available. Drug efficacy was also evaluated in 3D cardiac microtissue, an important target tissue of Trypanosoma cruzi, with derivative 2k showing potent antiparasitic activity and a significant reduction in parasite load. Although 2k potentially reduced parasite load in the washout assay, it did not prevent parasite recrudescence. Drug combination analysis revealed an additive profile, which may lead to favorable clinical outcomes. Our data demonstrate the antiparasitic activity of pyrazole-thiadiazole derivatives and support the development of these compounds using new optimization strategies.
Collapse
Affiliation(s)
- Thamyris Perez de Souza
- Laboratório de Ultraestrutura Celular, Instituto Oswaldo Cruz, Fiocruz. Av. Brasil 4365, Rio de Janeiro 21040-900, RJ, Brazil; (T.P.d.S.); (L.M.R.O.); (L.d.S.L.); (V.B.P.)
| | - Lorraine Martins Rocha Orlando
- Laboratório de Ultraestrutura Celular, Instituto Oswaldo Cruz, Fiocruz. Av. Brasil 4365, Rio de Janeiro 21040-900, RJ, Brazil; (T.P.d.S.); (L.M.R.O.); (L.d.S.L.); (V.B.P.)
| | - Leonardo da Silva Lara
- Laboratório de Ultraestrutura Celular, Instituto Oswaldo Cruz, Fiocruz. Av. Brasil 4365, Rio de Janeiro 21040-900, RJ, Brazil; (T.P.d.S.); (L.M.R.O.); (L.d.S.L.); (V.B.P.)
| | - Vitoria Barbosa Paes
- Laboratório de Ultraestrutura Celular, Instituto Oswaldo Cruz, Fiocruz. Av. Brasil 4365, Rio de Janeiro 21040-900, RJ, Brazil; (T.P.d.S.); (L.M.R.O.); (L.d.S.L.); (V.B.P.)
| | - Lucas Penha Dutra
- Laboratório de Síntese de Sistemas Heterocíclicos (LaSSH), Instituto de Física e Química (IFQ), Universidade Federal de Itajubá, Av. BPS 1303, Pinheirinho, Itajubá 37500-903, MG, Brazil; (L.P.D.); (M.S.d.S.)
| | - Mauricio Silva dos Santos
- Laboratório de Síntese de Sistemas Heterocíclicos (LaSSH), Instituto de Física e Química (IFQ), Universidade Federal de Itajubá, Av. BPS 1303, Pinheirinho, Itajubá 37500-903, MG, Brazil; (L.P.D.); (M.S.d.S.)
| | - Mirian Claudia de Souza Pereira
- Laboratório de Ultraestrutura Celular, Instituto Oswaldo Cruz, Fiocruz. Av. Brasil 4365, Rio de Janeiro 21040-900, RJ, Brazil; (T.P.d.S.); (L.M.R.O.); (L.d.S.L.); (V.B.P.)
| |
Collapse
|
3
|
Shimogawa MM, Jonnalagadda K, Hill KL. FAP20 is required for flagellum assembly in Trypanosoma brucei. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.19.576295. [PMID: 38293126 PMCID: PMC10827224 DOI: 10.1101/2024.01.19.576295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Trypanosoma brucei is a human and animal pathogen that depends on flagellar motility for transmission and infection. The trypanosome flagellum is built around a canonical "9+2" axoneme, containing nine doublet microtubules (DMTs) surrounding two singlet microtubules. Each DMT contains a 13-protofilament A-tubule and a 10-protofilament B-tubule, connected to the A-tubule by a conserved, non-tubulin inner junction (IJ) filament made up of alternating PACRG and FAP20 subunits. Here we investigate FAP20 in procyclic form T. brucei. A FAP20-NeonGreen fusion protein localized to the axoneme as expected. Surprisingly, FAP20 knockdown led to a catastrophic failure in flagellum assembly and concomitant lethal cell division defect. This differs from other organisms, where FAP20 is required for normal flagellum motility, but generally dispensable for flagellum assembly and viability. Transmission electron microscopy demonstrates failed flagellum assembly in FAP20 mutants is associated with a range of DMT defects and defective assembly of the paraflagellar rod, a lineage-specific flagellum filament that attaches to DMT 4-7 in trypanosomes. Our studies reveal a lineage-specific requirement for FAP20 in trypanosomes, offering insight into adaptations for flagellum stability and motility in these parasites and highlighting pathogen versus host differences that might be considered for therapeutic intervention in trypanosome diseases.
Collapse
Affiliation(s)
- Michelle M. Shimogawa
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Keya Jonnalagadda
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Kent L. Hill
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
4
|
Toh JY, Nkouawa A, Dong G, Kolev NG, Tschudi C. Two cold shock domain containing proteins trigger the development of infectious Trypanosoma brucei. PLoS Pathog 2023; 19:e1011438. [PMID: 37276216 PMCID: PMC10270622 DOI: 10.1371/journal.ppat.1011438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 05/22/2023] [Indexed: 06/07/2023] Open
Abstract
Cold shock proteins are members of a family of DNA- and RNA-binding proteins with one or more evolutionarily conserved cold shock domain (CSD). These proteins have a wide variety of biological functions, including DNA-damage repair, mRNA stability, and regulation of transcription, splicing and translation. We previously identified two CSD containing proteins, CSD1 and CSD2, in the protozoan parasite Trypanosoma brucei to be required for RBP6-driven metacyclic production, albeit at different steps of the developmental program. During metacyclogenesis T. brucei undergoes major morphological and metabolic changes that culminate in the establishment of quiescent metacyclic parasites and the acquisition of mammalian infectivity. To investigate the specific role of CSD1 and CSD2 in this process, we ectopically expressed CSD1 or CSD2 in non-infectious procyclic parasites and discovered that each protein is sufficient to produce infectious metacyclic parasites in 24 hours. Domain truncation assays determined that the N-terminal domain, but not the C-terminal domain, of CSD1 and CSD2 was required for metacyclic development. Furthermore, conserved amino acid residues in the CSD of CSD1 and CSD2, known to be important for binding nucleic acids, were found to be necessary for metacyclic production. Using single-end enhanced crosslinking and immunoprecipitation (seCLIP) we identified the specific binding motif of CSD1 and CSD2 as "ANACAU" and the bound mRNAs were enriched for biological processes, including lipid metabolism, microtubule-based movement and nucleocytoplasmic transport that are likely involved in the transition to bloodstream form-like cells.
Collapse
Affiliation(s)
- Justin Y Toh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Agathe Nkouawa
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Gang Dong
- Max Perutz Labs, Vienna Biocenter, Center for Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| | - Nikolay G Kolev
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Christian Tschudi
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| |
Collapse
|
5
|
Genome-scale RNA interference profiling of Trypanosoma brucei cell cycle progression defects. Nat Commun 2022; 13:5326. [PMID: 36088375 PMCID: PMC9464253 DOI: 10.1038/s41467-022-33109-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/31/2022] [Indexed: 11/21/2022] Open
Abstract
Trypanosomatids, which include major pathogens of humans and livestock, are flagellated protozoa for which cell cycle controls and the underlying mechanisms are not completely understood. Here, we describe a genome-wide RNA-interference library screen for cell cycle defects in Trypanosoma brucei. We induced massive parallel knockdown, sorted the perturbed population using high-throughput flow cytometry, deep-sequenced RNAi-targets from each stage and digitally reconstructed cell cycle profiles at a genomic scale; also enabling data visualisation using an online tool ( https://tryp-cycle.pages.dev/ ). Analysis of several hundred genes that impact cell cycle progression reveals >100 flagellar component knockdowns linked to genome endoreduplication, evidence for metabolic control of the G1-S transition, surface antigen regulatory mRNA-binding protein knockdowns linked to G2M accumulation, and a putative nucleoredoxin required for both mitochondrial genome segregation and for mitosis. The outputs provide comprehensive functional genomic evidence for the known and novel machineries, pathways and regulators that coordinate trypanosome cell cycle progression.
Collapse
|
6
|
Sáez Conde J, Dean S. Structure, function and druggability of the African trypanosome flagellum. J Cell Physiol 2022; 237:2654-2667. [PMID: 35616248 PMCID: PMC9323424 DOI: 10.1002/jcp.30778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 11/29/2022]
Abstract
African trypanosomes are early branching protists that cause human and animal diseases, termed trypanosomiases. They have been under intensive study for more than 100 years and have contributed significantly to our understanding of eukaryotic biology. The combination of conserved and parasite-specific features mean that their flagellum has gained particular attention. Here, we discuss the different structural features of the flagellum and their role in transmission and virulence. We highlight the possibilities of targeting flagellar function to cure trypanosome infections and help in the fight to eliminate trypanosomiases.
Collapse
Affiliation(s)
- Julia Sáez Conde
- Division of Biomedical Sciences, Warwick Medical SchoolUniversity of WarwickCoventryUK
| | - Samuel Dean
- Division of Biomedical Sciences, Warwick Medical SchoolUniversity of WarwickCoventryUK
| |
Collapse
|
7
|
Saenz-Garcia JL, Borges BS, Souza-Melo N, Machado LV, Miranda JS, Pacheco-Lugo LA, Moretti NS, Wheleer R, Soares Medeiros LC, DaRocha WD. Trypanin Disruption Affects the Motility and Infectivity of the Protozoan Trypanosoma cruzi. Front Cell Infect Microbiol 2022; 11:807236. [PMID: 35071054 PMCID: PMC8777028 DOI: 10.3389/fcimb.2021.807236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/09/2021] [Indexed: 11/13/2022] Open
Abstract
The flagellum of Trypanosomatids is an organelle that contributes to multiple functions, including motility, cell division, and host–pathogen interaction. Trypanin was first described in Trypanosoma brucei and is part of the dynein regulatory complex. TbTrypanin knockdown parasites showed motility defects in procyclic forms; however, silencing in bloodstream forms was lethal. Since TbTrypanin mutants show drastic phenotypic changes in mammalian stages, we decided to evaluate if the Trypanosoma cruzi ortholog plays a similar role by using the CRISPR-Cas9 system to generate null mutants. A ribonucleoprotein complex of SaCas9 and sgRNA plus donor oligonucleotide were used to edit both alleles of TcTrypanin without any selectable marker. TcTrypanin −/− epimastigotes showed a lower growth rate, partially detached flagella, normal numbers of nuclei and kinetoplasts, and motility defects such as reduced displacement and speed and increased tumbling propensity. The epimastigote mutant also showed decreased efficiency of in-vitro metacyclogenesis. Mutant parasites were able to complete the entire life cycle in vitro; however, they showed a reduction in their infection capacity compared with WT and addback cultures. Our data show that T. cruzi life cycle stages have differing sensitivities to TcTrypanin deletion. In conclusion, additional work is needed to dissect the motility components of T. cruzi and to identify essential molecules for mammalian stages.
Collapse
Affiliation(s)
- Jose L Saenz-Garcia
- Laboratório de Genômica Funcional de Parasitos (GFP), Universidade Federal de Paraná, Curitiba, Brazil
| | - Beatriz S Borges
- Laboratório de Biologia Celular, Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil
| | - Normanda Souza-Melo
- Laboratório de Biologia Molecular de Patógenos (LBMP), Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil.,Laboratório de Ultraestrutura Hertha Mayer, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Luiz V Machado
- Laboratório de Genômica Funcional de Parasitos (GFP), Universidade Federal de Paraná, Curitiba, Brazil
| | - Juliana S Miranda
- Laboratório de Genômica Funcional de Parasitos (GFP), Universidade Federal de Paraná, Curitiba, Brazil
| | | | - Nilmar S Moretti
- Laboratório de Biologia Molecular de Patógenos (LBMP), Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Richard Wheleer
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Lia C Soares Medeiros
- Laboratório de Biologia Celular, Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil
| | - Wanderson D DaRocha
- Laboratório de Genômica Funcional de Parasitos (GFP), Universidade Federal de Paraná, Curitiba, Brazil
| |
Collapse
|
8
|
Dean S. Basic Biology of Trypanosoma brucei with Reference to the Development of Chemotherapies. Curr Pharm Des 2021; 27:1650-1670. [PMID: 33463458 DOI: 10.2174/1381612827666210119105008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/01/2020] [Accepted: 12/08/2020] [Indexed: 11/22/2022]
Abstract
Trypanosoma brucei are protozoan parasites that cause the lethal human disease African sleeping sickness and the economically devastating disease of cattle, Nagana. African sleeping sickness, also known as Human African Trypanosomiasis (HAT), threatens 65 million people and animal trypanosomiasis makes large areas of farmland unusable. There is no vaccine and licensed therapies against the most severe, late-stage disease are toxic, impractical and ineffective. Trypanosomes are transmitted by tsetse flies, and HAT is therefore predominantly confined to the tsetse fly belt in sub-Saharan Africa. They are exclusively extracellular and they differentiate between at least seven developmental forms that are highly adapted to host and vector niches. In the mammalian (human) host they inhabit the blood, cerebrospinal fluid (late-stage disease), skin, and adipose fat. In the tsetse fly vector they travel from the tsetse midgut to the salivary glands via the ectoperitrophic space and proventriculus. Trypanosomes are evolutionarily divergent compared with most branches of eukaryotic life. Perhaps most famous for their extraordinary mechanisms of monoallelic gene expression and antigenic variation, they have also been investigated because much of their biology is either highly unconventional or extreme. Moreover, in addition to their importance as pathogens, many researchers have been attracted to the field because trypanosomes have some of the most advanced molecular genetic tools and database resources of any model system. The following will cover just some aspects of trypanosome biology and how its divergent biochemistry has been leveraged to develop drugs to treat African sleeping sickness. This is by no means intended to be a comprehensive survey of trypanosome features. Rather, I hope to present trypanosomes as one of the most fascinating and tractable systems to do discovery biology.
Collapse
Affiliation(s)
- Samuel Dean
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, United Kingdom
| |
Collapse
|
9
|
Douglas RL, Haltiwanger BM, Albisetti A, Wu H, Jeng RL, Mancuso J, Cande WZ, Welch MD. Trypanosomes have divergent kinesin-2 proteins that function differentially in flagellum biosynthesis and cell viability. J Cell Sci 2020; 133:jcs129213. [PMID: 32503938 DOI: 10.1242/jcs.129213] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 05/27/2020] [Indexed: 12/13/2022] Open
Abstract
Trypanosoma brucei, the causative agent of African sleeping sickness, has a flagellum that is crucial for motility, pathogenicity, and viability. In most eukaryotes, the intraflagellar transport (IFT) machinery drives flagellum biogenesis, and anterograde IFT requires kinesin-2 motor proteins. In this study, we investigated the function of the two T. brucei kinesin-2 proteins, TbKin2a and TbKin2b, in bloodstream form trypanosomes. We found that, compared to kinesin-2 proteins across other phyla, TbKin2a and TbKin2b show greater variation in neck, stalk and tail domain sequences. Both kinesins contributed additively to flagellar lengthening. Silencing TbKin2a inhibited cell proliferation, cytokinesis and motility, whereas silencing TbKin2b did not. TbKin2a was localized on the flagellum and colocalized with IFT components near the basal body, consistent with it performing a role in IFT. TbKin2a was also detected on the flagellar attachment zone, a specialized structure that connects the flagellum to the cell body. Our results indicate that kinesin-2 proteins in trypanosomes play conserved roles in flagellar biosynthesis and exhibit a specialized localization, emphasizing the evolutionary flexibility of motor protein function in an organism with a large complement of kinesins.
Collapse
Affiliation(s)
- Robert L Douglas
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Brett M Haltiwanger
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Anna Albisetti
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Haiming Wu
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Robert L Jeng
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Joel Mancuso
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| | - W Zacheus Cande
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Matthew D Welch
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
10
|
Beneke T, Banecki K, Fochler S, Gluenz E. LAX28 is required for the stable assembly of the inner dynein arm f complex, and the tether and tether head complex in Leishmania flagella. J Cell Sci 2020; 133:jcs239855. [PMID: 31932510 PMCID: PMC7747692 DOI: 10.1242/jcs.239855] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/12/2019] [Indexed: 12/26/2022] Open
Abstract
Motile eukaryotic flagella beat through coordinated activity of dynein motor proteins; however, the mechanisms of dynein coordination and regulation are incompletely understood. The inner dynein arm (IDA) f complex (also known as the I1 complex), and the tether and tether head (T/TH) complex are thought to be key regulators of dynein action but, unlike the IDA f complex, T/TH proteins remain poorly characterised. Here, we characterised T/TH-associated proteins in the protist Leishmania mexicana Proteome analysis of axonemes from null mutants for the CFAP44 T/TH protein showed that they lacked the IDA f protein IC140 and a novel 28-kDa axonemal protein, LAX28. Sequence analysis identified similarities between LAX28 and the uncharacterised human sperm tail protein TEX47, both sharing features with sensory BLUF-domain-containing proteins. Leishmania lacking LAX28, CFAP44 or IC140 retained some motility, albeit with reduced swimming speed and directionality and a propensity for flagellar curling. Expression of tagged proteins in different null mutant backgrounds showed that the axonemal localisation of LAX28 requires CFAP44 and IC140, and the axonemal localisations of CFAP44 and IC140 both depend on LAX28. These data demonstrate a role for LAX28 in motility and show mutual dependencies of IDA f and T/TH-associated proteins for axonemal assembly in Leishmania.
Collapse
Affiliation(s)
- Tom Beneke
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Katherine Banecki
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Sophia Fochler
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Eva Gluenz
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| |
Collapse
|
11
|
Imhof S, Zhang J, Wang H, Bui KH, Nguyen H, Atanasov I, Hui WH, Yang SK, Zhou ZH, Hill KL. Cryo electron tomography with volta phase plate reveals novel structural foundations of the 96-nm axonemal repeat in the pathogen Trypanosoma brucei. eLife 2019; 8:e52058. [PMID: 31710293 PMCID: PMC6974359 DOI: 10.7554/elife.52058] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 11/11/2019] [Indexed: 12/12/2022] Open
Abstract
The 96-nm axonemal repeat includes dynein motors and accessory structures as the foundation for motility of eukaryotic flagella and cilia. However, high-resolution 3D axoneme structures are unavailable for organisms among the Excavates, which include pathogens of medical and economic importance. Here we report cryo electron tomography structures of the 96-nm repeat from Trypanosoma brucei, a protozoan parasite in the Excavate lineage that causes African trypanosomiasis. We examined bloodstream and procyclic life cycle stages, and a knockdown lacking DRC11/CMF22 of the nexin dynein regulatory complex (NDRC). Sub-tomogram averaging yields a resolution of 21.8 Å for the 96-nm repeat. We discovered several lineage-specific structures, including novel inter-doublet linkages and microtubule inner proteins (MIPs). We establish that DRC11/CMF22 is required for the NDRC proximal lobe that binds the adjacent doublet microtubule. We propose that lineage-specific elaboration of axoneme structure in T. brucei reflects adaptations to support unique motility needs in diverse host environments.
Collapse
Affiliation(s)
- Simon Imhof
- Department of Microbiology, Immunology and Molecular GeneticsUniversity of California, Los AngelesLos AngelesUnited States
| | - Jiayan Zhang
- Department of Microbiology, Immunology and Molecular GeneticsUniversity of California, Los AngelesLos AngelesUnited States
- Molecular Biology InstituteUniversity of California, Los AngelesLos AngelesUnited States
- California NanoSystems InstituteUniversity of California, Los AngelesLos AngelesUnited States
| | - Hui Wang
- Department of Microbiology, Immunology and Molecular GeneticsUniversity of California, Los AngelesLos AngelesUnited States
- California NanoSystems InstituteUniversity of California, Los AngelesLos AngelesUnited States
- Department of BioengineeringUniversity of California, Los AngelesLos AngelesUnited States
| | - Khanh Huy Bui
- Department of Anatomy and Cell BiologyMcGill UniversityMontrealUnited States
| | - Hoangkim Nguyen
- Department of Microbiology, Immunology and Molecular GeneticsUniversity of California, Los AngelesLos AngelesUnited States
| | - Ivo Atanasov
- California NanoSystems InstituteUniversity of California, Los AngelesLos AngelesUnited States
| | - Wong H Hui
- California NanoSystems InstituteUniversity of California, Los AngelesLos AngelesUnited States
| | - Shun Kai Yang
- Department of Anatomy and Cell BiologyMcGill UniversityMontrealUnited States
| | - Z Hong Zhou
- Department of Microbiology, Immunology and Molecular GeneticsUniversity of California, Los AngelesLos AngelesUnited States
- Molecular Biology InstituteUniversity of California, Los AngelesLos AngelesUnited States
- California NanoSystems InstituteUniversity of California, Los AngelesLos AngelesUnited States
- Department of BioengineeringUniversity of California, Los AngelesLos AngelesUnited States
| | - Kent L Hill
- Department of Microbiology, Immunology and Molecular GeneticsUniversity of California, Los AngelesLos AngelesUnited States
- Molecular Biology InstituteUniversity of California, Los AngelesLos AngelesUnited States
- California NanoSystems InstituteUniversity of California, Los AngelesLos AngelesUnited States
| |
Collapse
|
12
|
Scaffold subunits support associated subunit assembly in the Chlamydomonas ciliary nexin-dynein regulatory complex. Proc Natl Acad Sci U S A 2019; 116:23152-23162. [PMID: 31659045 DOI: 10.1073/pnas.1910960116] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The nexin-dynein regulatory complex (N-DRC) in motile cilia and flagella functions as a linker between neighboring doublet microtubules, acts to stabilize the axonemal core structure, and serves as a central hub for the regulation of ciliary motility. Although the N-DRC has been studied extensively using genetic, biochemical, and structural approaches, the precise arrangement of the 11 (or more) N-DRC subunits remains unknown. Here, using cryo-electron tomography, we have compared the structure of Chlamydomonas wild-type flagella to that of strains with specific DRC subunit deletions or rescued strains with tagged DRC subunits. Our results show that DRC7 is a central linker subunit that helps connect the N-DRC to the outer dynein arms. DRC11 is required for the assembly of DRC8, and DRC8/11 form a subcomplex in the proximal lobe of the linker domain that is required to form stable contacts to the neighboring B-tubule. Gold labeling of tagged subunits determines the precise locations of the previously ambiguous N terminus of DRC4 and C terminus of DRC5. DRC4 is now shown to contribute to the core scaffold of the N-DRC. Our results reveal the overall architecture of N-DRC, with the 3 subunits DRC1/2/4 forming a core complex that serves as the scaffold for the assembly of the "functional subunits," namely DRC3/5-8/11. These findings shed light on N-DRC assembly and its role in regulating flagellar beating.
Collapse
|
13
|
Zhang X, Hu H, Lun ZR, Li Z. Functional analyses of an axonemal inner-arm dynein complex in the bloodstream form of Trypanosoma brucei uncover its essential role in cytokinesis initiation. Mol Microbiol 2019; 112:1718-1730. [PMID: 31515877 DOI: 10.1111/mmi.14385] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2019] [Indexed: 01/26/2023]
Abstract
The flagellated eukaryote Trypanosoma brucei alternates between the insect vector and the mammalian host and proliferates through an unusual mode of cell division. Cell division requires flagellum motility-generated forces, but flagellum motility exerts distinct effects between different life cycle forms. Motility is required for the final cell abscission of the procyclic form in the insect vector, but is necessary for the initiation of cell division of the bloodstream form in the mammalian host. The underlying mechanisms remain elusive. Here we carried out functional analyses of a flagellar axonemal inner-arm dynein complex in the bloodstream form and investigated its mechanistic role in cytokinesis initiation. We showed that the axonemal inner-arm dynein heavy chain TbIAD5-1 and TbCentrin3 form a complex, localize to the flagellum, and are required for viability in the bloodstream form. We further demonstrated the interdependence between TbIAD5-1 and TbCentrin3 for maintenance of protein stability. Finally, we showed that depletion of TbIAD5-1 and TbCentrin3 arrested cytokinesis initiation and disrupted the localization of multiple cytokinesis initiation regulators. These findings identified the essential role of an axonemal inner-arm dynein complex in cell division, and provided molecular insights into the flagellum motility-mediated cytokinesis initiation in the bloodstream form of T. brucei.
Collapse
Affiliation(s)
- Xuan Zhang
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.,Center for Parasitic Organisms, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Huiqing Hu
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Zhao-Rong Lun
- Center for Parasitic Organisms, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Ziyin Li
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| |
Collapse
|
14
|
Zhang Y, Huang Y, Srivathsan A, Lim TK, Lin Q, He CY. The unusual flagellar-targeting mechanism and functions of the trypanosome ortholog of the ciliary GTPase Arl13b. J Cell Sci 2018; 131:jcs.219071. [PMID: 30097558 PMCID: PMC6140319 DOI: 10.1242/jcs.219071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 07/28/2018] [Indexed: 12/11/2022] Open
Abstract
The small GTPase Arl13b is one of the most conserved and ancient ciliary proteins. In human and animals, Arl13b is primarily associated with the ciliary membrane, where it acts as a guanine-nucleotide-exchange factor (GEF) for Arl3 and is implicated in a variety of ciliary and cellular functions. We have identified and characterized Trypanosoma brucei (Tb)Arl13, the sole Arl13b homolog in this evolutionarily divergent, protozoan parasite. TbArl13 has conserved flagellar functions and exhibits catalytic activity towards two different TbArl3 homologs. However, TbArl13 is distinctly associated with the axoneme through a dimerization/docking (D/D) domain. Replacing the D/D domain with a sequence encoding a flagellar membrane protein created a viable alternative to the wild-type TbArl13 in our RNA interference (RNAi)-based rescue assay. Therefore, flagellar enrichment is crucial for TbArl13, but mechanisms to achieve this could be flexible. Our findings thus extend the understanding of the roles of Arl13b and Arl13b–Arl3 pathway in a divergent flagellate of medical importance. This article has an associated First Person interview with the first author of the paper. Highlighted Article: All roads lead to cilia – how the essential flagellar enrichment of Arl13 is achieved in trypanosome cells using a fundamentally different strategy compared with that of animal cells.
Collapse
Affiliation(s)
- Yiliu Zhang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 14 Science Drive 4, Singapore 117543
| | - Yameng Huang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 14 Science Drive 4, Singapore 117543
| | - Amrita Srivathsan
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 14 Science Drive 4, Singapore 117543
| | - Teck Kwang Lim
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 14 Science Drive 4, Singapore 117543
| | - Qingsong Lin
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 14 Science Drive 4, Singapore 117543
| | - Cynthia Y He
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 14 Science Drive 4, Singapore 117543
| |
Collapse
|
15
|
Parasite motility is critical for virulence of African trypanosomes. Sci Rep 2018; 8:9122. [PMID: 29904094 PMCID: PMC6002391 DOI: 10.1038/s41598-018-27228-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 05/23/2018] [Indexed: 12/19/2022] Open
Abstract
African trypanosomes, Trypanosoma brucei spp., are lethal pathogens that cause substantial human suffering and limit economic development in some of the world's most impoverished regions. The name Trypanosoma ("auger cell") derives from the parasite's distinctive motility, which is driven by a single flagellum. However, despite decades of study, a requirement for trypanosome motility in mammalian host infection has not been established. LC1 is a conserved dynein subunit required for flagellar motility. Prior studies with a conditional RNAi-based LC1 mutant, RNAi-K/R, revealed that parasites with defective motility could infect mice. However, RNAi-K/R retained residual expression of wild-type LC1 and residual motility, thus precluding definitive interpretation. To overcome these limitations, here we generate constitutive mutants in which both LC1 alleles are replaced with mutant versions. These double knock-in mutants show reduced motility compared to RNAi-K/R and are viable in culture, but are unable to maintain bloodstream infection in mice. The virulence defect is independent of infection route but dependent on an intact host immune system. By comparing different mutants, we also reveal a critical dependence on the LC1 N-terminus for motility and virulence. Our findings demonstrate that trypanosome motility is critical for establishment and maintenance of bloodstream infection, implicating dynein-dependent flagellar motility as a potential drug target.
Collapse
|
16
|
Viswanadha R, Sale WS, Porter ME. Ciliary Motility: Regulation of Axonemal Dynein Motors. Cold Spring Harb Perspect Biol 2017; 9:9/8/a018325. [PMID: 28765157 DOI: 10.1101/cshperspect.a018325] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Ciliary motility is crucial for the development and health of many organisms. Motility depends on the coordinated activity of multiple dynein motors arranged in a precise pattern on the outer doublet microtubules. Although significant progress has been made in elucidating the composition and organization of the dyneins, a comprehensive understanding of dynein regulation is lacking. Here, we focus on two conserved signaling complexes located at the base of the radial spokes. These include the I1/f inner dynein arm associated with radial spoke 1 and the calmodulin- and spoke-associated complex and the nexin-dynein regulatory complex associated with radial spoke 2. Current research is focused on understanding how these two axonemal hubs coordinate and regulate the dynein motors and ciliary motility.
Collapse
Affiliation(s)
- Rasagnya Viswanadha
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Winfield S Sale
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Mary E Porter
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
17
|
Wilson CS, Chang AJ, Greene R, Machado S, Parsons MW, Takats TA, Zambetti LJ, Springer AL. Knockdown of Inner Arm Protein IC138 in Trypanosoma brucei Causes Defective Motility and Flagellar Detachment. PLoS One 2015; 10:e0139579. [PMID: 26555902 PMCID: PMC4640498 DOI: 10.1371/journal.pone.0139579] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 09/15/2015] [Indexed: 12/23/2022] Open
Abstract
Motility in the protozoan parasite Trypanosoma brucei is conferred by a single flagellum, attached alongside the cell, which moves the cell forward using a beat that is generated from tip-to-base. We are interested in characterizing components that regulate flagellar beating, in this study we extend the characterization of TbIC138, the ortholog of a dynein intermediate chain that regulates axonemal inner arm dynein f/I1. TbIC138 was tagged In situ-and shown to fractionate with the inner arm components of the flagellum. RNAi knockdown of TbIC138 resulted in significantly reduced protein levels, mild growth defect and significant motility defects. These cells tended to cluster, exhibited slow and abnormal motility and some cells had partially or fully detached flagella. Slight but significant increases were observed in the incidence of mis-localized or missing kinetoplasts. To document development of the TbIC138 knockdown phenotype over time, we performed a detailed analysis of flagellar detachment and motility changes over 108 hours following induction of RNAi. Abnormal motility, such as slow twitching or irregular beating, was observed early, and became progressively more severe such that by 72 hours-post-induction, approximately 80% of the cells were immotile. Progressively more cells exhibited flagellar detachment over time, but this phenotype was not as prevalent as immotility, affecting less than 60% of the population. Detached flagella had abnormal beating, but abnormal beating was also observed in cells with no flagellar detachment, suggesting that TbIC138 has a direct, or primary, effect on the flagellar beat, whereas detachment is a secondary phenotype of TbIC138 knockdown. Our results are consistent with the role of TbIC138 as a regulator of motility, and has a phenotype amenable to more extensive structure-function analyses to further elucidate its role in the control of flagellar beat in T. brucei.
Collapse
Affiliation(s)
- Corinne S. Wilson
- Department of Biology, Siena College, Loudonville, New York, United States of America
| | - Alex J. Chang
- Department of Biology, Amherst College, Amherst, Massachusetts, United States of America
| | - Rebecca Greene
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Sulynn Machado
- Department of Biology, Amherst College, Amherst, Massachusetts, United States of America
| | - Matthew W. Parsons
- Department of Biology, Amherst College, Amherst, Massachusetts, United States of America
| | - Taylor A. Takats
- Department of Biology, Siena College, Loudonville, New York, United States of America
| | - Luke J. Zambetti
- Department of Biology, Amherst College, Amherst, Massachusetts, United States of America
| | - Amy L. Springer
- Department of Biology, Siena College, Loudonville, New York, United States of America
- * E-mail:
| |
Collapse
|
18
|
Sistrom M, Evans B, Bjornson R, Gibson W, Balmer O, Mäser P, Aksoy S, Caccone A. Comparative genomics reveals multiple genetic backgrounds of human pathogenicity in the Trypanosoma brucei complex. Genome Biol Evol 2014; 6:2811-9. [PMID: 25287146 PMCID: PMC4224348 DOI: 10.1093/gbe/evu222] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The Trypanosoma brucei complex contains a number of subspecies with exceptionally variable life histories, including zoonotic subspecies, which are causative agents of human African trypanosomiasis (HAT) in sub-Saharan Africa. Paradoxically, genomic variation between taxa is extremely low. We analyzed the whole-genome sequences of 39 isolates across the T. brucei complex from diverse hosts and regions, identifying 608,501 single nucleotide polymorphisms that represent 2.33% of the nuclear genome. We show that human pathogenicity occurs across a wide range of parasite genotypes, and taxonomic designation does not reflect genetic variation across the group, as previous studies have suggested based on a small number of genes. This genome-wide study allowed the identification of significant host and geographic location associations. Strong purifying selection was detected in genomic regions associated with cytoskeleton structure, and regulatory genes associated with antigenic variation, suggesting conservation of these regions in African trypanosomes. In agreement with expectations drawn from meiotic reciprocal recombination, differences in average linkage disequilibrium between chromosomes in T. brucei correlate positively with chromosome size. In addition to insights into the life history of a diverse group of eukaryotic parasites, the documentation of genomic variation across the T. brucei complex and its association with specific hosts and geographic localities will aid in the development of comprehensive monitoring tools crucial to the proposed elimination of HAT by 2020, and on a shorter term, for monitoring the feared merger between the two human infective parasites, T. brucei rhodesiense and T. b. gambiense, in northern Uganda.
Collapse
Affiliation(s)
- Mark Sistrom
- Department of Ecology and Evolutionary Biology, Yale University
| | - Benjamin Evans
- Department of Ecology and Evolutionary Biology, Yale University
| | | | - Wendy Gibson
- School of Biological Sciences, University of Bristol, United Kingdom
| | - Oliver Balmer
- Swiss Tropical and Public Health Institute, Basel, Switzerland Zoological Institute, University of Basel, Switzerland
| | - Pascal Mäser
- Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Serap Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT
| | | |
Collapse
|
19
|
Freire ER, Vashisht AA, Malvezzi AM, Zuberek J, Langousis G, Saada EA, Nascimento JDF, Stepinski J, Darzynkiewicz E, Hill K, De Melo Neto OP, Wohlschlegel JA, Sturm NR, Campbell DA. eIF4F-like complexes formed by cap-binding homolog TbEIF4E5 with TbEIF4G1 or TbEIF4G2 are implicated in post-transcriptional regulation in Trypanosoma brucei. RNA (NEW YORK, N.Y.) 2014; 20:1272-86. [PMID: 24962368 PMCID: PMC4105752 DOI: 10.1261/rna.045534.114] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 05/12/2014] [Indexed: 05/19/2023]
Abstract
Members of the eIF4E mRNA cap-binding family are involved in translation and the modulation of transcript availability in other systems as part of a three-component complex including eIF4G and eIF4A. The kinetoplastids possess four described eIF4E and five eIF4G homologs. We have identified two new eIF4E family proteins in Trypanosoma brucei, and define distinct complexes associated with the fifth member, TbEIF4E5. The cytosolic TbEIF4E5 protein binds cap 0 in vitro. TbEIF4E5 was found in association with two of the five TbEIF4Gs. TbIF4EG1 bound TbEIF4E5, a 47.5-kDa protein with two RNA-binding domains, and either the regulatory protein 14-3-3 II or a 117.5-kDa protein with guanylyltransferase and methyltransferase domains in a potentially dynamic interaction. The TbEIF4G2/TbEIF4E5 complex was associated with a 17.9-kDa hypothetical protein and both 14-3-3 variants I and II. Knockdown of TbEIF4E5 resulted in the loss of productive cell movement, as evidenced by the inability of the cells to remain in suspension in liquid culture and the loss of social motility on semisolid plating medium, as well as a minor reduction of translation. Cells appeared lethargic, as opposed to compromised in flagellar function per se. The minimal use of transcriptional control in kinetoplastids requires these organisms to implement downstream mechanisms to regulate gene expression, and the TbEIF4E5/TbEIF4G1/117.5-kDa complex in particular may be a key player in that process. We suggest that a pathway involved in cell motility is affected, directly or indirectly, by one of the TbEIF4E5 complexes.
Collapse
Affiliation(s)
- Eden R Freire
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Ajay A Vashisht
- Department of Biological Chemistry, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Amaranta M Malvezzi
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095, USA Department of Microbiology, Centro de Pesquisas Aggeu Magalhães, Fundação Oswaldo Cruz, Recife, Pernambuco 50670-420, Brazil
| | - Joanna Zuberek
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-089 Warsaw, Poland
| | - Gerasimos Langousis
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Edwin A Saada
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Janaína De F Nascimento
- Department of Microbiology, Centro de Pesquisas Aggeu Magalhães, Fundação Oswaldo Cruz, Recife, Pernambuco 50670-420, Brazil
| | - Janusz Stepinski
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-089 Warsaw, Poland
| | - Edward Darzynkiewicz
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-089 Warsaw, Poland Centre of New Technologies, University of Warsaw, 02-089 Warsaw, Poland
| | - Kent Hill
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Osvaldo P De Melo Neto
- Department of Microbiology, Centro de Pesquisas Aggeu Magalhães, Fundação Oswaldo Cruz, Recife, Pernambuco 50670-420, Brazil
| | - James A Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Nancy R Sturm
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - David A Campbell
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
20
|
Abstract
Trypanosoma brucei is a pathogenic unicellular eukaryote that infects humans and other mammals in sub-Saharan Africa. A central feature of trypanosome biology is the single flagellum of the parasite, which is an essential and multifunctional organelle that facilitates cell propulsion, controls cell morphogenesis and directs cytokinesis. Moreover, the flagellar membrane is a specialized subdomain of the cell surface that mediates attachment to host tissues and harbours multiple virulence factors. In this Review, we discuss the structure, assembly and function of the trypanosome flagellum, including canonical roles in cell motility as well as novel and emerging roles in cell morphogenesis and host-parasite interactions.
Collapse
Affiliation(s)
- Gerasimos Langousis
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA90095
| | - Kent L. Hill
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA90095
- Molecular Biology Institute, University of California, Los Angeles, CA90095
| |
Collapse
|
21
|
Wang H, Gau B, Slade WO, Juergens M, Li P, Hicks LM. The global phosphoproteome of Chlamydomonas reinhardtii reveals complex organellar phosphorylation in the flagella and thylakoid membrane. Mol Cell Proteomics 2014; 13:2337-53. [PMID: 24917610 DOI: 10.1074/mcp.m114.038281] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Chlamydomonas reinhardtii is the most intensively-studied and well-developed model for investigation of a wide-range of microalgal processes ranging from basic development through understanding triacylglycerol production. Although proteomic technologies permit interrogation of these processes at the protein level and efforts to date indicate phosphorylation-based regulation of proteins in C. reinhardtii is essential for its underlying biology, characterization of the C. reinhardtii phosphoproteome has been limited. Herein, we report the richest exploration of the C. reinhardtii proteome to date. Complementary enrichment strategies were used to detect 4588 phosphoproteins distributed among every cellular component in C. reinhardtii. Additionally, we report 18,160 unique phosphopeptides at <1% false discovery rate, which comprise 15,862 unique phosphosites - 98% of which are novel. Given that an estimated 30% of proteins in a eukaryotic cell are subject to phosphorylation, we report the majority of the phosphoproteome (23%) of C. reinhardtii. Proteins in key biological pathways were phosphorylated, including photosynthesis, pigment production, carbon assimilation, glycolysis, and protein and carbohydrate metabolism, and it is noteworthy that hyperphosphorylation was observed in flagellar proteins. This rich data set is available via ProteomeXchange (ID: PXD000783) and will significantly enhance understanding of a range of regulatory mechanisms controlling a variety of cellular process and will serve as a critical resource for the microalgal community.
Collapse
Affiliation(s)
- Hongxia Wang
- From the ‡Donald Danforth Plant Science Center, 975 North Warson Road, St Louis, Missouri 63132; §National Center of Biomedical Analysis, 27 Taiping Road, Beijing, 100850, China
| | - Brian Gau
- From the ‡Donald Danforth Plant Science Center, 975 North Warson Road, St Louis, Missouri 63132; ¶Sigma-Aldrich, 2909 Laclede Ave., St. Louis, Missouri 63103
| | - William O Slade
- ‖Department of Chemistry, University of North Carolina at Chapel Hill, 125 South Road, Chapel Hill, North Carolina 27599
| | - Matthew Juergens
- **Department of Plant Biology, Michigan State University, 612 Wilson Road, East Lansing, Missouri 48824
| | - Ping Li
- §National Center of Biomedical Analysis, 27 Taiping Road, Beijing, 100850, China
| | - Leslie M Hicks
- From the ‡Donald Danforth Plant Science Center, 975 North Warson Road, St Louis, Missouri 63132; ‖Department of Chemistry, University of North Carolina at Chapel Hill, 125 South Road, Chapel Hill, North Carolina 27599;
| |
Collapse
|
22
|
Kisalu NK, Langousis G, Bentolila LA, Ralston KS, Hill KL. Mouse infection and pathogenesis by Trypanosoma brucei motility mutants. Cell Microbiol 2014; 16:912-24. [PMID: 24286532 DOI: 10.1111/cmi.12244] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 11/14/2013] [Accepted: 11/15/2013] [Indexed: 12/27/2022]
Abstract
The flagellum of Trypanosoma brucei is an essential and multifunctional organelle that drives parasite motility and is receiving increased attention as a potential drug target. In the mammalian host, parasite motility is suspected to contribute to infection and disease pathogenesis. However, it has not been possible to test this hypothesis owing to lack of motility mutants that are viable in the bloodstream life cycle stage that infects the mammalian host. We recently identified a bloodstream-form motility mutant in 427-derived T. brucei in which point mutations in the LC1 dynein subunit disrupt propulsive motility but do not affect viability. These mutants have an actively beating flagellum, but cannot translocate. Here we demonstrate that the LC1 point mutant fails to show enhanced cell motility upon increasing viscosity of the surrounding medium, which is a hallmark of wild type T. brucei, thus indicating that motility of the mutant is fundamentally altered compared with wild type cells. We next used the LC1 point mutant to assess the influence of trypanosome motility on infection in mice. Wesurprisingly found that disrupting parasite motility has no discernible effect on T. brucei bloodstream infection. Infection time-course, maximum parasitaemia, number of waves of parasitaemia, clinical features and disease outcome are indistinguishable between motility mutant and control parasites. Our studies provide an important step toward understanding the contribution of parasite motility to infection and a foundation for future investigations of T. brucei interaction with the mammalian host.
Collapse
Affiliation(s)
- Neville K Kisalu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, 90095, USA
| | | | | | | | | |
Collapse
|
23
|
Diniz MC, Pacheco ACL, Farias KM, de Oliveira DM. The eukaryotic flagellum makes the day: novel and unforeseen roles uncovered after post-genomics and proteomics data. Curr Protein Pept Sci 2013; 13:524-46. [PMID: 22708495 PMCID: PMC3499766 DOI: 10.2174/138920312803582951] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 05/22/2012] [Accepted: 05/23/2012] [Indexed: 12/21/2022]
Abstract
This review will summarize and discuss the current biological understanding of the motile eukaryotic flagellum,
as posed out by recent advances enabled by post-genomics and proteomics approaches. The organelle, which is crucial
for motility, survival, differentiation, reproduction, division and feeding, among other activities, of many eukaryotes,
is a great example of a natural nanomachine assembled mostly by proteins (around 350-650 of them) that have been conserved
throughout eukaryotic evolution. Flagellar proteins are discussed in terms of their arrangement on to the axoneme,
the canonical “9+2” microtubule pattern, and also motor and sensorial elements that have been detected by recent proteomic
analyses in organisms such as Chlamydomonas reinhardtii, sea urchin, and trypanosomatids. Such findings can be
remarkably matched up to important discoveries in vertebrate and mammalian types as diverse as sperm cells, ciliated
kidney epithelia, respiratory and oviductal cilia, and neuro-epithelia, among others. Here we will focus on some exciting
work regarding eukaryotic flagellar proteins, particularly using the flagellar proteome of C. reinhardtii as a reference map
for exploring motility in function, dysfunction and pathogenic flagellates. The reference map for the eukaryotic flagellar
proteome consists of 652 proteins that include known structural and intraflagellar transport (IFT) proteins, less well-characterized
signal transduction proteins and flagellar associated proteins (FAPs), besides almost two hundred unannotated
conserved proteins, which lately have been the subject of intense investigation and of our present examination.
Collapse
Affiliation(s)
- Michely C Diniz
- Programa de Pós-Graduação em Biotecnologia-RENORBIO-Rede Nordeste de Biotecnologia, Universidade Estadual do Ceará-UECE, Av. Paranjana, 1700, Campus do Itaperi, Fortaleza, CE 60740-000 Brasil
| | | | | | | |
Collapse
|
24
|
Nguyen HT, Sandhu J, Langousis G, Hill KL. CMF22 is a broadly conserved axonemal protein and is required for propulsive motility in Trypanosoma brucei. EUKARYOTIC CELL 2013; 12:1202-13. [PMID: 23851336 PMCID: PMC3811564 DOI: 10.1128/ec.00068-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 07/02/2013] [Indexed: 12/23/2022]
Abstract
The eukaryotic flagellum (or cilium) is a broadly conserved organelle that provides motility for many pathogenic protozoa and is critical for normal development and physiology in humans. Therefore, defining core components of motile axonemes enhances understanding of eukaryotic biology and provides insight into mechanisms of inherited and infectious diseases in humans. In this study, we show that component of motile flagella 22 (CMF22) is tightly associated with the flagellar axoneme and is likely to have been present in the last eukaryotic common ancestor. The CMF22 amino acid sequence contains predicted IQ and ATPase associated with a variety of cellular activities (AAA) motifs that are conserved among CMF22 orthologues in diverse organisms, hinting at the importance of these domains in CMF22 function. Knockdown by RNA interference (RNAi) and rescue with an RNAi-immune mRNA demonstrated that CMF22 is required for propulsive cell motility in Trypanosoma brucei. Loss of propulsive motility in CMF22-knockdown cells was due to altered flagellar beating patterns, rather than flagellar paralysis, indicating that CMF22 is essential for motility regulation and likely functions as a fundamental regulatory component of motile axonemes. CMF22 association with the axoneme is weakened in mutants that disrupt the nexin-dynein regulatory complex, suggesting potential interaction with this complex. Our results provide insight into the core machinery required for motility of eukaryotic flagella.
Collapse
Affiliation(s)
- HoangKim T. Nguyen
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, USA
| | - Jaspreet Sandhu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, USA
| | - Gerasimos Langousis
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, USA
| | - Kent L. Hill
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, USA
- Molecular Biology Institute, University of California, Los Angeles, California, USA
| |
Collapse
|
25
|
Bower R, Tritschler D, Vanderwaal K, Perrone CA, Mueller J, Fox L, Sale WS, Porter ME. The N-DRC forms a conserved biochemical complex that maintains outer doublet alignment and limits microtubule sliding in motile axonemes. Mol Biol Cell 2013; 24:1134-52. [PMID: 23427265 PMCID: PMC3623635 DOI: 10.1091/mbc.e12-11-0801] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The nexin–dynein regulatory complex (N-DRC) is implicated in the control of dynein activity as a structural component of the nexin link. This study identifies several new subunits of the N-DRC and demonstrates for the first time that it forms a discrete biochemical complex that maintains outer doublet integrity and regulates microtubule sliding. The nexin–dynein regulatory complex (N-DRC) is proposed to coordinate dynein arm activity and interconnect doublet microtubules. Here we identify a conserved region in DRC4 critical for assembly of the N-DRC into the axoneme. At least 10 subunits associate with DRC4 to form a discrete complex distinct from other axonemal substructures. Transformation of drc4 mutants with epitope-tagged DRC4 rescues the motility defects and restores assembly of missing DRC subunits and associated inner-arm dyneins. Four new DRC subunits contain calcium-signaling motifs and/or AAA domains and are nearly ubiquitous in species with motile cilia. However, drc mutants are motile and maintain the 9 + 2 organization of the axoneme. To evaluate the function of the N-DRC, we analyzed ATP-induced reactivation of isolated axonemes. Rather than the reactivated bending observed with wild-type axonemes, ATP addition to drc-mutant axonemes resulted in splaying of doublets in the distal region, followed by oscillatory bending between pairs of doublets. Thus the N-DRC provides some but not all of the resistance to microtubule sliding and helps to maintain optimal alignment of doublets for productive flagellar motility. These findings provide new insights into the mechanisms that regulate motility and further highlight the importance of the proximal region of the axoneme in generating flagellar bending.
Collapse
Affiliation(s)
- Raqual Bower
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Zhang X, Shen Y, Ding G, Tian Y, Liu Z, Li B, Wang Y, Jiang C. TFPP: an SVM-based tool for recognizing flagellar proteins in Trypanosoma brucei. PLoS One 2013; 8:e54032. [PMID: 23349782 PMCID: PMC3547966 DOI: 10.1371/journal.pone.0054032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 12/07/2012] [Indexed: 11/18/2022] Open
Abstract
Trypanosoma brucei is a unicellular flagellated eukaryotic parasite that causes African trypanosomiasis in human and domestic animals with devastating health and economic consequences. Recent studies have revealed the important roles of the single flagellum of T. brucei in many aspects, especially that the flagellar motility is required for the viability of the bloodstream form T. brucei, suggesting that impairment of the flagellar function may provide a promising cure for African sleeping sickness. Knowing the flagellum proteome is crucial to study the molecular mechanism of the flagellar functions. Here we present a novel computational method for identifying flagellar proteins in T. brucei, called trypanosome flagellar protein predictor (TFPP). TFPP was developed based on a list of selected discriminating features derived from protein sequences, and could predict flagellar proteins with ∼92% specificity at a ∼84% sensitivity rate. Applied to the whole T. brucei proteome, TFPP reveals 811 more flagellar proteins with high confidence, suggesting that the flagellar proteome covers ∼10% of the whole proteome. Comparison of the expression profiles of the whole T. brucei proteome at three typical life cycle stages found that ∼45% of the flagellar proteins were significantly changed in expression levels between the three life cycle stages, indicating life cycle stage-specific regulation of flagellar functions in T. brucei. Overall, our study demonstrated that TFPP is highly effective in identifying flagellar proteins and could provide opportunities to study the trypanosome flagellar proteome systematically. Furthermore, the web server for TFPP can be freely accessed at http:/wukong.tongji.edu.cn/tfpp.
Collapse
Affiliation(s)
- Xiaobai Zhang
- Department of Bioinformatics, the School of Life Sciences and Technology, Tongji University, Shanghai, China
- * E-mail: (XZ); (CJ)
| | - Yuefeng Shen
- Department of Bioinformatics, the School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Guitao Ding
- Department of Bioinformatics, the School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yi Tian
- Department of Bioinformatics, the School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zhenping Liu
- Department of Bioinformatics, the School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Bing Li
- Department of Bioinformatics, the School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yun Wang
- Department of Bioinformatics, the School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Cizhong Jiang
- Department of Bioinformatics, the School of Life Sciences and Technology, Tongji University, Shanghai, China
- * E-mail: (XZ); (CJ)
| |
Collapse
|
27
|
Identification and characterization of a stage specific membrane protein involved in flagellar attachment in Trypanosoma brucei. PLoS One 2013; 8:e52846. [PMID: 23335957 PMCID: PMC3546053 DOI: 10.1371/journal.pone.0052846] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 11/21/2012] [Indexed: 11/19/2022] Open
Abstract
Flagellar attachment is a visibly striking morphological feature of African trypanosomes but little is known about the requirements for attachment at a molecular level. This study characterizes a previously undescribed membrane protein, FLA3, which plays an essential role in flagellar attachment in Trypanosoma brucei. FLA3 is heavily N-glycosylated, locates to the flagellar attachment zone and appears to be a bloodstream stage specific protein. Ablation of the FLA3 mRNA rapidly led to flagellar detachment and a concomitant failure of cytokinesis in the long slender bloodstream form but had no effect on the procyclic form. Flagellar detachment was obvious shortly after induction of the dsRNA and the newly synthesized flagellum was often completely detached after it emerged from the flagellar pocket. Within 12 h most cells possessed detached flagella alongside the existing attached flagellum. These results suggest that proteins involved in attachment are not shared between the new and old attachment zones. In other respects the detached flagella appear normal, they beat rapidly although directional motion was lost, and they possess an apparently normal axoneme and paraflagellar rod structure. The flagellar attachment zone appeared to be disrupted when FLA3 was depleted. Thus, while flagellar attachment is a constitutive feature of the life cycle of trypanosomes, attachment requires stage specific elements at the protein level.
Collapse
|
28
|
Hemsworth GR, Price HP, Smith DF, Wilson KS. Crystal structure of the small GTPase Arl6/BBS3 from Trypanosoma brucei. Protein Sci 2013. [PMID: 23184293 DOI: 10.1002/pro.2198] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Arl6/BBS3 is a small GTPase, mutations in which are implicated in the human ciliopathy Bardet-Biedl Syndrome (BBS). Arl6 is proposed to facilitate the recruitment of a large protein complex known as the BBSome to the base of the primary cilium, mediating specific trafficking of molecules to this important sensory organelle. Orthologues of Arl6 and the BBSome core subunits have been identified in the genomes of trypanosomes. Flagellum function and motility are crucial to the survival of Trypanosoma brucei, the causative agent of human African sleeping sickness, in the human bloodstream stage of its lifecycle and so the function of the BBSome proteins in trypanosomes warrants further study. RNAi knockdown of T. brucei Arl6 (TbArl6) has recently been shown to result in shortening of the trypanosome flagellum. Here we present the crystal structure of TbArl6 with the bound non-hydrolysable GTP analog GppNp at 2.0 Å resolution and highlight important differences between the trypanosomal and human proteins. Analysis of the TbArl6 active site confirms that it lacks the key glutamine that activates the nucleophile during GTP hydrolysis in other small GTPases. Furthermore, the trypanosomal proteins are significantly shorter at their N-termini suggesting a different method of membrane insertion compared to humans. Finally, analysis of sequence conservation suggests two surface patches that may be important for protein-protein interactions. Our structural analysis thus provides the basis for future biochemical characterisation of this important family of small GTPases.
Collapse
Affiliation(s)
- Glyn R Hemsworth
- Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York, United Kingdom
| | | | | | | |
Collapse
|
29
|
Trypanosoma brucei FKBP12 differentially controls motility and cytokinesis in procyclic and bloodstream forms. EUKARYOTIC CELL 2012; 12:168-81. [PMID: 23104568 DOI: 10.1128/ec.00077-12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
FKBP12 proteins are able to inhibit TOR kinases or calcineurin phosphatases upon binding of rapamycin or FK506 drugs, respectively. The Trypanosoma brucei FKBP12 homologue (TbFKBP12) was found to be a cytoskeleton-associated protein with specific localization in the flagellar pocket area of the bloodstream form. In the insect procyclic form, RNA interference-mediated knockdown of TbFKBP12 affected motility. In bloodstream cells, depletion of TbFKBP12 affected cytokinesis and cytoskeleton architecture. These last effects were associated with the presence of internal translucent cavities limited by an inside-out configuration of the normal cell surface, with a luminal variant surface glycoprotein coat lined up by microtubules. These cavities, which recreated the streamlined shape of the normal trypanosome cytoskeleton, might represent unsuccessful attempts for cell abscission. We propose that TbFKBP12 differentially affects stage-specific processes through association with the cytoskeleton.
Collapse
|
30
|
A quantitative 3D motility analysis of Trypanosoma brucei by use of digital in-line holographic microscopy. PLoS One 2012; 7:e37296. [PMID: 22629379 PMCID: PMC3358310 DOI: 10.1371/journal.pone.0037296] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 04/17/2012] [Indexed: 11/25/2022] Open
Abstract
We present a quantitative 3D analysis of the motility of the blood parasite Trypanosoma brucei. Digital in-line holographic microscopy has been used to track single cells with high temporal and spatial accuracy to obtain quantitative data on their behavior. Comparing bloodstream form and insect form trypanosomes as well as mutant and wildtype cells under varying external conditions we were able to derive a general two-state-run-and-tumble-model for trypanosome motility. Differences in the motility of distinct strains indicate that adaption of the trypanosomes to their natural environments involves a change in their mode of swimming.
Collapse
|
31
|
Dacheux D, Landrein N, Thonnus M, Gilbert G, Sahin A, Wodrich H, Robinson DR, Bonhivers M. A MAP6-related protein is present in protozoa and is involved in flagellum motility. PLoS One 2012; 7:e31344. [PMID: 22355359 PMCID: PMC3280300 DOI: 10.1371/journal.pone.0031344] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 01/06/2012] [Indexed: 12/25/2022] Open
Abstract
In vertebrates the microtubule-associated proteins MAP6 and MAP6d1 stabilize cold-resistant microtubules. Cilia and flagella have cold-stable microtubules but MAP6 proteins have not been identified in these organelles. Here, we describe TbSAXO as the first MAP6-related protein to be identified in a protozoan, Trypanosoma brucei. Using a heterologous expression system, we show that TbSAXO is a microtubule stabilizing protein. Furthermore we identify the domains of the protein responsible for microtubule binding and stabilizing and show that they share homologies with the microtubule-stabilizing Mn domains of the MAP6 proteins. We demonstrate, in the flagellated parasite, that TbSAXO is an axonemal protein that plays a role in flagellum motility. Lastly we provide evidence that TbSAXO belongs to a group of MAP6-related proteins (SAXO proteins) present only in ciliated or flagellated organisms ranging from protozoa to mammals. We discuss the potential roles of the SAXO proteins in cilia and flagella function.
Collapse
Affiliation(s)
- Denis Dacheux
- Microbiologie Fondamentale et Pathogénicité, Université de Bordeaux, UMR 5234, Bordeaux, France
- Microbiologie Fondamentale et Pathogénicité, CNRS, UMR 5234, Bordeaux, France
- Microbiologie Fondamentale et Pathogénicité, Institut Polytechnique de Bordeaux, UMR 5234, Bordeaux, France
| | - Nicolas Landrein
- Microbiologie Fondamentale et Pathogénicité, Université de Bordeaux, UMR 5234, Bordeaux, France
- Microbiologie Fondamentale et Pathogénicité, CNRS, UMR 5234, Bordeaux, France
| | - Magali Thonnus
- Microbiologie Fondamentale et Pathogénicité, Université de Bordeaux, UMR 5234, Bordeaux, France
- Microbiologie Fondamentale et Pathogénicité, CNRS, UMR 5234, Bordeaux, France
| | - Guillaume Gilbert
- Microbiologie Fondamentale et Pathogénicité, Université de Bordeaux, UMR 5234, Bordeaux, France
- Microbiologie Fondamentale et Pathogénicité, CNRS, UMR 5234, Bordeaux, France
| | - Annelise Sahin
- Microbiologie Fondamentale et Pathogénicité, Université de Bordeaux, UMR 5234, Bordeaux, France
- Microbiologie Fondamentale et Pathogénicité, CNRS, UMR 5234, Bordeaux, France
| | - Harald Wodrich
- Microbiologie Fondamentale et Pathogénicité, Université de Bordeaux, UMR 5234, Bordeaux, France
- Microbiologie Fondamentale et Pathogénicité, CNRS, UMR 5234, Bordeaux, France
| | - Derrick R. Robinson
- Microbiologie Fondamentale et Pathogénicité, Université de Bordeaux, UMR 5234, Bordeaux, France
- Microbiologie Fondamentale et Pathogénicité, CNRS, UMR 5234, Bordeaux, France
| | - Mélanie Bonhivers
- Microbiologie Fondamentale et Pathogénicité, Université de Bordeaux, UMR 5234, Bordeaux, France
- Microbiologie Fondamentale et Pathogénicité, CNRS, UMR 5234, Bordeaux, France
- * E-mail:
| |
Collapse
|
32
|
Lin J, Tritschler D, Song K, Barber CF, Cobb JS, Porter ME, Nicastro D. Building blocks of the nexin-dynein regulatory complex in Chlamydomonas flagella. J Biol Chem 2011; 286:29175-29191. [PMID: 21700706 DOI: 10.1074/jbc.m111.241760] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The directional flow generated by motile cilia and flagella is critical for many processes, including human development and organ function. Normal beating requires the control and coordination of thousands of dynein motors, and the nexin-dynein regulatory complex (N-DRC) has been identified as an important regulatory node for orchestrating dynein activity. The nexin link appears to be critical for the transformation of dynein-driven, linear microtubule sliding to flagellar bending, yet the molecular composition and mechanism of the N-DRC remain largely unknown. Here, we used proteomics with special attention to protein phosphorylation to analyze the composition of the N-DRC and to determine which subunits may be important for signal transduction. Two-dimensional electrophoresis and MALDI-TOF mass spectrometry of WT and mutant flagellar axonemes from Chlamydomonas identified 12 N-DRC-associated proteins, including all seven previously observed N-DRC components. Sequence and PCR analyses identified the mutation responsible for the phenotype of the sup-pf-4 strain, and biochemical comparison with a radial spoke mutant revealed two components that may link the N-DRC and the radial spokes. Phosphoproteomics revealed eight proteins with phosphorylated isoforms for which the isoform patterns changed with the genotype as well as two components that may play pivotal roles in N-DRC function through their phosphorylation status. These data were assembled into a model of the N-DRC that explains aspects of its regulatory function.
Collapse
Affiliation(s)
- Jianfeng Lin
- Biology Department, Rosenstiel Center, MS029, Brandeis University, Waltham, Massachusetts 02454
| | - Douglas Tritschler
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455, and
| | - Kangkang Song
- Biology Department, Rosenstiel Center, MS029, Brandeis University, Waltham, Massachusetts 02454
| | - Cynthia F Barber
- Biology Department, Rosenstiel Center, MS029, Brandeis University, Waltham, Massachusetts 02454
| | - Jennifer S Cobb
- Chemistry Department, MS015, Brandeis University, Waltham, Massachusetts 02454
| | - Mary E Porter
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455, and
| | - Daniela Nicastro
- Biology Department, Rosenstiel Center, MS029, Brandeis University, Waltham, Massachusetts 02454,.
| |
Collapse
|
33
|
Oberholzer M, Langousis G, Nguyen HT, Saada EA, Shimogawa MM, Jonsson ZO, Nguyen SM, Wohlschlegel JA, Hill KL. Independent analysis of the flagellum surface and matrix proteomes provides insight into flagellum signaling in mammalian-infectious Trypanosoma brucei. Mol Cell Proteomics 2011; 10:M111.010538. [PMID: 21685506 DOI: 10.1074/mcp.m111.010538] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The flagellum of African trypanosomes is an essential and multifunctional organelle that functions in motility, cell morphogenesis, and host-parasite interaction. Previous studies of the trypanosome flagellum have been limited by the inability to purify flagella without first removing the flagellar membrane. This limitation is particularly relevant in the context of studying flagellum signaling, as signaling requires surface-exposed proteins in the flagellar membrane and soluble signaling proteins in the flagellar matrix. Here we employ a combination of genetic and mechanical approaches to purify intact flagella from the African trypanosome, Trypanosoma brucei, in its mammalian-infectious stage. We combined flagellum purification with affinity-purification of surface-exposed proteins to conduct independent proteomic analyses of the flagellum surface and matrix fractions. The proteins identified encompass a broad range of molecular functionalities, including many predicted to function in signaling. Immunofluorescence and RNA interference studies demonstrate flagellum localization and function for proteins identified and provide insight into mechanisms of flagellum attachment and motility. The flagellum surface proteome includes many T. brucei-specific proteins and is enriched for proteins up-regulated in the mammalian-infectious stage of the parasite life-cycle. The combined results indicate that the flagellum surface presents a diverse and dynamic host-parasite interface that is well-suited for host-parasite signaling.
Collapse
Affiliation(s)
- Michael Oberholzer
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Uppaluri S, Nagler J, Stellamanns E, Heddergott N, Herminghaus S, Engstler M, Pfohl T. Impact of microscopic motility on the swimming behavior of parasites: straighter trypanosomes are more directional. PLoS Comput Biol 2011; 7:e1002058. [PMID: 21698122 PMCID: PMC3116898 DOI: 10.1371/journal.pcbi.1002058] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Accepted: 03/31/2011] [Indexed: 11/18/2022] Open
Abstract
Microorganisms, particularly parasites, have developed sophisticated swimming mechanisms to cope with a varied range of environments. African Trypanosomes, causative agents of fatal illness in humans and animals, use an insect vector (the Tsetse fly) to infect mammals, involving many developmental changes in which cell motility is of prime importance. Our studies reveal that differences in cell body shape are correlated with a diverse range of cell behaviors contributing to the directional motion of the cell. Straighter cells swim more directionally while cells that exhibit little net displacement appear to be more bent. Initiation of cell division, beginning with the emergence of a second flagellum at the base, correlates to directional persistence. Cell trajectory and rapid body fluctuation correlation analysis uncovers two characteristic relaxation times: a short relaxation time due to strong body distortions in the range of 20 to 80 ms and a longer time associated with the persistence in average swimming direction in the order of 15 seconds. Different motility modes, possibly resulting from varying body stiffness, could be of consequence for host invasion during distinct infective stages.
Collapse
Affiliation(s)
- Sravanti Uppaluri
- Max-Planck-Institute for Dynamics and Self-Organization, Göttingen, Germany
| | - Jan Nagler
- Max-Planck-Institute for Dynamics and Self-Organization, Göttingen, Germany
- Institute for Nonlinear Dynamics, Faculty of Physics, Georg-August-Universität, Göttingen, Germany
| | - Eric Stellamanns
- Max-Planck-Institute for Dynamics and Self-Organization, Göttingen, Germany
| | - Niko Heddergott
- Biozentrum, Department for Cell and Developmental Biology, University of Würzburg, Würzburg, Germany
| | | | - Markus Engstler
- Biozentrum, Department for Cell and Developmental Biology, University of Würzburg, Würzburg, Germany
| | - Thomas Pfohl
- Max-Planck-Institute for Dynamics and Self-Organization, Göttingen, Germany
- Department of Chemistry, University of Basel, Basel, Switzerland
- * E-mail:
| |
Collapse
|
35
|
Structure-function analysis of dynein light chain 1 identifies viable motility mutants in bloodstream-form Trypanosoma brucei. EUKARYOTIC CELL 2011; 10:884-94. [PMID: 21378260 DOI: 10.1128/ec.00298-10] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The flagellum of Trypanosoma brucei is an essential and multifunctional organelle that is receiving increasing attention as a potential drug target and as a system for studying flagellum biology. RNA interference (RNAi) knockdown is widely used to test the requirement for a protein in flagellar motility and has suggested that normal flagellar motility is essential for viability in bloodstream-form trypanosomes. However, RNAi knockdown alone provides limited functional information because the consequence is often loss of a multiprotein complex. We therefore developed an inducible system that allows functional analysis of point mutations in flagellar proteins in T. brucei. Using this system, we identified point mutations in the outer dynein light chain 1 (LC1) that allow stable assembly of outer dynein motors but do not support propulsive motility. In procyclic-form trypanosomes, the phenotype of LC1 mutants with point mutations differs from the motility and structural defects of LC1 knockdowns, which lack the outer-arm dynein motor. Thus, our results distinguish LC1-specific functions from broader functions of outer-arm dynein. In bloodstream-form trypanosomes, LC1 knockdown blocks cell division and is lethal. In contrast, LC1 point mutations cause severe motility defects without affecting viability, indicating that the lethal phenotype of LC1 RNAi knockdown is not due to defective motility. Our results demonstrate for the first time that normal motility is not essential in bloodstream-form T. brucei and that the presumed connection between motility and viability is more complex than might be interpreted from knockdown studies alone. These findings open new avenues for dissecting mechanisms of flagellar protein function and provide an important step in efforts to exploit the potential of the flagellum as a therapeutic target in African sleeping sickness.
Collapse
|
36
|
Kabututu ZP, Thayer M, Melehani JH, Hill KL. CMF70 is a subunit of the dynein regulatory complex. J Cell Sci 2010; 123:3587-95. [PMID: 20876659 PMCID: PMC2951471 DOI: 10.1242/jcs.073817] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2010] [Indexed: 11/20/2022] Open
Abstract
Flagellar motility drives propulsion of several important pathogens and is essential for human development and physiology. Motility of the eukaryotic flagellum requires coordinate regulation of thousands of dynein motors arrayed along the axoneme, but the proteins underlying dynein regulation are largely unknown. The dynein regulatory complex, DRC, is recognized as a focal point of axonemal dynein regulation, but only a single DRC subunit, trypanin/PF2, is currently known. The component of motile flagella 70 protein, CMF70, is broadly and uniquely conserved among organisms with motile flagella, suggesting a role in axonemal motility. Here we demonstrate that CMF70 is part of the DRC from Trypanosoma brucei. CMF70 is located along the flagellum, co-sediments with trypanin in sucrose gradients and co-immunoprecipitates with trypanin. RNAi knockdown of CMF70 causes motility defects in a wild-type background and suppresses flagellar paralysis in cells with central pair defects, thus meeting the functional definition of a DRC subunit. Trypanin and CMF70 are mutually conserved in at least five of six extant eukaryotic clades, indicating that the DRC was probably present in the last common eukaryotic ancestor. We have identified only the second known subunit of this ubiquitous dynein regulatory system, highlighting the utility of combined genomic and functional analyses for identifying novel subunits of axonemal sub-complexes.
Collapse
Affiliation(s)
- Zakayi P. Kabututu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Michelle Thayer
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Jason H. Melehani
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Kent L. Hill
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
37
|
Springer AL, Bruhn DF, Kinzel KW, Rosenthal NF, Zukas R, Klingbeil MM. Silencing of a putative inner arm dynein heavy chain results in flagellar immotility in Trypanosoma brucei. Mol Biochem Parasitol 2010; 175:68-75. [PMID: 20888370 DOI: 10.1016/j.molbiopara.2010.09.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 09/19/2010] [Accepted: 09/21/2010] [Indexed: 11/16/2022]
Abstract
The Trypanosoma brucei flagellum controls motility and is crucial for cell polarity and division. Unique features of trypanosome motility suggest that flagellar beat regulation in this organism is unusual and worthy of study. The flagellar axoneme, required for motility, has a structure that is highly conserved among eukaryotes. Of the several dyneins in the axonemal inner arm complex, dynein f is thought to control flagellar waveform shape. A T. brucei gene predicted to encode the dynein f alpha heavy chain, TbDNAH10, was silenced using RNA interference in procyclic T. brucei cells. This resulted in immotile flagella, showing no movement except for occasional slight twitches at the tips. Cell growth slowed dramatically and cells were found in large clusters. Microscopic analysis of silenced cultures showed many cells with detached flagella, sometimes entangled between multiple cells. DAPI staining showed an increased frequency of mis-positioned kinetoplasts and multinucleate cells, suggesting that these cells experience disruption at an early cell cycle stage, probably secondary to the motility defect. TEM images showed apparently normal axonemes and no discernable defects in inner arm structure. This study demonstrates the use of RNAi as an effective method to study very large genes such as dynein heavy chains (HCs), and the immotility phenotype of these dynein knockdowns suggests that an intact inner arm is necessary for flagellar beating in T. brucei. Since analogous mutants in Chlamydomonas reinhardtii retain motility, this phenotype likely reflects differences in requirements for motility and/or dynein assembly between the two organisms and these comparative studies will help elucidate the mechanisms of flagellar beat regulation.
Collapse
Affiliation(s)
- Amy L Springer
- Department of Biology, Amherst College, Amherst, MA, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Hill KL. Parasites in motion: flagellum-driven cell motility in African trypanosomes. Curr Opin Microbiol 2010; 13:459-65. [PMID: 20591724 DOI: 10.1016/j.mib.2010.05.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 05/21/2010] [Accepted: 05/27/2010] [Indexed: 10/19/2022]
Abstract
Motility of the sleeping sickness parasite, Trypanosoma brucei, impacts disease transmission and pathogenesis. Trypanosome motility is driven by a flagellum that harbors a canonical 9+2 axoneme, together with trypanosome-specific elaborations. Trypanosome flagellum biology and motility have been the object of intense research over the last two years. These studies have led to the discovery of a novel form of motility, termed social motility, and provided revision of long-standing models for cell propulsion. Recent work has also uncovered novel structural features and motor proteins associated with the flagellar apparatus and has identified candidate signaling molecules that are predicted to regulate flagellar motility. Together with earlier inventories of flagellar proteins from proteomic and genomic studies, the stage is now set to move forward with functional studies to elucidate molecular mechanisms and investigate parasite motility in the context of host-parasite interactions.
Collapse
Affiliation(s)
- Kent L Hill
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, 609 Charles E. Young Drive, Los Angeles, CA 90095, USA.
| |
Collapse
|
39
|
Sienkiewicz N, Ong HB, Fairlamb AH. Trypanosoma brucei pteridine reductase 1 is essential for survival in vitro and for virulence in mice. Mol Microbiol 2010; 77:658-71. [PMID: 20545846 PMCID: PMC2916222 DOI: 10.1111/j.1365-2958.2010.07236.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Gene knockout and knockdown methods were used to examine essentiality of pteridine reductase (PTR1) in pterin metabolism in the African trypanosome. Attempts to generate PTR1 null mutants in bloodstream form Trypanosoma brucei proved unsuccessful; despite integration of drug selectable markers at the target locus, the gene for PTR1 was either retained at the same locus or elsewhere in the genome. However, RNA interference (RNAi) resulted in complete knockdown of endogenous protein after 48 h, followed by cell death after 4 days. This lethal phenotype was reversed by expression of enzymatically active Leishmania major PTR1 in RNAi lines ((oe)RNAi) or by addition of tetrahydrobiopterin to cultures. Loss of PTR1 was associated with gross morphological changes due to a defect in cytokinesis, resulting in cells with multiple nuclei and kinetoplasts, as well as multiple detached flagella. Electron microscopy also revealed increased numbers of glycosomes, while immunofluorescence microscopy showed increased and more diffuse staining for glycosomal matrix enzymes, indicative of mis-localisation to the cytosol. Mis-localisation was confirmed by digitonin fractionation experiments. RNAi cell lines were markedly less virulent than wild-type parasites in mice and virulence was restored in the (oe)RNAi line. Thus, PTR1 may be a drug target for human African trypanosomiasis.
Collapse
Affiliation(s)
- Natasha Sienkiewicz
- Division of Biological Chemistry & Drug Discovery, College of Life Sciences, University of Dundee, Dundee, UK
| | | | | |
Collapse
|
40
|
TbPRMT6 is a type I protein arginine methyltransferase that contributes to cytokinesis in Trypanosoma brucei. EUKARYOTIC CELL 2010; 9:866-77. [PMID: 20418380 DOI: 10.1128/ec.00018-10] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Arginine methylation is a widespread posttranslational modification of proteins catalyzed by a family of protein arginine methyltransferases (PRMTs). In Saccharomyces cerevisiae and mammals, this modification affects multiple cellular processes, such as chromatin remodeling leading to transcriptional regulation, RNA processing, DNA repair, and cell signaling. The protozoan parasite Trypanosoma brucei possesses five putative PRMTs in its genome. This is a large number of PRMTs relative to other unicellular eukaryotes, suggesting an important role for arginine methylation in trypanosomes. Here, we present the in vitro and in vivo characterization of a T. brucei enzyme homologous to human PRMT6, which we term TbPRMT6. Like human PRMT6, TbPRMT6 is a type I PRMT, catalyzing the production of monomethylarginine and asymmetric dimethylarginine residues. In in vitro methylation assays, TbPRMT6 utilizes bovine histones as a substrate, but it does not methylate several T. brucei glycine/arginine-rich proteins. As such, it exhibits a relatively narrow substrate specificity compared to other T. brucei PRMTs. Knockdown of TbPRMT6 in both procyclic form and bloodstream form T. brucei leads to a modest but reproducible effect on parasite growth in culture. Moreover, upon TbPRMT6 depletion, both PF and BF exhibit aberrant morphologies indicating defects in cell division, and these defects differ in the two life cycle stages. Mass spectrometry of TbPRMT6-associated proteins reveals histones, components of the nuclear pore complex, and flagellar proteins that may represent TbPRMT6 substrates contributing to the observed growth and morphological defects.
Collapse
|
41
|
Abstract
African trypanosomes are devastating human and animal pathogens that cause significant human mortality and limit economic development in sub-Saharan Africa. Studies of trypanosome biology generally consider these protozoan parasites as individual cells in suspension cultures or in animal models of infection. Here we report that the procyclic form of the African trypanosome Trypanosoma brucei engages in social behavior when cultivated on semisolid agarose surfaces. This behavior is characterized by trypanosomes assembling into multicellular communities that engage in polarized migrations across the agarose surface and cooperate to divert their movements in response to external signals. These cooperative movements are flagellum-mediated, since they do not occur in trypanin knockdown parasites that lack normal flagellum motility. We term this behavior social motility based on features shared with social motility and other types of surface-induced social behavior in bacteria. Social motility represents a novel and unexpected aspect of trypanosome biology and offers new paradigms for considering host-parasite interactions. African trypanosomes, e.g. Trypanosoma brucei, and related kinetoplastid parasites cause morbidity and mortality in several million people worldwide. Trypanosomes are protists and are thus generally considered to behave as single-celled microorganisms. In other microorganisms, social interactions among individuals lead to development of multicellular communities with specialized and advantageous capabilities versus single cells. The concept of bacteria acting as groups of cells communicating and cooperating with one another has had a major impact on our understanding of bacterial physiology and pathogenesis, but this paradigm has not been applied to parasitic protozoa. Here we report that T. brucei is capable of social behavior when exposed to semisolid surfaces. This behavior, termed social motility, is characterized by the assembly of parasites into multicellular communities with emergent properties that are not evident in single cells. Parasites within communities exhibit polarized movements and cooperate to coordinate their movements in response to an external stimulus. Social motility offers many potential advantages, such as facilitating colonization and navigation through host tissues. The identification of social behavior in T. brucei reveals a novel and unexpected aspect of parasite biology and provides new concepts for considering host-parasite interactions.
Collapse
|
42
|
Heuser T, Raytchev M, Krell J, Porter ME, Nicastro D. The dynein regulatory complex is the nexin link and a major regulatory node in cilia and flagella. ACTA ACUST UNITED AC 2010; 187:921-33. [PMID: 20008568 PMCID: PMC2806320 DOI: 10.1083/jcb.200908067] [Citation(s) in RCA: 233] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Elegant cryoelectron tomography reveals that the nexin link between microtubule doublets in 9 + 2 axonemal structures, critical for their ability to bend, is the dynein regulatory complex. Cilia and flagella are highly conserved microtubule (MT)-based organelles with motile and sensory functions, and ciliary defects have been linked to several human diseases. The 9 + 2 structure of motile axonemes contains nine MT doublets interconnected by nexin links, which surround a central pair of singlet MTs. Motility is generated by the orchestrated activity of thousands of dynein motors, which drive interdoublet sliding. A key regulator of motor activity is the dynein regulatory complex (DRC), but detailed structural information is lacking. Using cryoelectron tomography of wild-type and mutant axonemes from Chlamydomonas reinhardtii, we visualized the DRC in situ at molecular resolution. We present the three-dimensional structure of the DRC, including a model for its subunit organization and intermolecular connections that establish the DRC as a major regulatory node. We further demonstrate that the DRC is the nexin link, which is thought to be critical for the generation of axonemal bending.
Collapse
Affiliation(s)
- Thomas Heuser
- Biology Department, Brandeis University, Waltham, MA 02453, USA
| | | | | | | | | |
Collapse
|
43
|
|
44
|
Abstract
African trypanosomes are evolutionary-divergent eukaryotes responsible for sleeping sickness. They duplicate their single flagellum while maintaining the old one, providing a unique model to examine mature and elongating flagella in the same cell. Like in most eukaryotes, the trypanosome flagellum is constructed by addition of novel subunits at its distal end via the action of intraflagellar transport (IFT). Almost all genes encoding IFT proteins and motors are conserved in trypanosomes and related species, with only a few exceptions. A dozen of IFT genes have been functionally investigated in this organism, thanks to the potent reverse genetic tools available. Several alternative techniques to trigger RNAi are accessible, either transient RNAi by transfection of long double-stranded RNA or by generation of clonal cell lines able to express long double-stranded RNA under the control of tetracycline-inducible promoters. In addition, we provide a series of techniques to investigate cellular phenotypes in trypanosomes where expression of IFT genes has been silenced. In this chapter, we describe different methods for tagging and expression of IFT proteins in trypanosomes and for visualizing IFT in live cells.
Collapse
|
45
|
Abstract
The eukaryotic flagellum is a highly conserved organelle serving motility, sensory, and transport functions. Although genetic, genomic, and proteomic studies have led to the identification of hundreds of flagellar and putative flagellar proteins, precisely how these proteins function individually and collectively to drive flagellum motility and other functions remains to be determined. In this chapter we provide an overview of tools and approaches available for studying flagellum protein function in the protozoan parasite Trypanosoma brucei. We begin by outlining techniques for in vitro cultivation of both T. brucei life cycle stages, as well as transfection protocols for the delivery of DNA constructs. We then describe specific assays used to assess flagellum function including flagellum preparation and quantitative motility assays. We conclude the chapter with a description of molecular genetic approaches for manipulating gene function. In summary, the availability of potent molecular tools, as well as the health and economic relevance of T. brucei as a pathogen, combine to make the parasite an attractive and integral experimental system for the functional analysis of flagellar proteins.
Collapse
|
46
|
Portman N, Gull K. The paraflagellar rod of kinetoplastid parasites: from structure to components and function. Int J Parasitol 2009; 40:135-48. [PMID: 19879876 PMCID: PMC2813431 DOI: 10.1016/j.ijpara.2009.10.005] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 10/13/2009] [Accepted: 10/16/2009] [Indexed: 01/06/2023]
Abstract
The role of the eukaryotic flagellum in cell motility is well established but its importance in many other aspects of cell biology, from cell signalling to developmental regulation, is becoming increasingly apparent. In addition to this diversity of function the core structure of the flagellum, which has been inherited from the earliest ancestor of all eukaryotes, is embellished with a range of extra-axonemal structures in many organisms. One of the best studied of these structures is the paraflagellar rod of kinetoplastid protozoa in which the morphological characteristics have been well defined and some of the major protein constituents have been identified. Here we discuss recent advances in the identification of further molecular components of the paraflagellar rod, how these impact on our understanding of its function and regulation and the implications for therapeutic intervention in a number of devastating human pathologies.
Collapse
Affiliation(s)
- Neil Portman
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX13RE, UK
| | | |
Collapse
|
47
|
Propulsion of African trypanosomes is driven by bihelical waves with alternating chirality separated by kinks. Proc Natl Acad Sci U S A 2009; 106:19322-7. [PMID: 19880745 DOI: 10.1073/pnas.0907001106] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Trypanosoma brucei, a parasitic protist with a single flagellum, is the causative agent of African sleeping sickness. Propulsion of T. brucei was long believed to be by a drill-like, helical motion. Using millisecond differential interference-contrast microscopy and analyzing image sequences of cultured procyclic-form and bloodstream-form parasites, as well as bloodstream-form cells in infected mouse blood, we find that, instead, motility of T. brucei is by the propagation of kinks, separating left-handed and right-handed helical waves. Kink-driven motility, previously encountered in prokaryotes, permits T. brucei a helical propagation mechanism while avoiding the large viscous drag associated with a net rotation of the broad end of its tapering body. Our study demonstrates that millisecond differential interference-contrast microscopy can be a useful tool for uncovering important short-time features of microorganism locomotion.
Collapse
|
48
|
Farr H, Gull K. Functional studies of an evolutionarily conserved, cytochrome b5 domain protein reveal a specific role in axonemal organisation and the general phenomenon of post-division axonemal growth in trypanosomes. ACTA ACUST UNITED AC 2009; 66:24-35. [PMID: 19009637 DOI: 10.1002/cm.20322] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Eukaryotic cilia and flagella are highly conserved structures composed of a canonical 9+2 microtubule axoneme. Several recent proteomic studies of cilia and flagella have been published, including a proteome of the flagellum of the protozoan parasite Trypanosoma brucei. Comparing proteomes reveals many novel proteins that appear to be widely conserved in evolution. Amongst these, we found a previously uncharacterised protein which localised to the axoneme in T. brucei, and therefore named it Trypanosome Axonemal protein (TAX)-2. Ablation of the protein using RNA interference in the procyclic form of the parasite has no effect on growth but causes a reduction in motility. Using transmission electron microscopy, various structural defects were seen in some axonemes, most frequently with microtubule doublets missing from the 9+2 arrangement. RNAi knockdown of TAX-2 expression in the bloodstream form of the parasite caused defects in growth and cytokinesis, a further example of the effects caused by loss of flagellar function in bloodstream form T. brucei. In procyclic cells we used a new set of vectors to ablate protein expression in cells expressing a GFP:TAX-2 fusion protein, which enabled us to easily quantify protein reduction and visualise axonemes made before and after RNAi induction. This establishes a useful generic technique but also revealed a specific observation that the new flagellum on the daughter trypanosome continues growth after cytokinesis. Our results provide evidence for TAX-2 function within the axoneme, where we suggest that it is involved in processes linking the outer doublet microtubules and the central pair.
Collapse
Affiliation(s)
- Helen Farr
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, United Kingdom
| | | |
Collapse
|
49
|
Portman N, Lacomble S, Thomas B, McKean PG, Gull K. Combining RNA interference mutants and comparative proteomics to identify protein components and dependences in a eukaryotic flagellum. J Biol Chem 2009; 284:5610-9. [PMID: 19074134 PMCID: PMC2645819 DOI: 10.1074/jbc.m808859200] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Indexed: 01/23/2023] Open
Abstract
Eukaryotic flagella from organisms such as Trypanosoma brucei can be isolated and their protein components identified by mass spectrometry. Here we used a comparative approach utilizing two-dimensional difference gel electrophoresis and isobaric tags for relative and absolute quantitation to reveal protein components of flagellar structures via ablation by inducible RNA interference mutation. By this approach we identified 20 novel components of the paraflagellar rod (PFR). Using epitope tagging we validated a subset of these as being present within the PFR by immunofluorescence. Bioinformatic analysis of the PFR cohort reveals a likely calcium/calmodulin regulatory/signaling linkage between some components. We extended the RNA interference mutant/comparative proteomic analysis to individual novel components of our PFR proteome, showing that the approach has the power to reveal dependences between subgroups within the cohort.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Chromatography, Liquid
- DNA, Protozoan/genetics
- DNA, Protozoan/metabolism
- Electrophoresis, Gel, Two-Dimensional
- Flagella/genetics
- Flagella/metabolism
- Fluorescent Antibody Technique
- Proteomics
- Protozoan Proteins/antagonists & inhibitors
- Protozoan Proteins/genetics
- Protozoan Proteins/metabolism
- RNA Interference
- RNA, Protozoan/genetics
- RNA, Protozoan/metabolism
- RNA, Small Interfering/pharmacology
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Trypanosoma brucei brucei/genetics
- Trypanosoma brucei brucei/metabolism
Collapse
Affiliation(s)
- Neil Portman
- Sir William Dunn School of Pathology and Oxford Centre for Integrative Systems Biology, University of Oxford, South Parks Road, Oxford OX1 3RE, United Kingdom
| | | | | | | | | |
Collapse
|
50
|
Host-parasite interactions in trypanosomiasis: on the way to an antidisease strategy. Infect Immun 2009; 77:1276-84. [PMID: 19168735 DOI: 10.1128/iai.01185-08] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|