1
|
Grüneboom A, Aust O, Cibir Z, Weber F, Hermann DM, Gunzer M. Imaging innate immunity. Immunol Rev 2021; 306:293-303. [PMID: 34837251 DOI: 10.1111/imr.13048] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/26/2021] [Accepted: 11/11/2021] [Indexed: 12/23/2022]
Abstract
Innate immunity is the first line of defense against infectious intruders and also plays a major role in the development of sterile inflammation. Direct microscopic imaging of the involved immune cells, especially neutrophil granulocytes, monocytes, and macrophages, has been performed since more than 150 years, and we still obtain novel insights on a frequent basis. Initially, intravital microscopy was limited to small-sized animal species, which were often invertebrates. In this review, we will discuss recent results on the biology of neutrophils and macrophages that have been obtained using confocal and two-photon microscopy of individual cells or subcellular structures as well as light-sheet microscopy of entire organs. This includes the role of these cells in infection defense and sterile inflammation in mammalian disease models relevant for human patients. We discuss their protective but also disease-enhancing activities during tumor growth and ischemia-reperfusion damage of the heart and brain. Finally, we provide two visions, one experimental and one applied, how our knowledge on the function of innate immune cells might be further enhanced and also be used in novel ways for disease diagnostics in the future.
Collapse
Affiliation(s)
- Anika Grüneboom
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Dortmund, Germany
| | - Oliver Aust
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Dortmund, Germany
| | - Zülal Cibir
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Flora Weber
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Dortmund, Germany
| | - Dirk M Hermann
- Department of Neurology, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Matthias Gunzer
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Dortmund, Germany.,Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
2
|
Bain JM, Alonso MF, Childers DS, Walls CA, Mackenzie K, Pradhan A, Lewis LE, Louw J, Avelar GM, Larcombe DE, Netea MG, Gow NAR, Brown GD, Erwig LP, Brown AJP. Immune cells fold and damage fungal hyphae. Proc Natl Acad Sci U S A 2021; 118:e2020484118. [PMID: 33876755 PMCID: PMC8053999 DOI: 10.1073/pnas.2020484118] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Innate immunity provides essential protection against life-threatening fungal infections. However, the outcomes of individual skirmishes between immune cells and fungal pathogens are not a foregone conclusion because some pathogens have evolved mechanisms to evade phagocytic recognition, engulfment, and killing. For example, Candida albicans can escape phagocytosis by activating cellular morphogenesis to form lengthy hyphae that are challenging to engulf. Through live imaging of C. albicans-macrophage interactions, we discovered that macrophages can counteract this by folding fungal hyphae. The folding of fungal hyphae is promoted by Dectin-1, β2-integrin, VASP, actin-myosin polymerization, and cell motility. Folding facilitates the complete engulfment of long hyphae in some cases and it inhibits hyphal growth, presumably tipping the balance toward successful fungal clearance.
Collapse
Affiliation(s)
- Judith M Bain
- Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, AB25 2ZD Aberdeen, United Kingdom
| | - M Fernanda Alonso
- Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, AB25 2ZD Aberdeen, United Kingdom
| | - Delma S Childers
- Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, AB25 2ZD Aberdeen, United Kingdom
| | - Catriona A Walls
- Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, AB25 2ZD Aberdeen, United Kingdom
| | - Kevin Mackenzie
- Microscopy and Histology Facility, Institute of Medical Sciences, Foresterhill, AB25 2ZD Aberdeen, United Kingdom
| | - Arnab Pradhan
- Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, AB25 2ZD Aberdeen, United Kingdom
- Medical Research Council Centre for Medical Mycology, University of Exeter, EX4 4QD Exeter, United Kingdom
| | - Leanne E Lewis
- Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, AB25 2ZD Aberdeen, United Kingdom
| | - Johanna Louw
- Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, AB25 2ZD Aberdeen, United Kingdom
| | - Gabriela M Avelar
- Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, AB25 2ZD Aberdeen, United Kingdom
| | - Daniel E Larcombe
- Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, AB25 2ZD Aberdeen, United Kingdom
- Medical Research Council Centre for Medical Mycology, University of Exeter, EX4 4QD Exeter, United Kingdom
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6500HB Nijmegen, The Netherlands
- Department for Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, 53115 Bonn, Germany
| | - Neil A R Gow
- Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, AB25 2ZD Aberdeen, United Kingdom
- Medical Research Council Centre for Medical Mycology, University of Exeter, EX4 4QD Exeter, United Kingdom
| | - Gordon D Brown
- Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, AB25 2ZD Aberdeen, United Kingdom
- Medical Research Council Centre for Medical Mycology, University of Exeter, EX4 4QD Exeter, United Kingdom
| | - Lars P Erwig
- Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, AB25 2ZD Aberdeen, United Kingdom
- Johnson-Johnson Innovation, Europe, Middle East and Africa Innovation Centre, London W1G 0BG, United Kingdom
| | - Alistair J P Brown
- Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, AB25 2ZD Aberdeen, United Kingdom;
- Medical Research Council Centre for Medical Mycology, University of Exeter, EX4 4QD Exeter, United Kingdom
| |
Collapse
|
3
|
Liu X, Wu M, Wang M, Duan Y, Phan CU, Chen H, Tang G, Liu B. AIEgen-Lipid Conjugate for Rapid Labeling of Neutrophils and Monitoring of Their Behavior. Angew Chem Int Ed Engl 2021; 60:3175-3181. [PMID: 33084214 DOI: 10.1002/anie.202012594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/13/2020] [Indexed: 12/31/2022]
Abstract
Studies on neutrophil-based nanotherapeutic engineering have shown great potentials in treating infection and inflammation disorders. Conventional neutrophil labeling methods are time-consuming and often result in undesired contamination and activation since neutrophils are terminal-differentiated cells with a half-life span of only 7 h. A simple, fast, and biocompatible strategy to construct engineered neutrophils is highly desirable but remains difficult to achieve. In this study, we present an AIEgen-lipid conjugate, which can efficiently label harvested neutrophils in 30 s with no washing step required. This fast labeling method does not affect the activation and transmigration property of neutrophils, which has been successfully used to monitor neutrophil behaviors such as the chemotaxis process and migrating function towards inflammation sites both in vitro and in vivo, offering a tantalizing prospect for neutrophil-based nanotherapeutics studies.
Collapse
Affiliation(s)
- Xingang Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Min Wu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Meng Wang
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, 310003, China
| | - Yukun Duan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Chi Uyen Phan
- Department of Chemistry, Zhejiang University, Hangzhou, 310028, China
| | - Huan Chen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Guping Tang
- Department of Chemistry, Zhejiang University, Hangzhou, 310028, China
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| |
Collapse
|
4
|
Machata S, Sreekantapuram S, Hünniger K, Kurzai O, Dunker C, Schubert K, Krüger W, Schulze-Richter B, Speth C, Rambach G, Jacobsen ID. Significant Differences in Host-Pathogen Interactions Between Murine and Human Whole Blood. Front Immunol 2021; 11:565869. [PMID: 33519798 PMCID: PMC7843371 DOI: 10.3389/fimmu.2020.565869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 11/30/2020] [Indexed: 01/01/2023] Open
Abstract
Murine infection models are widely used to study systemic candidiasis caused by C. albicans. Whole-blood models can help to elucidate host-pathogens interactions and have been used for several Candida species in human blood. We adapted the human whole-blood model to murine blood. Unlike human blood, murine blood was unable to reduce fungal burden and more substantial filamentation of C. albicans was observed. This coincided with less fungal association with leukocytes, especially neutrophils. The lower neutrophil number in murine blood only partially explains insufficient infection and filamentation control, as spiking with murine neutrophils had only limited effects on fungal killing. Furthermore, increased fungal survival is not mediated by enhanced filamentation, as a filament-deficient mutant was likewise not eliminated. We also observed host-dependent differences for interaction of platelets with C. albicans, showing enhanced platelet aggregation, adhesion and activation in murine blood. For human blood, opsonization was shown to decrease platelet interaction suggesting that complement factors interfere with fungus-to-platelet binding. Our results reveal substantial differences between murine and human whole-blood models infected with C. albicans and thereby demonstrate limitations in the translatability of this ex vivo model between hosts.
Collapse
Affiliation(s)
- Silke Machata
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
| | - Sravya Sreekantapuram
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
| | - Kerstin Hünniger
- Research Group Fungal Septomics, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Oliver Kurzai
- Research Group Fungal Septomics, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Christine Dunker
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
| | - Katja Schubert
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
| | - Wibke Krüger
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
| | - Bianca Schulze-Richter
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
| | - Cornelia Speth
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Günter Rambach
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Ilse D. Jacobsen
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
- Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
5
|
Aguilar-Marcelino L, Al-Ani LKT, Freitas Soares FED, Moreira ALE, Téllez-Téllez M, Castañeda-Ramírez GS, Lourdes Acosta-Urdapilleta MD, Díaz-Godínez G, Pineda-Alegría JA. Formation, Resistance, and Pathogenicity of Fungal Biofilms: Current Trends and Future Challenges. Fungal Biol 2021. [DOI: 10.1007/978-3-030-60659-6_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
6
|
Liu X, Wu M, Wang M, Duan Y, Phan CU, Chen H, Tang G, Liu B. AIEgen‐Lipid Conjugate for Rapid Labeling of Neutrophils and Monitoring of Their Behavior. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202012594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xingang Liu
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Min Wu
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Meng Wang
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital Zhejiang University School of Medicine Hangzhou 310003 China
| | - Yukun Duan
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Chi Uyen Phan
- Department of Chemistry Zhejiang University Hangzhou 310028 China
| | - Huan Chen
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Guping Tang
- Department of Chemistry Zhejiang University Hangzhou 310028 China
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City, Fuzhou 350207 China
| |
Collapse
|
7
|
Abstract
Polymorphonuclear granulocytes (PMNs) are indispensable for controlling life-threatening fungal infections. In addition to various effector mechanisms, PMNs also produce extracellular vesicles (EVs). Their contribution to antifungal defense has remained unexplored. We reveal that the clinically important human-pathogenic fungus Aspergillus fumigatus triggers PMNs to release a distinct set of antifungal EVs (afEVs). Proteome analyses indicated that afEVs are enriched in antimicrobial proteins. The cargo and the release kinetics of EVs are modulated by the fungal strain confronted. Tracking of afEVs indicated that they associated with fungal cells and even entered fungal hyphae, resulting in alterations in the morphology of the fungal cell wall and dose-dependent antifungal effects. To assess as a proof of concept whether the antimicrobial proteins found in afEVs might contribute to growth inhibition of hyphae when present in the fungal cytoplasm, two human proteins enriched in afEVs, cathepsin G and azurocidin, were heterologously expressed in fungal hyphae. This led to reduced fungal growth relative to that of a control strain producing the human retinol binding protein 7. In conclusion, extracellular vesicles produced by neutrophils in response to A. fumigatus infection are able to associate with the fungus, limit growth, and elicit cell damage by delivering antifungal cargo. This finding offers an intriguing, previously overlooked mechanism of antifungal defense against A. fumigatus IMPORTANCE Invasive fungal infections caused by the mold Aspergillus fumigatus are a growing concern in the clinic due to the increasing use of immunosuppressive therapies and increasing antifungal drug resistance. These infections result in high rates of mortality, as treatment and diagnostic options remain limited. In healthy individuals, neutrophilic granulocytes are critical for elimination of A. fumigatus from the host; however, the exact extracellular mechanism of neutrophil-mediated antifungal activity remains unresolved. Here, we present a mode of antifungal defense employed by human neutrophils against A. fumigatus not previously described. We found that extracellular vesicles produced by neutrophils in response to A. fumigatus infection are able to associate with the fungus, limit growth, and elicit cell damage by delivering antifungal cargo. In the end, antifungal extracellular vesicle biology provides a significant step forward in our understanding of A. fumigatus host pathogenesis and opens up novel diagnostic and therapeutic possibilities.
Collapse
|
8
|
Peroumal D, Manohar K, Patel SK, Kumari P, Sahu SR, Acharya N. Virulence and pathogenicity of a Candida albicans mutant with reduced filamentation. Cell Microbiol 2019; 21:e13103. [PMID: 31424154 DOI: 10.1111/cmi.13103] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 07/26/2019] [Accepted: 08/13/2019] [Indexed: 01/10/2023]
Abstract
Deletion of DNA polymerase eta (Rad30/Polη) in pathogenic yeast Candida albicans is known to reduce filamentation induced by serum, ultraviolet, and cisplatin. Because nonfilamentous C. albicans is widely accepted as avirulent form, here we explored the virulence and pathogenicity of a rad30Δ strain of C. albicans in cell-based and animal systems. Flow cytometry of cocultured fungal and differentiated macrophage cells revealed that comparatively higher percentage of macrophages was associated with the wild-type than rad30Δ cells. In contrast, higher number of Polη-deficient C. albicans adhered per macrophage membrane. Imaging flow cytometry showed that the wild-type C. albicans developed hyphae after phagocytosis that caused necrotic death of macrophages to evade their clearance. Conversely, phagosomes kill the fungal cells as estimated by increased metacaspase activity in wild-type C. albicans. Despite the morphological differences, both wild-type and rad30∆ C. albicans were virulent with a varying degree of pathogenicity in mice models. Notably, mice with Th1 immunity were comparatively less susceptible to systemic fungal infection than Th2 type. Thus, our study clearly suggests that the modes of interaction of morphologically different C. albicans strains with the host immune cells are diverged, and host genetic background and several other attributing factors of the fungus could additionally determine their virulence.
Collapse
Affiliation(s)
- Doureradjou Peroumal
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Kodavati Manohar
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Shraddheya Kumar Patel
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Premlata Kumari
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Satya Ranjan Sahu
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Narottam Acharya
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| |
Collapse
|
9
|
|
10
|
Teschner D, Cholaszczyńska A, Ries F, Beckert H, Theobald M, Grabbe S, Radsak M, Bros M. CD11b Regulates Fungal Outgrowth but Not Neutrophil Recruitment in a Mouse Model of Invasive Pulmonary Aspergillosis. Front Immunol 2019; 10:123. [PMID: 30778357 PMCID: PMC6369709 DOI: 10.3389/fimmu.2019.00123] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 01/15/2019] [Indexed: 12/28/2022] Open
Abstract
ß2 integrin receptors consist of an alpha subunit (CD11a-CD11d) and CD18 as the common beta subunit, and are differentially expressed by leukocytes. ß2 integrins are required for cell-cell interaction, transendothelial migration, uptake of opsonized pathogens, and cell signaling processes. Functional loss of CD18—termed leukocyte-adhesion deficiency type 1 (LAD1)—results in an immunocompromised state characterized by frequent occurrence of severe infections. In immunosuppressed individuals Aspergillus fumigatus is a frequent cause of invasive pulmonary fungal infection, and often occurs in patients suffering from LAD1. Here, we asked for the importance of CD11b/CD18 also termed MAC-1 which is required for phagocytosis of opsonized A. fumigatus conidia by polymorphonuclear neutrophils (PMN) for control of pulmonary A. fumigatus infection. We show that CD11b−/− mice infected with A. fumigatus were unaffected in long term survival, similar to wild type (WT) mice. However, bronchoalveolar lavage (BAL) performed 1 day after infection revealed a higher lung infiltration of PMN in case of infected CD11b−/− mice than observed for WT mice. BAL derived from infected CD11b−/− mice also contained a higher amount of leukocyte-attracting CCL5 chemokine, but lower amounts of proinflammatory innate cytokines. In accordance, lung tissue of A. fumigatus infected CD11b−/− mice was characterized by lower cellular inflammation, and a higher fungal burden. In agreement, CD11b−/−PMN exerted lower phagocytic activity on serum-opsonized A. fumigatus conidia than WT PMN in vitro. Our study shows that MAC-1 is required for effective clearance of A. fumigatus by infiltrating PMN, and the establishment of an inflammatory microenvironment in infected lung. Enhanced infiltration of CD11b−/− PMN may serve to compensate impaired PMN function.
Collapse
Affiliation(s)
- Daniel Teschner
- Department of Hematology, Medical Oncology and Pneumology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Anna Cholaszczyńska
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Frederic Ries
- Department of Hematology, Medical Oncology and Pneumology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Hendrik Beckert
- Department of Pulmonary Medicine, University Medical Center Essen-Ruhrlandklinik, Essen, Germany
| | - Matthias Theobald
- Department of Hematology, Medical Oncology and Pneumology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Stephan Grabbe
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Markus Radsak
- Department of Hematology, Medical Oncology and Pneumology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Matthias Bros
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
11
|
Schuster M, Moeller M, Bornemann L, Bessen C, Sobczak C, Schmitz S, Witjes L, Kruithoff K, Kohn C, Just O, Kündgen A, Pundt N, Pelzer B, Ampe C, Van Troys M, Nusch A, Haas R, Germing U, Martens L, Jöckel KH, Gunzer M. Surveillance of Myelodysplastic Syndrome via Migration Analyses of Blood Neutrophils: A Potential Prognostic Tool. THE JOURNAL OF IMMUNOLOGY 2018; 201:3546-3557. [PMID: 30446567 DOI: 10.4049/jimmunol.1801071] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 10/16/2018] [Indexed: 11/19/2022]
Abstract
Autonomous migration is a central characteristic of immune cells, and changes in this function have been correlated to the progression and severity of diseases. Hence, the identification of pathologically altered leukocyte migration patterns might be a promising approach for disease surveillance and prognostic scoring. However, because of the lack of standardized and robust assays, migration patterns have not been clinically exploited so far. In this study, we introduce an easy-to-use and cross-laboratory, standardized two-dimensional migration assay for neutrophil granulocytes from peripheral blood. By combining time-lapse video microscopy and automated cell tracking, we calculated the average migration of neutrophils from 111 individual participants of the German Heinz Nixdorf Recall MultiGeneration study under steady-state, formyl-methionyl-leucyl-phenylalanine-, CXCL1-, and CXCL8-stimulated conditions. Comparable values were obtained in an independent laboratory from a cohort in Belgium, demonstrating the robustness and transferability of the assay. In a double-blinded retrospective clinical analysis, we found that neutrophil migration strongly correlated with the Revised International Prognostic Scoring System scoring and risk category of myelodysplastic syndrome (MDS) patients. In fact, patients suffering from high-risk subtypes MDS with excess blasts I or II displayed highly significantly reduced neutrophil migration. Hence, the determination of neutrophil migration patterns might represent a useful tool in the surveillance of MDS. Taken together, we suggest that standardized migration assays of neutrophils and other leukocyte subtypes might be broadly applicable as prognostic and surveillance tools for MDS and potentially for other diseases.
Collapse
Affiliation(s)
- Marc Schuster
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, 45147 Essen, Germany
| | - Mischa Moeller
- Department of Hematology, Oncology and Clinical Immunology, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Lea Bornemann
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, 45147 Essen, Germany
| | - Clara Bessen
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, 45147 Essen, Germany
| | - Charlyn Sobczak
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, 45147 Essen, Germany
| | - Saskia Schmitz
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, 45147 Essen, Germany
| | - Laura Witjes
- Department of Biochemistry, Ghent University, 9000 Ghent, Belgium
| | - Katja Kruithoff
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, 45147 Essen, Germany
| | - Christina Kohn
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, 45147 Essen, Germany
| | - Olga Just
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, 45147 Essen, Germany
| | - Andrea Kündgen
- Department of Hematology, Oncology and Clinical Immunology, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Noreen Pundt
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital, University Duisburg-Essen, 45147 Essen, Germany
| | - Benedikt Pelzer
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, 45147 Essen, Germany
| | - Christophe Ampe
- Department of Biochemistry, Ghent University, 9000 Ghent, Belgium
| | | | - Arnd Nusch
- Onkologische Praxis Velbert, 40822 Mettmann, Germany; and
| | - Rainer Haas
- Department of Hematology, Oncology and Clinical Immunology, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Ulrich Germing
- Department of Hematology, Oncology and Clinical Immunology, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Lennart Martens
- Department of Biochemistry, Ghent University, 9000 Ghent, Belgium.,VIB-UGent Center for Medical Biotechnology, Ghent University, 9000 Ghent, Belgium
| | - Karl-Heinz Jöckel
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital, University Duisburg-Essen, 45147 Essen, Germany
| | - Matthias Gunzer
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, 45147 Essen, Germany;
| |
Collapse
|
12
|
Francis EA, Heinrich V. Mechanistic Understanding of Single-Cell Behavior is Essential for Transformative Advances in Biomedicine. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2018; 91:279-289. [PMID: 30258315 PMCID: PMC6153630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Most current efforts to advance medical technology proceed along one of two tracks. The first is dedicated to the improvement of clinical tasks through the incremental refinement of medical instruments. The second comprises engineering endeavors to support basic science studies that often only remotely relate to human medicine. Here we survey emerging research approaches that aim to populate the sprawling frontier between these tracks. We focus on interdisciplinary single-live-cell techniques that have overcome limitations of traditional biological methods to successfully address vital questions about medically relevant cellular behavior. Most of the presented case studies are based on the controlled manipulation of nonadherent human immune cells using one or more micropipettes. The included studies have (i) examined one-on-one encounters of immune cells with real or model pathogens, (ii) assessed the physiological role of the expandable surface area of immune cells, and (iii) started to dissect the spatiotemporal organization of signaling processes within these cells. The unique aptitude of such single-live-cell studies to fill conspicuous gaps in our quantitative understanding of medically relevant cause-effect relationships provides a sound basis for new insights that will inform and drive future biomedical innovation.
Collapse
Affiliation(s)
| | - Volkmar Heinrich
- To whom all correspondence should be addressed: Volkmar Heinrich, Department of Biomedical Engineering, University of California, Davis, 451 Health Sciences Drive, Davis, CA 95616; Tel: 530-754-6644,
| |
Collapse
|
13
|
Overton NLD, Brakhage AA, Thywißen A, Denning DW, Bowyer P. Mutations in EEA1 are associated with allergic bronchopulmonary aspergillosis and affect phagocytosis of Aspergillus fumigatus by human macrophages. PLoS One 2018; 13:e0185706. [PMID: 29547649 PMCID: PMC5856258 DOI: 10.1371/journal.pone.0185706] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 09/18/2017] [Indexed: 01/05/2023] Open
Abstract
Allergic bronchopulmonary aspergillosis (ABPA) in asthma is a severe, life-affecting disease that potentially affects over 4.8 million people globally. In the UK, ABPA is predominantly caused by the fungus Aspergillus fumigatus. Phagocytosis is important in clearance of this fungus, and Early Endosome Antigen 1 (EEA1) has been demonstrated to be involved in phagocytosis of fungi. We sought to investigate the role of EEA1 mutations and phagocytosis in ABPA. We used exome sequencing to identify variants in EEA1 associated with ABPA. We then cultured monocyte-derived macrophages (MDMs) from 17 ABPA subjects with A. fumigatus conidia, and analyzed phagocytosis and phagolysosome acidification in relation to the presence of these variants. We found that variants in EEA1 were associated with ABPA and with the rate of phagocytosis of A. fumigatus conidia and the acidification of phagolysosomes. MDMs from ABPA subjects carrying the disease associated genotype showed increased acidification and phagocytosis compared to those from ABPA subjects carrying the non-associated genotypes or healthy controls.The identification of ABPA-associated variants in EEA that have functional effects on MDM phagocytosis and phagolysosome acidification of A. fumigatus conidia revolutionizes our understanding of susceptibility to this disease, which may in future benefit patients by earlier identification or improved treatments. We suggest that the increased phagocytosis and acidification observed demonstrates an over-active MDM profile in these patients, resulting in an exaggerated cellular response to the presence of A. fumigatus in the airways.
Collapse
Affiliation(s)
- Nicola L. D. Overton
- Manchester Fungal Infection Group (MFIG), Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Axel A. Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
- Department of Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Andreas Thywißen
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
- Department of Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - David W. Denning
- Manchester Fungal Infection Group (MFIG), Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- The National Aspergillosis Centre, University Hospital of South Manchester NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Paul Bowyer
- Manchester Fungal Infection Group (MFIG), Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- * E-mail:
| |
Collapse
|
14
|
Siegmund L, Schweikert M, Fischer MS, Wöstemeyer J. Bacterial Surface Traits Influence Digestion by Tetrahymena pyriformis and Alter Opportunity to Escape from Food Vacuoles. J Eukaryot Microbiol 2018; 65:600-611. [PMID: 29377516 DOI: 10.1111/jeu.12504] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 12/15/2017] [Accepted: 01/18/2018] [Indexed: 01/02/2023]
Abstract
Endosymbiotic interactions are frequently found in nature, especially in the group of protists. Even though many endosymbioses have been studied in detail, little is known about the mechanistic origins and physiological prerequisites of endosymbiont establishment. A logical step towards the development of endocytobiotic associations is evading digestion and escaping from the host's food vacuoles. Surface properties of bacteria are probably involved in these processes. Therefore, we chemically modified the surface of a transformant strain of Escherichia coli prior to feeding to Tetrahymena pyriformis. N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide allows any substance carrying amino- or carboxyl groups to be bound covalently to the bacterial surface by forming a peptide bond, thus, altering its properties biochemically and biophysically in a predictable manner. The effect of different traits on digestion of T. pyriformis was examined by fluorescence and transmission electron microscopy. The efficiency of digestion differs considerably depending on the coupled substances. Alkaline substances inhibit digestion partially, resulting in incomplete digestion and slightly enhanced escape rates. Increasing hydrophobicity leads to much higher escape frequencies. Both results point to possible mechanisms employed by pathogenic bacteria or potential endosymbionts in evading digestion and transmission to the host's cytoplasm.
Collapse
Affiliation(s)
- Lisa Siegmund
- Lehrstuhl für Allgemeine Mikrobiologie und Mikrobengenetik, Friedrich-Schiller-Universität Jena, Neugasse 24, Jena, D-07743, Germany
| | - Michael Schweikert
- Institut für Biomaterialien und Biomolekulare Systeme - Abteilung Biobasierte Materialien, Universität Stuttgart, Pfaffenwaldring 57, Stuttgart, D-70569, Germany
| | - Martin S Fischer
- Institut für Spezielle Zoologie und Evolutionsbiologie mit Phyletischem Museum, Friedrich-Schiller-Universität Jena, Erbertstr. 1, Jena, D-07743, Germany
| | - Johannes Wöstemeyer
- Lehrstuhl für Allgemeine Mikrobiologie und Mikrobengenetik, Friedrich-Schiller-Universität Jena, Neugasse 24, Jena, D-07743, Germany
| |
Collapse
|
15
|
Muthinja JM, Ripp J, Krüger T, Imle A, Haraszti T, Fackler OT, Spatz JP, Engstler M, Frischknecht F. Tailored environments to study motile cells and pathogens. Cell Microbiol 2018; 20. [PMID: 29316156 DOI: 10.1111/cmi.12820] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/11/2017] [Accepted: 01/02/2018] [Indexed: 12/13/2022]
Abstract
Motile cells and pathogens migrate in complex environments and yet are mostly studied on simple 2D substrates. In order to mimic the diverse environments of motile cells, a set of assays including substrates of defined elasticity, microfluidics, micropatterns, organotypic cultures, and 3D gels have been developed. We briefly introduce these and then focus on the use of micropatterned pillar arrays, which help to bridge the gap between 2D and 3D. These structures are made from polydimethylsiloxane, a moldable plastic, and their use has revealed new insights into mechanoperception in Caenorhabditis elegans, gliding motility of Plasmodium, swimming of trypanosomes, and nuclear stability in cancer cells. These studies contributed to our understanding of how the environment influences the respective cell and inform on how the cells adapt to their natural surroundings on a cellular and molecular level.
Collapse
Affiliation(s)
- Julianne Mendi Muthinja
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University, Heidelberg, Germany
| | - Johanna Ripp
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University, Heidelberg, Germany
| | - Timothy Krüger
- Department of Cell and Developmental Biology, Biocenter, Würzburg University, Würzburg, Germany
| | - Andrea Imle
- Integrative Virology, Center for Infectious Diseases, Heidelberg University, Heidelberg, Germany
| | - Tamás Haraszti
- Department of Cellular Biophysics, Max Planck Institute for Medical Research and Institute of Physical Chemistry, Heidelberg University, Heidelberg, Germany.,Deutsches Wollforschungsinstitut-Leibniz Institute for Interactive Materials, Aachen, Germany
| | - Oliver T Fackler
- Integrative Virology, Center for Infectious Diseases, Heidelberg University, Heidelberg, Germany
| | - Joachim P Spatz
- Department of Cellular Biophysics, Max Planck Institute for Medical Research and Institute of Physical Chemistry, Heidelberg University, Heidelberg, Germany
| | - Markus Engstler
- Department of Cell and Developmental Biology, Biocenter, Würzburg University, Würzburg, Germany
| | - Friedrich Frischknecht
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
16
|
Kernien JF, Snarr BD, Sheppard DC, Nett JE. The Interface between Fungal Biofilms and Innate Immunity. Front Immunol 2018; 8:1968. [PMID: 29375581 PMCID: PMC5767580 DOI: 10.3389/fimmu.2017.01968] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 12/19/2017] [Indexed: 01/17/2023] Open
Abstract
Fungal biofilms are communities of adherent cells surrounded by an extracellular matrix. These biofilms are commonly found during infection caused by a variety of fungal pathogens. Clinically, biofilm infections can be extremely difficult to eradicate due to their resistance to antifungals and host defenses. Biofilm formation can protect fungal pathogens from many aspects of the innate immune system, including killing by neutrophils and monocytes. Altered immune recognition during this phase of growth is also evident by changes in the cytokine profiles of monocytes and macrophages exposed to biofilm. In this manuscript, we review the host response to fungal biofilms, focusing on how these structures are recognized by the innate immune system. Biofilms formed by Candida, Aspergillus, and Cryptococcus have received the most attention and are highlighted. We describe common themes involved in the resilience of fungal biofilms to host immunity and give examples of biofilm defenses that are pathogen-specific.
Collapse
Affiliation(s)
- John F Kernien
- Department of Medicine, University of Wisconsin, Madison, WI, United States
| | - Brendan D Snarr
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Donald C Sheppard
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada.,Department of Medicine, McGill University, Montreal, QC, Canada
| | - Jeniel E Nett
- Department of Medicine, University of Wisconsin, Madison, WI, United States.,Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI, United States
| |
Collapse
|
17
|
Gresnigt MS, Becker KL, Leenders F, Alonso MF, Wang X, Meis JF, Bain JM, Erwig LP, van de Veerdonk FL. Differential Kinetics of Aspergillus nidulans and Aspergillus fumigatus Phagocytosis. J Innate Immun 2017; 10:145-160. [PMID: 29248928 DOI: 10.1159/000484562] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 10/25/2017] [Indexed: 01/10/2023] Open
Abstract
Invasive aspergillosis mainly occurs in immunocompromised patients and is commonly caused by Aspergillus fumigatus, while A.nidulans is rarely the causative agent. However, in chronic granulomatous disease (CGD) patients, A. nidulans is a frequent cause of invasive aspergillosis and is associated with higher mortality. Immune recognition of A. nidulans was compared to A. fumigatus to offer an insight into why A. nidulans infections are prevalent in CGD. Live cell imaging with J774A.1 macrophage-like cells and LC3-GFP-mCherry bone marrow-derived macrophages (BMDMs) revealed that phagocytosis of A. nidulans was slower compared to A. fumigatus. This difference could be attributed to slower migration of J774A.1 cells and a lower percentage of migrating BMDMs. In addition, delayed phagosome acidification and LC3-associated phagocytosis was observed with A. nidulans. Cytokine and oxidative burst measurements in human peripheral blood mononuclear cells revealed a lower oxidative burst upon challenge with A. nidulans. In contrast, A. nidulans induced significantly higher concentrations of cytokines. Collectively, our data demonstrate that A. nidulans is phagocytosed and processed at a slower rate compared to A. fumigatus, resulting in reduced fungal killing and increased germination of conidia. This slower rate of A. nidulans clearance may be permissive for overgrowth within certain immune settings.
Collapse
Affiliation(s)
- Mark S Gresnigt
- Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Novohradská S, Ferling I, Hillmann F. Exploring Virulence Determinants of Filamentous Fungal Pathogens through Interactions with Soil Amoebae. Front Cell Infect Microbiol 2017; 7:497. [PMID: 29259922 PMCID: PMC5723301 DOI: 10.3389/fcimb.2017.00497] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 11/20/2017] [Indexed: 01/15/2023] Open
Abstract
Infections with filamentous fungi are common to all animals, but attention is rising especially due to the increasing incidence and high mortality rates observed in immunocompromised human individuals. Here, Aspergillus fumigatus and other members of its genus are the leading causative agents. Attributes like their saprophytic life-style in various ecological niches coupled with nutritional flexibility and a broad host range have fostered the hypothesis that environmental predators could have been the actual target for some of their virulence determinants. In this mini review, we have merged the recent findings focused on the potential dual-use of fungal defense strategies against innate immune cells and soil amoebae as natural phagocytes. Well-established virulence attributes like the melanized surface of fungal conidia or their capacity to produce toxic secondary metabolites have also been found to be protective against the model amoeba Dictyostelium discoideum. Some of the recent advances during interaction studies with human cells have further promoted the adaptation of other amoeba infection models, including the wide-spread generalist Acanthamoeba castellanii, or less prominent representatives like Vermamoeba vermiformis. We further highlight prospects and limits of these natural phagocyte models with regard to the infection biology of filamentous fungi and in comparison to the phagocytes of the innate immune system.
Collapse
Affiliation(s)
- Silvia Novohradská
- Evolution of Microbial Interactions, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
- Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Iuliia Ferling
- Evolution of Microbial Interactions, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
- Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Falk Hillmann
- Evolution of Microbial Interactions, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
| |
Collapse
|
19
|
Tóth EJ, Boros É, Hoffmann A, Szebenyi C, Homa M, Nagy G, Vágvölgyi C, Nagy I, Papp T. Interaction of THP-1 Monocytes with Conidia and Hyphae of Different Curvularia Strains. Front Immunol 2017; 8:1369. [PMID: 29093719 PMCID: PMC5651265 DOI: 10.3389/fimmu.2017.01369] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 10/05/2017] [Indexed: 01/02/2023] Open
Abstract
Interaction of the human monocytic cell line, THP-1 with clinical isolates of three Curvularia species were examined. Members of this filamentous fungal genus can cause deep mycoses emerging in both immunocompromised and immunocompetent patients. It was found that monocytes reacted only to the hyphal form of Curvularia lunata. Cells attached to the germ tubes and hyphae and production of elevated levels of interleukin (IL)-8 and IL-10 and a low level of TNF-α were measured. At the same time, monocytes failed to produce IL-6. This monocytic response, especially with the induction of the anti-inflammatory IL-10, correlates well to the observation that C. lunata frequently cause chronic infections even in immunocompetent persons. Despite the attachment to the hyphae, monocytes could not reduce the viability of the fungus and the significant decrease in the relative transcript level of HLA-DRA assumes the lack of antigen presentation of the fungus by this cell type. C. spicifera and C. hawaiiensis failed to induce the gathering of the cells or the production of any analyzed cytokines. Monocytes did not recognize conidia of Curvularia species, even when melanin was lacking in their cell wall.
Collapse
Affiliation(s)
- Eszter Judit Tóth
- MTA-SZTE Fungal Pathogenicity Mechanisms Research Group, Hungarian Academy of Sciences, University of Szeged, Szeged, Hungary.,Faculty of Science and Informatics, Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Éva Boros
- Hungarian Academy of Sciences, Biological Research Centre, Szeged, Hungary
| | - Alexandra Hoffmann
- Faculty of Science and Informatics, Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Csilla Szebenyi
- MTA-SZTE Fungal Pathogenicity Mechanisms Research Group, Hungarian Academy of Sciences, University of Szeged, Szeged, Hungary.,Faculty of Science and Informatics, Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Mónika Homa
- MTA-SZTE Fungal Pathogenicity Mechanisms Research Group, Hungarian Academy of Sciences, University of Szeged, Szeged, Hungary.,Faculty of Science and Informatics, Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Gábor Nagy
- MTA-SZTE Fungal Pathogenicity Mechanisms Research Group, Hungarian Academy of Sciences, University of Szeged, Szeged, Hungary
| | - Csaba Vágvölgyi
- Faculty of Science and Informatics, Department of Microbiology, University of Szeged, Szeged, Hungary
| | - István Nagy
- Hungarian Academy of Sciences, Biological Research Centre, Szeged, Hungary
| | - Tamás Papp
- MTA-SZTE Fungal Pathogenicity Mechanisms Research Group, Hungarian Academy of Sciences, University of Szeged, Szeged, Hungary.,Faculty of Science and Informatics, Department of Microbiology, University of Szeged, Szeged, Hungary
| |
Collapse
|
20
|
Seddigh P, Bracht T, Molinier-Frenkel V, Castellano F, Kniemeyer O, Schuster M, Weski J, Hasenberg A, Kraus A, Poschet G, Hager T, Theegarten D, Opitz CA, Brakhage AA, Sitek B, Hasenberg M, Gunzer M. Quantitative Analysis of Proteome Modulations in Alveolar Epithelial Type II Cells in Response to Pulmonary Aspergillus fumigatus Infection. Mol Cell Proteomics 2017; 16:2184-2198. [PMID: 28951444 DOI: 10.1074/mcp.ra117.000072] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Indexed: 12/14/2022] Open
Abstract
The ubiquitous mold Aspergillus fumigatus threatens immunosuppressed patients as inducer of lethal invasive aspergillosis. A. fumigatus conidia are airborne and reach the alveoli, where they encounter alveolar epithelial cells (AEC). Previous studies reported the importance of the surfactant-producing AEC II during A. fumigatus infection via in vitro experiments using cell lines. We established a negative isolation protocol yielding untouched primary murine AEC II with a purity >90%, allowing ex vivo analyses of the cells, which encountered the mold in vivo By label-free proteome analysis of AEC II isolated from mice 24h after A. fumigatus or mock infection we quantified 2256 proteins and found 154 proteins to be significantly differentially abundant between both groups (ANOVA p value ≤ 0.01, ratio of means ≥1.5 or ≤0.67, quantified with ≥2 peptides). Most of these proteins were higher abundant in the infected condition and reflected a comprehensive activation of AEC II on interaction with A. fumigatus This was especially represented by proteins related to oxidative phosphorylation, hence energy production. However, the most strongly induced protein was the l-amino acid oxidase (LAAO) Interleukin 4 induced 1 (IL4I1) with a 42.9 fold higher abundance (ANOVA p value 2.91-10). IL4I1 has previously been found in B cells, macrophages, dendritic cells and rare neurons. Increased IL4I1 abundance in AEC II was confirmed by qPCR, Western blot and immunohistology. Furthermore, A. fumigatus infected lungs showed high levels of IL4I1 metabolic products. Importantly, higher IL4I1 abundance was also confirmed in lung tissue from human aspergilloma. Because LAAO are key enzymes for bactericidal product generation, AEC II might actively participate in pathogen defense. We provide insights into proteome changes of primary AEC II thereby opening new avenues to analyze the molecular changes of this central lung cell on infectious threats. Data are available via ProteomeXchange with identifier PXD005834.
Collapse
Affiliation(s)
- Pegah Seddigh
- From the ‡University Duisburg-Essen, University Hospital, Institute for Experimental Immunology and Imaging, 45147 Essen; Germany
| | - Thilo Bracht
- ¶Ruhr-Universität Bochum, Medizinisches Proteom-Center, 44801 Bochum, Germany
| | | | - Flavia Castellano
- **INSERM U955, Equipe 09, UMR_S955, UPEC, APHP, Hôpital H Mondor, Créteil, France
| | - Olaf Kniemeyer
- ‖Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institutes (HKI), Department of Molecular and Applied Microbiology, Jena, 07745 Jena, Germany
| | - Marc Schuster
- From the ‡University Duisburg-Essen, University Hospital, Institute for Experimental Immunology and Imaging, 45147 Essen; Germany
| | - Juliane Weski
- From the ‡University Duisburg-Essen, University Hospital, Institute for Experimental Immunology and Imaging, 45147 Essen; Germany
| | - Anja Hasenberg
- From the ‡University Duisburg-Essen, University Hospital, Institute for Experimental Immunology and Imaging, 45147 Essen; Germany
| | - Andreas Kraus
- From the ‡University Duisburg-Essen, University Hospital, Institute for Experimental Immunology and Imaging, 45147 Essen; Germany
| | - Gernot Poschet
- §§Centre for Organismal Studies (COS), University of Heidelberg, Heidelberg, Germany
| | - Thomas Hager
- ¶¶University Duisburg-Essen, University Hospital, Institute for Pathology, 45147 Essen, Germany
| | - Dirk Theegarten
- ¶¶University Duisburg-Essen, University Hospital, Institute for Pathology, 45147 Essen, Germany
| | - Christiane A Opitz
- ‡‡German Cancer Research Center (DKFZ), Junior Group Brain Cancer Metabolism (G161), 69120 Heidelberg, Germany
| | - Axel A Brakhage
- ‖Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institutes (HKI), Department of Molecular and Applied Microbiology, Jena, 07745 Jena, Germany
| | - Barbara Sitek
- ¶Ruhr-Universität Bochum, Medizinisches Proteom-Center, 44801 Bochum, Germany;
| | - Mike Hasenberg
- §University Duisburg-Essen, University Hospital, Imaging Center Essen (IMCES), Electron Microscopy Unit, 45147 Essen, Germany;
| | - Matthias Gunzer
- From the ‡University Duisburg-Essen, University Hospital, Institute for Experimental Immunology and Imaging, 45147 Essen; Germany;
| |
Collapse
|
21
|
Ellett F, Jorgensen J, Frydman GH, Jones CN, Irimia D. Neutrophil Interactions Stimulate Evasive Hyphal Branching by Aspergillus fumigatus. PLoS Pathog 2017; 13:e1006154. [PMID: 28076396 PMCID: PMC5261818 DOI: 10.1371/journal.ppat.1006154] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/24/2017] [Accepted: 12/28/2016] [Indexed: 12/23/2022] Open
Abstract
Invasive aspergillosis (IA), primarily caused by Aspergillus fumigatus, is an opportunistic fungal infection predominantly affecting immunocompromised and neutropenic patients that is difficult to treat and results in high mortality. Investigations of neutrophil-hypha interaction in vitro and in animal models of IA are limited by lack of temporal and spatial control over interactions. This study presents a new approach for studying neutrophil-hypha interaction at single cell resolution over time, which revealed an evasive fungal behavior triggered by interaction with neutrophils: Interacting hyphae performed de novo tip formation to generate new hyphal branches, allowing the fungi to avoid the interaction point and continue invasive growth. Induction of this mechanism was independent of neutrophil NADPH oxidase activity and neutrophil extracellular trap (NET) formation, but could be phenocopied by iron chelation and mechanical or physiological stalling of hyphal tip extension. The consequence of branch induction upon interaction outcome depends on the number and activity of neutrophils available: In the presence of sufficient neutrophils branching makes hyphae more vulnerable to destruction, while in the presence of limited neutrophils the interaction increases the number of hyphal tips, potentially making the infection more aggressive. This has direct implications for infections in neutrophil-deficient patients and opens new avenues for treatments targeting fungal branching.
Collapse
Affiliation(s)
- Felix Ellett
- BioMEMS Resource Center, Division of Surgery, Innovation and Bioengineering, Department of Surgery, Massachusetts General Hospital, Shriners Burns Hospital, Harvard Medical School, Massachusetts, United States of America
| | - Julianne Jorgensen
- BioMEMS Resource Center, Division of Surgery, Innovation and Bioengineering, Department of Surgery, Massachusetts General Hospital, Shriners Burns Hospital, Harvard Medical School, Massachusetts, United States of America
| | - Galit H Frydman
- BioMEMS Resource Center, Division of Surgery, Innovation and Bioengineering, Department of Surgery, Massachusetts General Hospital, Shriners Burns Hospital, Harvard Medical School, Massachusetts, United States of America
- Division of Comparative Medicine, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Caroline N Jones
- BioMEMS Resource Center, Division of Surgery, Innovation and Bioengineering, Department of Surgery, Massachusetts General Hospital, Shriners Burns Hospital, Harvard Medical School, Massachusetts, United States of America
| | - Daniel Irimia
- BioMEMS Resource Center, Division of Surgery, Innovation and Bioengineering, Department of Surgery, Massachusetts General Hospital, Shriners Burns Hospital, Harvard Medical School, Massachusetts, United States of America
| |
Collapse
|
22
|
Depletion of Neutrophils Exacerbates the Early Inflammatory Immune Response in Lungs of Mice Infected with Paracoccidioides brasiliensis. Mediators Inflamm 2016; 2016:3183285. [PMID: 27642235 PMCID: PMC5015031 DOI: 10.1155/2016/3183285] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 06/30/2016] [Accepted: 07/25/2016] [Indexed: 01/06/2023] Open
Abstract
Neutrophils predominate during the acute phase of the Paracoccidioides brasiliensis infection. Herein, we determined the role of the neutrophil during the early stages of experimental pulmonary paracoccidioidomycosis using a monoclonal antibody (mAb) specific for neutrophils. Male BALB/c mice were inoculated intranasally with 1.5 × 106 or 2 × 106 P. brasiliensis yeast cells. The mAb was administered 24 h before infection, followed by doses every 48 h until mice were sacrificed. Survival time was evaluated and mice were sacrificed at 48 h and 96 h after inoculation to assess cellularity, fungal load, cytokine/chemokine levels, and histopathological analysis. Neutrophils from mAb-treated mice were efficiently depleted (99.04%). Eighty percent of the mice treated with the mAb and infected with 1.5 × 106 yeast cells died during the first two weeks after infection. When mice were treated and infected with 2 × 106 yeast cells, 100% of them succumbed by the first week after infection. During the acute inflammatory response significant increases in numbers of eosinophils, fungal load and levels of proinflammatory cytokines/chemokines were observed in the mAb-treated mice. We also confirmed that neutrophils are an important source of IFN-γ and IL-17. These results indicate that neutrophils are essential for protection as well as being important for regulating the early inflammatory immune response in experimental pulmonary paracoccidioidomycosis.
Collapse
|
23
|
Ben-Jacob E, Finkelshtein A, Ariel G, Ingham C. Multispecies Swarms of Social Microorganisms as Moving Ecosystems. Trends Microbiol 2016; 24:257-269. [DOI: 10.1016/j.tim.2015.12.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/16/2015] [Accepted: 12/21/2015] [Indexed: 10/22/2022]
|
24
|
Ingestion and digestion studies in Tetrahymena pyriformis based on chemically modified microparticles. Eur J Protistol 2015; 52:45-57. [PMID: 26687455 DOI: 10.1016/j.ejop.2015.11.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 11/02/2015] [Accepted: 11/21/2015] [Indexed: 11/23/2022]
Abstract
Recognition of food and, in consequence, ingestion of digestible particles is a prerequisite for energy metabolism in Tetrahymena pyriformis. Understanding why some particles are ingested and digested, whereas others are not, is important for many fields of research, e.g. survival of pathogens in single-celled organisms or establishment of endosymbiotic relationships. We offered T. pyriformis synthetical bovine-serum-albumin (BSA)-methacrylate microparticles of approximately 5.5 μm diameter and studied the ciliates' ingestion and digestion behaviour. Different staining techniques as well as co-feeding with a transformant strain of Escherichia coli revealed that T. pyriformis considers these particles as natural food source and shows no feeding preference. Further, they are ingested at normal rates and may serve as sole food source. A pivotal advantage of these particles is the convenient modification of their surface by binding different ligands resulting in defined surface properties. Ingestion rate of modified microparticles either increased (additional BSA, enzymes) or decreased (amino acids). Furthermore, we investigated glycosylation patterns by lectin binding. By binding different substances to the surface in combination with various staining techniques, we provide a versatile experimental tool for elucidating details on food recognition and digestion that may allow to study evading digestion by pathogens or potential endosymbionts, too.
Collapse
|
25
|
Jones CN, Dimisko L, Forrest K, Judice K, Poznansky MC, Markmann JF, Vyas JM, Irimia D. Human Neutrophils Are Primed by Chemoattractant Gradients for Blocking the Growth of Aspergillus fumigatus. J Infect Dis 2015; 213:465-75. [PMID: 26272935 DOI: 10.1093/infdis/jiv419] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 07/21/2015] [Indexed: 01/08/2023] Open
Abstract
The contribution of human neutrophils to the protection against fungal infections by Aspergillus fumigatus is essential but not fully understood. Whereas healthy people can inhale spores of A. fumigatus without developing disease, neutropenic patients and those receiving immunosuppressive drugs have a higher incidence of invasive fungal infections. To study the role of neutrophils in protection against A. fumigatus infections, we developed an in vitro assay in which the interactions between human neutrophils and A. fumigatus were observed in real time, at single-cell resolution, in precisely controlled conditions. We measured the outcomes of neutrophil-fungus interactions and found that human neutrophils have a limited ability to migrate toward A. fumigatus and block the growth of A. fumigatus conidia (proportion with growth blocked, 69%). The blocking ability of human neutrophils increased to 85.1% when they were stimulated by uniform concentrations of fMLP and was enhanced further, to 99.4%, in the presence of chemoattractant gradients. Neutrophils from patients receiving immunosuppressive treatment after transplantation were less effective against the fungus than those from healthy donors, and broader heterogeneity exists between patients, compared with healthy individuals. Further studies using this microfluidic platform will help understand the relevance of innate immune deficiencies responsible for the higher risk of fungal infections in patients with immunosuppressive disease.
Collapse
Affiliation(s)
| | | | | | | | - Mark C Poznansky
- Vaccine and Immunotherapy Center Division of Infectious Diseases, Massachusetts General Hospital and Harvard Medical School, Boston
| | | | - Jatin M Vyas
- Division of Infectious Diseases, Massachusetts General Hospital and Harvard Medical School, Boston
| | | |
Collapse
|
26
|
Lee CY, Thompson III GR, Hastey CJ, Hodge GC, Lunetta JM, Pappagianis D, Heinrich V. Coccidioides Endospores and Spherules Draw Strong Chemotactic, Adhesive, and Phagocytic Responses by Individual Human Neutrophils. PLoS One 2015; 10:e0129522. [PMID: 26070210 PMCID: PMC4466529 DOI: 10.1371/journal.pone.0129522] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 05/08/2015] [Indexed: 11/19/2022] Open
Abstract
Coccidioides spp. are dimorphic pathogenic fungi whose parasitic forms cause coccidioidomycosis (Valley fever) in mammalian hosts. We use an innovative interdisciplinary approach to analyze one-on-one encounters between human neutrophils and two forms of Coccidioides posadasii. To examine the mechanisms by which the innate immune system coordinates different stages of the host response to fungal pathogens, we dissect the immune-cell response into chemotaxis, adhesion, and phagocytosis. Our single-cell technique reveals a surprisingly strong response by initially quiescent neutrophils to close encounters with C. posadasii, both from a distance (by complement-mediated chemotaxis) as well as upon contact (by serum-dependent adhesion and phagocytosis). This response closely resembles neutrophil interactions with Candida albicans and zymosan particles, and is significantly stronger than the neutrophil responses to Cryptococcus neoformans, Aspergillus fumigatus, and Rhizopus oryzae under identical conditions. The vigorous in vitro neutrophil response suggests that C. posadasii evades in vivo recognition by neutrophils through suppression of long-range mobilization and recruitment of the immune cells. This observation elucidates an important paradigm of the recognition of microbes, i.e., that intact immunotaxis comprises an intricate spatiotemporal hierarchy of distinct chemotactic processes. Moreover, in contrast to earlier reports, human neutrophils exhibit vigorous chemotaxis toward, and frustrated phagocytosis of, the large spherules of C. posadasii under physiological-like conditions. Finally, neutrophils from healthy donors and patients with chronic coccidioidomycosis display subtle differences in their responses to antibody-coated beads, even though the patient cells appear to interact normally with C. posadasii endospores.
Collapse
Affiliation(s)
- Cheng-Yuk Lee
- Department of Biomedical Engineering, University of California Davis, Davis, California, United States of America
| | - George R. Thompson III
- Department of Medical Microbiology and Immunology, Coccidioidomycosis Serology Laboratory, University of California Davis, Davis, California, United States of America
- Department of Internal Medicine, Division of Infectious Diseases, University of California Davis Medical Center, Sacramento, California, United States of America
| | - Christine J. Hastey
- Department of Biomedical Engineering, University of California Davis, Davis, California, United States of America
| | - Gregory C. Hodge
- Department of Medical Microbiology and Immunology, Coccidioidomycosis Serology Laboratory, University of California Davis, Davis, California, United States of America
| | - Jennine M. Lunetta
- Department of Medical Microbiology and Immunology, Coccidioidomycosis Serology Laboratory, University of California Davis, Davis, California, United States of America
| | - Demosthenes Pappagianis
- Department of Medical Microbiology and Immunology, Coccidioidomycosis Serology Laboratory, University of California Davis, Davis, California, United States of America
| | - Volkmar Heinrich
- Department of Biomedical Engineering, University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
27
|
Catchup: a mouse model for imaging-based tracking and modulation of neutrophil granulocytes. Nat Methods 2015; 12:445-52. [DOI: 10.1038/nmeth.3322] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 01/19/2015] [Indexed: 12/18/2022]
|
28
|
Novel insights into host-fungal pathogen interactions derived from live-cell imaging. Semin Immunopathol 2014; 37:131-9. [PMID: 25398200 PMCID: PMC4326660 DOI: 10.1007/s00281-014-0463-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 11/04/2014] [Indexed: 12/20/2022]
Abstract
The theoretical physicist and Nobel laureate Richard Feynman outlined in his 1959 lecture, “There’s plenty of room at the bottom”, the enormous possibility of producing and visualising things at smaller scales. The advent of advanced scanning and transmission electron microscopy and high-resolution microscopy has begun to open the door to visualise host-pathogen interactions at smaller scales, and spinning disc confocal and two-photon microscopy has improved our ability to study these events in real time in three dimensions. The aim of this review is to illustrate some of the advances in understanding host-fungal interactions that have been made in recent years in particular those relating to the interactions of live fungal pathogens with phagocytes. Dynamic imaging of host-pathogen interactions has recently revealed novel detail and unsuspected mechanistic insights, facilitating the dissection of the phagocytic process into its component parts. Here, we will highlight advances in our knowledge of host-fungal pathogen interactions, including the specific effects of fungal cell viability, cell wall composition and morphogenesis on the phagocytic process and try to define the relative contributions of neutrophils and macrophages to the clearance of fungal pathogens in vitro and the infected host.
Collapse
|
29
|
Pollmächer J, Figge MT. Agent-based model of human alveoli predicts chemotactic signaling by epithelial cells during early Aspergillus fumigatus infection. PLoS One 2014; 9:e111630. [PMID: 25360787 PMCID: PMC4216106 DOI: 10.1371/journal.pone.0111630] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 10/02/2014] [Indexed: 12/22/2022] Open
Abstract
Aspergillus fumigatus is one of the most important human fungal pathogens, causing life-threatening diseases. Since humans inhale hundreds to thousands of fungal conidia every day, the lower respiratory tract is the primary site of infection. Current interaction networks of the innate immune response attribute fungal recognition and detection to alveolar macrophages, which are thought to be the first cells to get in contact with the fungus. At present, these networks are derived from in vitro or in situ assays, as the peculiar physiology of the human lung makes in vivo experiments, including imaging on the cell-level, hard to realize. We implemented a spatio-temporal agent-based model of a human alveolus in order to perform in silico experiments of a virtual infection scenario, for an alveolus infected with A. fumigatus under physiological conditions. The virtual analog captures the three-dimensional alveolar morphology consisting of the two major alveolar epithelial cell types and the pores of Kohn as well as the dynamic process of respiration. To the best of our knowledge this is the first agent-based model of a dynamic human alveolus in the presence of respiration. A key readout of our simulations is the first-passage-time of alveolar macrophages, which is the period of time that elapses until the first physical macrophage-conidium contact is established. We tested for random and chemotactic migration modes of alveolar macrophages and varied their corresponding parameter sets. The resulting first-passage-time distributions imply that randomly migrating macrophages fail to find the conidium before the start of germination, whereas guidance by chemotactic signals derived from the alveolar epithelial cell associated with the fungus enables a secure and successful discovery of the pathogen in time.
Collapse
Affiliation(s)
- Johannes Pollmächer
- Applied Systems Biology, Leibniz-Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
- Friedrich Schiller University, Jena, Germany
| | - Marc Thilo Figge
- Applied Systems Biology, Leibniz-Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
- Friedrich Schiller University, Jena, Germany
- * E-mail:
| |
Collapse
|
30
|
Lother J, Breitschopf T, Krappmann S, Morton CO, Bouzani M, Kurzai O, Gunzer M, Hasenberg M, Einsele H, Loeffler J. Human dendritic cell subsets display distinct interactions with the pathogenic mould Aspergillus fumigatus. Int J Med Microbiol 2014; 304:1160-8. [PMID: 25200858 DOI: 10.1016/j.ijmm.2014.08.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 08/07/2014] [Accepted: 08/10/2014] [Indexed: 11/29/2022] Open
Abstract
The mould Aspergillus fumigatus is primarily an opportunistic pathogen of immunocompromised patients. Once fungal spores have been inhaled they encounter cells of the innate immune system, which include dendritic cells (DCs). DCs are the key antigen-presenting cells of the immune system and distinct subtypes, which differ in terms of origin, morphology and function. This study has systematically compared the interactions between A. fumigatus and myeloid DCs (mDCs), plasmacytoid DCs (pDCs) and monocyte-derived DCs (moDCs). Analyses were performed by time-lapse video microscopy, scanning electron microscopy, plating assays, flow cytometry, 25-plex ELISA and transwell assays. The three subsets of DCs displayed distinct responses to the fungus with mDCs and moDCs showing the greatest similarities. mDCs and moDCs both produced rough convolutions and occasionally phagocytic cups upon exposure to A. fumigatus whereas pDCs maintained a smooth appearance. Both mDCs and moDCs phagocytosed conidia and germ tubes, while pDCs did not phagocytose any fungi. Analysis of cytokine release and maturation markers revealed specific differences in pro- and anti-inflammatory patterns between the different DC subsets. These distinct characteristics between the DC subsets highlight their differences and suggest specific roles of moDCs, mDCs and pDCs during their interaction with A. fumigatus in vivo.
Collapse
Affiliation(s)
- Jasmin Lother
- Laboratory WÜ4i, Medical Clinic and Policlinic II, University Clinic Würzburg, Würzburg, Germany
| | - Tanja Breitschopf
- Laboratory WÜ4i, Medical Clinic and Policlinic II, University Clinic Würzburg, Würzburg, Germany
| | - Sven Krappmann
- Microbiology Institute - Clinical Microbiology, Immunology and Hygiene, University Hospital Erlangen and Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - C Oliver Morton
- University of Western Sydney, School of Science and Health, Sydney, NSW, Australia
| | - Maria Bouzani
- Laboratory WÜ4i, Medical Clinic and Policlinic II, University Clinic Würzburg, Würzburg, Germany
| | - Oliver Kurzai
- Septomics Research Center, Friedrich-Schiller-University and Leibniz-Institute for Natural Products Research and Infection Biology - Hans-Knöll-Institute, Jena, Germany
| | - Matthias Gunzer
- Institute of Experimental Immunology and Imaging, University Duisburg-Essen, Essen, Germany
| | - Mike Hasenberg
- Institute of Experimental Immunology and Imaging, University Duisburg-Essen, Essen, Germany
| | - Hermann Einsele
- Laboratory WÜ4i, Medical Clinic and Policlinic II, University Clinic Würzburg, Würzburg, Germany
| | - Juergen Loeffler
- Laboratory WÜ4i, Medical Clinic and Policlinic II, University Clinic Würzburg, Würzburg, Germany.
| |
Collapse
|
31
|
Morton CO, Fliesser M, Dittrich M, Mueller T, Bauer R, Kneitz S, Hope W, Rogers TR, Einsele H, Loeffler J. Gene expression profiles of human dendritic cells interacting with Aspergillus fumigatus in a bilayer model of the alveolar epithelium/endothelium interface. PLoS One 2014; 9:e98279. [PMID: 24870357 PMCID: PMC4037227 DOI: 10.1371/journal.pone.0098279] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 04/30/2014] [Indexed: 01/13/2023] Open
Abstract
The initial stages of the interaction between the host and Aspergillus fumigatus at the alveolar surface of the human lung are critical in the establishment of aspergillosis. Using an in vitro bilayer model of the alveolus, including both the epithelium (human lung adenocarcinoma epithelial cell line, A549) and endothelium (human pulmonary artery epithelial cells, HPAEC) on transwell membranes, it was possible to closely replicate the in vivo conditions. Two distinct sub-groups of dendritic cells (DC), monocyte-derived DC (moDC) and myeloid DC (mDC), were included in the model to examine immune responses to fungal infection at the alveolar surface. RNA in high quantity and quality was extracted from the cell layers on the transwell membrane to allow gene expression analysis using tailored custom-made microarrays, containing probes for 117 immune-relevant genes. This microarray data indicated minimal induction of immune gene expression in A549 alveolar epithelial cells in response to germ tubes of A. fumigatus. In contrast, the addition of DC to the system greatly increased the number of differentially expressed immune genes. moDC exhibited increased expression of genes including CLEC7A, CD209 and CCL18 in the absence of A. fumigatus compared to mDC. In the presence of A. fumigatus, both DC subgroups exhibited up-regulation of genes identified in previous studies as being associated with the exposure of DC to A. fumigatus and exhibiting chemotactic properties for neutrophils, including CXCL2, CXCL5, CCL20, and IL1B. This model closely approximated the human alveolus allowing for an analysis of the host pathogen interface that complements existing animal models of IA.
Collapse
Affiliation(s)
| | - Mirjam Fliesser
- Universität Wuerzburg, Medizinische Klinik & Poliklinik II, WÜ4i, Wuerzburg, Germany
| | - Marcus Dittrich
- Department of Bioinformatics, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - Tobias Mueller
- Department of Bioinformatics, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - Ruth Bauer
- Universität Wuerzburg, Medizinische Klinik & Poliklinik II, WÜ4i, Wuerzburg, Germany
| | - Susanne Kneitz
- Department of Bioinformatics, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - William Hope
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | - Thomas Richard Rogers
- Department of Clinical Microbiology, Sir Patrick Research Laboratory, Trinity College Dublin, Dublin, Ireland
| | - Hermann Einsele
- Universität Wuerzburg, Medizinische Klinik & Poliklinik II, WÜ4i, Wuerzburg, Germany
| | - Juergen Loeffler
- Universität Wuerzburg, Medizinische Klinik & Poliklinik II, WÜ4i, Wuerzburg, Germany
- * E-mail:
| |
Collapse
|
32
|
Petropolis DB, Rodrigues JCF, Viana NB, Pontes B, Pereira CFA, Silva-Filho FC. Leishmania amazonensis promastigotes in 3D Collagen I culture: an in vitro physiological environment for the study of extracellular matrix and host cell interactions. PeerJ 2014; 2:e317. [PMID: 24765565 PMCID: PMC3994643 DOI: 10.7717/peerj.317] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Accepted: 03/04/2014] [Indexed: 11/26/2022] Open
Abstract
Leishmania amazonensis is the causative agent of American cutaneous leishmaniasis, an important neglected tropical disease. Once Leishmania amazonensis is inoculated into the human host, promastigotes are exposed to the extracellular matrix (ECM) of the dermis. However, little is known about the interaction between the ECM and Leishmania promastigotes. In this study we established L. amazonensis promastigote culture in a three-dimensional (3D) environment mainly composed of Collagen I (COL I). This 3D culture recreates in vitro some aspects of the human host infection site, enabling the study of the interaction mechanisms of L. amazonensis with the host ECM. Promastigotes exhibited “freeze and run” migration in the 3D COL I matrix, which is completely different from the conventional in vitro swimming mode of migration. Moreover, L. amazonensis promastigotes were able to invade, migrate inside, and remodel the 3D COL I matrix. Promastigote trans-matrix invasion and the freeze and run migration mode were also observed when macrophages were present in the matrix. At least two classes of proteases, metallo- and cysteine proteases, are involved in the 3D COL I matrix degradation caused by Leishmania. Treatment with a mixture of protease inhibitors significantly reduced promastigote invasion and migration through this matrix. Together our results demonstrate that L. amazonensis promastigotes release proteases and actively remodel their 3D environment, facilitating their migration. This raises the possibility that promastigotes actively interact with their 3D environment during the search for their cellular “home”—macrophages. Supporting this hypothesis, promastigotes migrated faster than macrophages in a novel 3D co-culture model.
Collapse
Affiliation(s)
- Debora B Petropolis
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro , Rio de Janeiro , Brazil ; Institut Pasteur , Paris , France
| | - Juliany C F Rodrigues
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro , Rio de Janeiro , Brazil ; Núcleo Multidisciplinar de Pesquisa UFRJ-Xerém (NUMPEX-BIO), Polo Avançado de Xerém, Universidade Federal do Rio de Janeiro , Brazil ; Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem , Brazil ; Instituto Nacional de Metrologia, Qualidade e Tecnologia , Inmetro , Brazil
| | - Nathan B Viana
- LPO-COPEA, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro , Brazil ; Instituto de Física, Universidade Federal do Rio de Janeiro , Rio de Janeiro , Brazil
| | - Bruno Pontes
- LPO-COPEA, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro , Brazil
| | - Camila F A Pereira
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro , Rio de Janeiro , Brazil
| | - Fernando C Silva-Filho
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro , Rio de Janeiro , Brazil ; Universidade Estadual do Norte Fluminense , Campos , Brazil
| |
Collapse
|
33
|
Hünniger K, Lehnert T, Bieber K, Martin R, Figge MT, Kurzai O. A virtual infection model quantifies innate effector mechanisms and Candida albicans immune escape in human blood. PLoS Comput Biol 2014; 10:e1003479. [PMID: 24586131 PMCID: PMC3930496 DOI: 10.1371/journal.pcbi.1003479] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 01/06/2014] [Indexed: 12/03/2022] Open
Abstract
Candida albicans bloodstream infection is increasingly frequent and can result in disseminated candidiasis associated with high mortality rates. To analyze the innate immune response against C. albicans, fungal cells were added to human whole-blood samples. After inoculation, C. albicans started to filament and predominantly associate with neutrophils, whereas only a minority of fungal cells became attached to monocytes. While many parameters of host-pathogen interaction were accessible to direct experimental quantification in the whole-blood infection assay, others were not. To overcome these limitations, we generated a virtual infection model that allowed detailed and quantitative predictions on the dynamics of host-pathogen interaction. Experimental time-resolved data were simulated using a state-based modeling approach combined with the Monte Carlo method of simulated annealing to obtain quantitative predictions on a priori unknown transition rates and to identify the main axis of antifungal immunity. Results clearly demonstrated a predominant role of neutrophils, mediated by phagocytosis and intracellular killing as well as the release of antifungal effector molecules upon activation, resulting in extracellular fungicidal activity. Both mechanisms together account for almost of C. albicans killing, clearly proving that beside being present in larger numbers than other leukocytes, neutrophils functionally dominate the immune response against C. albicans in human blood. A fraction of C. albicans cells escaped phagocytosis and remained extracellular and viable for up to four hours. This immune escape was independent of filamentation and fungal activity and not linked to exhaustion or inactivation of innate immune cells. The occurrence of C. albicans cells being resistant against phagocytosis may account for the high proportion of dissemination in C. albicans bloodstream infection. Taken together, iterative experiment–model–experiment cycles allowed quantitative analyses of the interplay between host and pathogen in a complex environment like human blood. Candida albicans is the most important fungal pathogen in nosocomial bloodstream infections. So far little is known about the interplay of different cellular and non-cellular immune mechanisms mediating the protective response against C. albicans in blood. The in vivo scenario of C. albicans infection can be mimicked by human whole-blood infection assays to analyze the innate immune response against this pathogen. These experiments reveal the time-evolution of certain mechanisms while leaving the values of other quantities in the dark. To shed light on quantities that are not experimentally accessible, we exploited the descriptive and predictive power of mathematical models to estimate these parameters. The combination of experiment and theory enabled us to identify and quantify the main course of the immune response against C. albicans in human blood. We quantified the central role of neutrophils in the defence against this fungal pathogen, both directly by phagocytosis and indirectly by secreting antimicrobial factors inducing extracellular killing. Other findings include the distribution of C. albicans cells in neutrophils and monocytes as well as the immune escape of C. albicans cells in the course of infection.
Collapse
Affiliation(s)
- Kerstin Hünniger
- Septomics Research Center, Friedrich Schiller University and Leibniz Institute for Natural Product Research and Infection Biology – Hans-Knöll-Institute (HKI), Jena, Germany
| | - Teresa Lehnert
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology – Hans-Knöll-Institute (HKI), Jena, Germany
- Friedrich Schiller University Jena, Jena, Germany
| | - Kristin Bieber
- Septomics Research Center, Friedrich Schiller University and Leibniz Institute for Natural Product Research and Infection Biology – Hans-Knöll-Institute (HKI), Jena, Germany
| | - Ronny Martin
- Septomics Research Center, Friedrich Schiller University and Leibniz Institute for Natural Product Research and Infection Biology – Hans-Knöll-Institute (HKI), Jena, Germany
| | - Marc Thilo Figge
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology – Hans-Knöll-Institute (HKI), Jena, Germany
- Friedrich Schiller University Jena, Jena, Germany
- * E-mail: (MTF); (OK)
| | - Oliver Kurzai
- Septomics Research Center, Friedrich Schiller University and Leibniz Institute for Natural Product Research and Infection Biology – Hans-Knöll-Institute (HKI), Jena, Germany
- * E-mail: (MTF); (OK)
| |
Collapse
|
34
|
Prüfer S, Weber M, Stein P, Bosmann M, Stassen M, Kreft A, Schild H, Radsak MP. Oxidative burst and neutrophil elastase contribute to clearance of Aspergillus fumigatus pneumonia in mice. Immunobiology 2014; 219:87-96. [DOI: 10.1016/j.imbio.2013.08.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 08/13/2013] [Accepted: 08/16/2013] [Indexed: 10/26/2022]
|
35
|
Van Waeyenberghe L, Baré J, Pasmans F, Claeys M, Bert W, Haesebrouck F, Houf K, Martel A. Interaction of Aspergillus fumigatus conidia with Acanthamoeba castellanii parallels macrophage-fungus interactions. ENVIRONMENTAL MICROBIOLOGY REPORTS 2013; 5:819-824. [PMID: 24249290 DOI: 10.1111/1758-2229.12082] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 06/22/2013] [Indexed: 06/02/2023]
Abstract
Aspergillus fumigatus and free-living amoebae are common inhabitants of soil. Mechanisms of A. fumigatus to circumvent the amoeba's digestion may facilitate overcoming the vertebrate macrophage defence mechanisms. We performed co-culture experiments using A. fumigatus conidia and the amoeba Acanthamoeba castellanii. Approximately 25% of the amoebae ingested A. fumigatus conidia after 1 h of contact. During intra-amoebal passage, part of the ingested conidia was able to escape the food vacuole and to germinate inside the cytoplasm of A. castellanii. Fungal release into the extra-protozoan environment by exocytosis of conidia or by germination was observed with light and transmission electron microscopy. These processes resulted in structural changes in A. castellanii, leading to amoebal permeabilization without cell lysis. In conclusion, A. castellanii internalizes A. fumigatus conidia, resulting in fungal intracellular germination and subsequent amoebal death. As such, this interaction highly resembles that of A. fumigatus with mammalian and avian macrophages. This suggests that A. fumigatus virulence mechanisms to evade macrophage killing may be acquired by co-evolutionary interactions among A. fumigatus and environmental amoebae.
Collapse
Affiliation(s)
- Lieven Van Waeyenberghe
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Siegmund L, Burmester A, Fischer MS, Wöstemeyer J. A model for endosymbiosis: Interaction between Tetrahymena pyriformis and Escherichia coli. Eur J Protistol 2013; 49:552-63. [DOI: 10.1016/j.ejop.2013.04.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 04/19/2013] [Accepted: 04/24/2013] [Indexed: 10/26/2022]
|
37
|
Hosseinzadeh A, Urban CF. Novel insight into neutrophil immune responses by dry mass determination of Candida albicans morphotypes. PLoS One 2013; 8:e77993. [PMID: 24205058 PMCID: PMC3813559 DOI: 10.1371/journal.pone.0077993] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 09/09/2013] [Indexed: 11/18/2022] Open
Abstract
The common fungal pathogen Candida albicans has the ability to grow as a yeast or as a hypha and can alternate between these morphotypes. The overall biomass of both morphotypes increases with growth. However, only yeasts, but not hyphae, exist as discrete cellular entities. Multiplicity of infection (MOI) is a useful parameter to determine the initial inoculum of yeasts for in vitro infection assays. Since the amount of hyphae is difficult to quantify, comparable starting conditions in such assays cannot be determined accurately for yeasts and hyphae using MOI. To circumvent this problem, we have established a set of correlation coefficients to convert fungal metabolic activity and optical density to dry mass. Using these correlations, we were able to accurately compare ROS production and IL-8 release by polymorphonuclear neutrophils upon infection with equal dry mass amounts of yeast and hyphal morphotypes. Neutrophil responses depended on the initial form of infection, irrespective of C. albicans wild-type yeasts transforming to hyphal growth during the assay. Infection with a high mass of live C. albicans yeasts resulted in lower neutrophil ROS and this decrease stems from efficient ROS detoxification by C. albicans without directly affecting the phagocyte ROS machinery. Moreover, we show that dead C. albicans induces significantly less ROS and IL-8 release than live fungi, but thimerosal-killed C. albicans were still able to detoxify neutrophil ROS. Thus, the dry mass approach presented in this study reveals neutrophil responses to different amounts and morphotypes of C. albicans and serves as a template for studies that aim to identify morphotype-specific responses in a variety of immune cells.
Collapse
Affiliation(s)
- Ava Hosseinzadeh
- Department of Molecular Biology, Umeå University, Umeå, Sweden ; Laboratory for Molecular Infection Medicine, Sweden (MIMS), Laboratory for Molecular Infection Medicine, Sweden ; Umeå Centre for Microbial Research, Umeå, Sweden
| | | |
Collapse
|
38
|
Gunzer M. Traps and hyper inflammation - new ways that neutrophils promote or hinder survival. Br J Haematol 2013; 164:189-99. [PMID: 24138538 DOI: 10.1111/bjh.12608] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 09/11/2013] [Indexed: 01/13/2023]
Abstract
For a long time neutrophil granulocytes were considered simply as terminally differentiated cells with a limited life span and pathogen killing by phagocytosis and chemical toxicity being the sole mode of action. However, work during the last 10 years has started to change this view fundamentally. Modern understanding is that neutrophils have an enormous complexity of functions. This review discusses very recent findings on how neutrophils can control the spread of pathogens and mediate their killing by mechanisms such as formation of DNA nets, how they influence tumour growth and adaptive immune responses and how they manoeuvre inside the diverse compartments of the body. It will also describe how the normally protective functions of neutrophils can have deleterious consequences if they occur in an uncontrolled fashion. These exciting novel findings are likely to completely and permanently change our view of this central leucocyte population.
Collapse
Affiliation(s)
- Matthias Gunzer
- Institute for Experimental Immunology and Imaging, University Duisburg-Essen, University Hospital, Essen, Germany
| |
Collapse
|
39
|
Shevchenko MA, Bolkhovitina EL, Servuli EA, Sapozhnikov AM. Elimination of Aspergillus fumigatus conidia from the airways of mice with allergic airway inflammation. Respir Res 2013; 14:78. [PMID: 23890251 PMCID: PMC3735401 DOI: 10.1186/1465-9921-14-78] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 07/23/2013] [Indexed: 11/16/2022] Open
Abstract
Background Aspergillus fumigatus conidia can exacerbate asthma symptoms. Phagocytosis of conidia is a principal component of the host antifungal defense. We investigated whether allergic airway inflammation (AAI) affects the ability of phagocytic cells in the airways to internalize the resting fungal spores. Methods Using BALB/c mice with experimentally induced AAI, we tested the ability of neutrophils, macrophages, and dendritic cells to internalize A. fumigatus conidia at various anatomical locations. We used light microscopy and differential cell and conidium counts to determine the ingestion potential of neutrophils and macrophages present in bronchoalveolar lavage (BAL). To identify phagocyte-conidia interactions in conducting airways, conidia labeled with tetramethylrhodamine-(5-(and-6))-isothiocyanate were administered to the oropharyngeal cavity of mice. Confocal microscopy was used to quantify the ingestion potential of Ly-6G+ neutrophils and MHC II+ antigen-presenting cells located in the intraepithelial and subepithelial areas of conducting airways. Results Allergen challenge induced transient neutrophil recruitment to the airways. Application of A. fumigatus conidia at the acute phase of AAI provoked recurrent neutrophil infiltration, and consequently increased the number and the ingestion potential of the airway neutrophils. In the absence of recurrent allergen or conidia provocation, both the ingestion potential and the number of BAL neutrophils decreased. As a result, conidia were primarily internalized by alveolar macrophages in both AAI and control mice at 24 hours post-inhalation. Transient influx of neutrophils to conducting airways shortly after conidial application was observed in mice with AAI. In addition, the ingestion potential of conducting airway neutrophils in mice with induced asthma exceeded that of control mice. Although the number of neutrophils subsequently decreased, the ingestion capacity remained elevated in AAI mice, even at 24 hours post-conidia application. Conclusions Aspiration of allergen to sensitized mice enhanced the ingestion potential of conducting airway neutrophils. Such activation primes neutrophils so that they are sufficient to control dissemination of non-germinating A. fumigatus conidia. At the same time, it can be a reason for the development of sensitivity to fungi and subsequent asthma exacerbation.
Collapse
Affiliation(s)
- Marina A Shevchenko
- Laboratory of Cell Interactions, Department of Immunology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia.
| | | | | | | |
Collapse
|
40
|
Nützmann HW, Schroeckh V, Brakhage AA. Regulatory cross talk and microbial induction of fungal secondary metabolite gene clusters. Methods Enzymol 2013; 517:325-41. [PMID: 23084946 DOI: 10.1016/b978-0-12-404634-4.00016-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Filamentous fungi are well-known producers of a wealth of secondary metabolites with various biological activities. Many of these compounds such as penicillin, cyclosporine, or lovastatin are of great importance for human health. Genome sequences of filamentous fungi revealed that the encoded potential to produce secondary metabolites is much higher than the actual number of compounds produced during cultivation in the laboratory. This finding encouraged research groups to develop new methods to exploit the silent reservoir of secondary metabolites. In this chapter, we present three successful strategies to induce the expression of secondary metabolite gene clusters. They are based on the manipulation of the molecular processes controlling the biosynthesis of secondary metabolites and the simulation of stimulating environmental conditions leading to altered metabolic profiles. The presented methods were successfully applied to identify novel metabolites. They can be also used to significantly increase product yields.
Collapse
MESH Headings
- Aspergillus nidulans/genetics
- Aspergillus nidulans/metabolism
- Culture Media/metabolism
- Gene Deletion
- Gene Expression Regulation, Fungal
- Gene Knockout Techniques/methods
- Genes, Fungal
- Genes, Regulator
- Genetic Engineering/methods
- Genetic Vectors/genetics
- Genetic Vectors/metabolism
- Multigene Family
- Promoter Regions, Genetic
- RNA, Bacterial/genetics
- RNA, Fungal/genetics
- RNA, Fungal/isolation & purification
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- Recombination, Genetic
- Signal Transduction/genetics
- Streptomyces/genetics
- Streptomyces/metabolism
- Transcriptional Activation
- Transformation, Genetic
Collapse
Affiliation(s)
- Hans-Wilhelm Nützmann
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
| | | | | |
Collapse
|
41
|
Sasse C, Hasenberg M, Weyler M, Gunzer M, Morschhäuser J. White-opaque switching of Candida albicans allows immune evasion in an environment-dependent fashion. EUKARYOTIC CELL 2013; 12:50-8. [PMID: 23125350 PMCID: PMC3535852 DOI: 10.1128/ec.00266-12] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 10/23/2012] [Indexed: 11/20/2022]
Abstract
Candida albicans strains that are homozygous at the mating type locus can spontaneously and reversibly switch from the normal yeast morphology (white) to an elongated cell type (opaque), which is the mating-competent form of the fungus. White-opaque switching also influences the ability of C. albicans to colonize and proliferate in specific host niches and its susceptibility to host defense mechanisms. We used live imaging to observe the interaction of white and opaque cells with host phagocytic cells. For this purpose, we generated derivatives of the switching-competent strain WO-1 that express green fluorescent protein from a white-specific promoter and red fluorescent protein from an opaque-specific promoter or vice versa. When mixed populations of these differentially labeled white and opaque cells were incubated with human polymorphonuclear neutrophils (PMNs) on a glass slide, the neutrophils selectively phagocytosed and killed white cells, despite frequent physical interaction with opaque cells. White cells were attacked only after they started to form a germ tube, indicating that the suppression of filamentation in opaque cells saved them from recognition by the PMNs. In contrast to neutrophils, dendritic cells internalized white as well as opaque cells. However, when embedded in a collagen matrix, the PMNs also phagocytosed both white and opaque cells with similar efficiency. These results suggest that, depending on the environment, white-opaque switching enables C. albicans to escape from specific host defense mechanisms.
Collapse
Affiliation(s)
- Christoph Sasse
- Institut für Molekulare Infektionsbiologie, Universität Würzburg, Würzburg, Germany
| | - Mike Hasenberg
- Institut für Experimentelle Immunologie und Bildgebung, Universität Duisburg-Essen, Essen, Germany
| | - Michael Weyler
- Institut für Molekulare Infektionsbiologie, Universität Würzburg, Würzburg, Germany
| | - Matthias Gunzer
- Institut für Experimentelle Immunologie und Bildgebung, Universität Duisburg-Essen, Essen, Germany
| | - Joachim Morschhäuser
- Institut für Molekulare Infektionsbiologie, Universität Würzburg, Würzburg, Germany
| |
Collapse
|
42
|
Pilus adhesin RrgA interacts with complement receptor 3, thereby affecting macrophage function and systemic pneumococcal disease. mBio 2012; 4:e00535-12. [PMID: 23269830 PMCID: PMC3531807 DOI: 10.1128/mbio.00535-12] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Pneumococcal pili have been shown to influence pneumococcal colonization, disease development, and the inflammatory response in mice. The role of the pilus-associated RrgA adhesin in pneumococcal interactions with murine and human macrophages was investigated. Expression of pili with RrgA enhanced the uptake of pneumococci by murine and human macrophages that was abolished by antibodies to complement receptor 3 (CR3) and not seen in CR3-deficient macrophages. Recombinant RrgA, but not pilus subunit RrgC, promoted CR3-mediated phagocytosis of coated beads by murine and human macrophages. Flow cytometry showed that purified CR3 binds pneumococcal cells expressing RrgA, and purified RrgA was shown to interact with CR3 and its I domain. In vivo, RrgA facilitated spread of pneumococci from the upper airways and peritoneal cavity to the bloodstream. Earlier onset of septicemia and more rapidly progressing disease was observed in wild-type mice compared to CR3-deficient mice challenged intranasally or intraperitoneally with pneumococci. Motility assays and time-lapse video microscopy showed that pneumococcal stimulation of macrophage motility required RrgA and CR3. These findings, together with the observed RrgA-dependent increase of intracellular survivors up to 10 h following macrophage infection, suggest that RrgA-CR3-mediated phagocytosis promotes systemic pneumococcal spread from local sites. Streptococcus pneumoniae is a major contributor to morbidity and mortality in infectious diseases globally. Symptomatology is mainly due to pneumococcal interactions with host cells leading to an inflammatory response. However, we still need more knowledge on how pneumococci talk to immune cells and the importance of this interaction. Recently, a novel structure was identified on the pneumococcal surface, an adhesive pilus found in about 30% of clinical pneumococcal isolates. The pilus has been suggested to be important for successful spread of antibiotic-resistant pneumococcal clones globally. Here we sought to identify mechanisms for how the pneumococcal pilin subunit RrgA contributes to disease development by interacting with host immune cells. Our data suggest a new way for how pneumococci may cross talk with phagocytic cells and affect disease progression. An increased understanding of these processes may lead to better strategies for how to treat these common infections.
Collapse
|
43
|
Hasenberg M, Stegemann-Koniszewski S, Gunzer M. Cellular immune reactions in the lung. Immunol Rev 2012; 251:189-214. [DOI: 10.1111/imr.12020] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Mike Hasenberg
- Institute of Experimental Immunology and Imaging; University of Duisburg/Essen; University Hospital; Essen; Germany
| | | | - Matthias Gunzer
- Institute of Experimental Immunology and Imaging; University of Duisburg/Essen; University Hospital; Essen; Germany
| |
Collapse
|
44
|
Brothers KM, Wheeler RT. Non-invasive imaging of disseminated candidiasis in zebrafish larvae. J Vis Exp 2012:4051. [PMID: 22872032 DOI: 10.3791/4051] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Disseminated candidiasis caused by the pathogen Candida albicans is a clinically important problem in hospitalized individuals and is associated with a 30 to 40% attributable mortality(6). Systemic candidiasis is normally controlled by innate immunity, and individuals with genetic defects in innate immune cell components such as phagocyte NADPH oxidase are more susceptible to candidemia(7-9). Very little is known about the dynamics of C. albicans interaction with innate immune cells in vivo. Extensive in vitro studies have established that outside of the host C. albicans germinates inside of macrophages, and is quickly destroyed by neutrophils(10-14). In vitro studies, though useful, cannot recapitulate the complex in vivo environment, which includes time-dependent dynamics of cytokine levels, extracellular matrix attachments, and intercellular contacts(10, 15-18). To probe the contribution of these factors in host-pathogen interaction, it is critical to find a model organism to visualize these aspects of infection non-invasively in a live intact host. The zebrafish larva offers a unique and versatile vertebrate host for the study of infection. For the first 30 days of development zebrafish larvae have only innate immune defenses(2, 19-21), simplifying the study of diseases such as disseminated candidiasis that are highly dependent on innate immunity. The small size and transparency of zebrafish larvae enable imaging of infection dynamics at the cellular level for both host and pathogen. Transgenic larvae with fluorescing innate immune cells can be used to identify specific cells types involved in infection(22-24). Modified anti-sense oligonucleotides (Morpholinos) can be used to knock down various immune components such as phagocyte NADPH oxidase and study the changes in response to fungal infection(5). In addition to the ethical and practical advantages of using a small lower vertebrate, the zebrafish larvae offers the unique possibility to image the pitched battle between pathogen and host both intravitally and in color. The zebrafish has been used to model infection for a number of human pathogenic bacteria, and has been instrumental in major advances in our understanding of mycobacterial infection(3, 25). However, only recently have much larger pathogens such as fungi been used to infect larva(5, 23, 26), and to date there has not been a detailed visual description of the infection methodology. Here we present our techniques for hindbrain ventricle microinjection of prim(25) zebrafish, including our modifications to previous protocols. Our findings using the larval zebrafish model for fungal infection diverge from in vitro studies and reinforce the need to examine the host-pathogen interaction in the complex environment of the host rather than the simplified system of the Petri dish(5).
Collapse
|
45
|
Tokarski C, Hummert S, Mech F, Figge MT, Germerodt S, Schroeter A, Schuster S. Agent-based modeling approach of immune defense against spores of opportunistic human pathogenic fungi. Front Microbiol 2012; 3:129. [PMID: 22557995 PMCID: PMC3337507 DOI: 10.3389/fmicb.2012.00129] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 03/19/2012] [Indexed: 11/13/2022] Open
Abstract
Opportunistic human pathogenic fungi like the ubiquitous fungus Aspergillus fumigatus are a major threat to immunocompromised patients. An impaired immune system renders the body vulnerable to invasive mycoses that often lead to the death of the patient. While the number of immunocompromised patients is rising with medical progress, the process, and dynamics of defense against invaded and ready to germinate fungal conidia are still insufficiently understood. Besides macrophages, neutrophil granulocytes form an important line of defense in that they clear conidia. Live imaging shows the interaction of those phagocytes and conidia as a dynamic process of touching, dragging, and phagocytosis. To unravel strategies of phagocytes on the hunt for conidia an agent-based modeling approach is used, implemented in NetLogo. Different modes of movement of phagocytes are tested regarding their clearing efficiency: random walk, short-term persistence in their recent direction, chemotaxis of chemokines excreted by conidia, and communication between phagocytes. While the short-term persistence hunting strategy turned out to be superior to the simple random walk, following a gradient of chemokines released by conidial agents is even better. The advantage of communication between neutrophilic agents showed a strong dependency on the spatial scale of the focused area and the distribution of the pathogens.
Collapse
Affiliation(s)
- Christian Tokarski
- Department of Bioinformatics, Friedrich Schiller University Jena, Germany
| | | | | | | | | | | | | |
Collapse
|
46
|
Van Waeyenberghe L, Pasmans F, D'Herde K, Ducatelle R, Favoreel H, Li SJ, Haesebrouck F, Martel A. Germination of Aspergillus fumigatus inside avian respiratory macrophages is associated with cytotoxicity. Vet Res 2012; 43:32. [PMID: 22515231 PMCID: PMC3414738 DOI: 10.1186/1297-9716-43-32] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 04/19/2012] [Indexed: 01/30/2023] Open
Abstract
Although aspergillosis is one of the most common diseases in captive birds, the pathogenesis of avian aspergillosis is poorly known. We studied the role of avian respiratory macrophages as a first line of defense against avian aspergillosis. The phagocytic and killing capacities of avian respiratory macrophages were evaluated using pigeon respiratory macrophages that were inoculated with Aspergillus fumigatus conidia. On average, 25% of macrophage-associated conidia were phagocytosed after one hour. Sixteen percents of these cell-associated conidia were killed after 4 h and conidial germination was inhibited in more than 95% of the conidia. A. fumigatus conidia were shown to be cytotoxic to the macrophages. Intracellularly germinating conidia were located free in the cytoplasm of necrotic cells, as shown using transmission electron microscopy. These results suggest that avian respiratory macrophages may prevent early establishment of infection, unless the number of A. fumigatus conidia exceeds the macrophage killing capacity, leading to intracellular germination and colonization of the respiratory tract.
Collapse
Affiliation(s)
- Lieven Van Waeyenberghe
- The Department of Pathology, Bacteriology and Avian diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Horn F, Heinekamp T, Kniemeyer O, Pollmächer J, Valiante V, Brakhage AA. Systems biology of fungal infection. Front Microbiol 2012; 3:108. [PMID: 22485108 PMCID: PMC3317178 DOI: 10.3389/fmicb.2012.00108] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 03/05/2012] [Indexed: 12/26/2022] Open
Abstract
Elucidation of pathogenicity mechanisms of the most important human-pathogenic fungi, Aspergillus fumigatus and Candida albicans, has gained great interest in the light of the steadily increasing number of cases of invasive fungal infections. A key feature of these infections is the interaction of the different fungal morphotypes with epithelial and immune effector cells in the human host. Because of the high level of complexity, it is necessary to describe and understand invasive fungal infection by taking a systems biological approach, i.e., by a comprehensive quantitative analysis of the non-linear and selective interactions of a large number of functionally diverse, and frequently multifunctional, sets of elements, e.g., genes, proteins, metabolites, which produce coherent and emergent behaviors in time and space. The recent advances in systems biology will now make it possible to uncover the structure and dynamics of molecular and cellular cause-effect relationships within these pathogenic interactions. We review current efforts to integrate omics and image-based data of host-pathogen interactions into network and spatio-temporal models. The modeling will help to elucidate pathogenicity mechanisms and to identify diagnostic biomarkers and potential drug targets for therapy and could thus pave the way for novel intervention strategies based on novel antifungal drugs and cell therapy.
Collapse
Affiliation(s)
- Fabian Horn
- Systems Biology/Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll InstituteJena, Germany
| | - Thorsten Heinekamp
- Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll InstituteJena, Germany
| | - Olaf Kniemeyer
- Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll InstituteJena, Germany
| | - Johannes Pollmächer
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll InstituteJena, Germany
| | - Vito Valiante
- Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll InstituteJena, Germany
| | - Axel A. Brakhage
- Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll InstituteJena, Germany
- Department of Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller UniversityJena, Germany
| |
Collapse
|
48
|
Guggenberger C, Wolz C, Morrissey JA, Heesemann J. Two distinct coagulase-dependent barriers protect Staphylococcus aureus from neutrophils in a three dimensional in vitro infection model. PLoS Pathog 2012; 8:e1002434. [PMID: 22253592 PMCID: PMC3257306 DOI: 10.1371/journal.ppat.1002434] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 10/27/2011] [Indexed: 02/02/2023] Open
Abstract
Staphylococcus aureus is a pyogenic abscess-forming facultative pathogenic microorganism expressing a large set of virulence-associated factors. Among these, secreted proteins with binding capacity to plasma proteins (e.g. fibrinogen binding proteins Eap and Emp) and prothrombin activators such as Coagulase (Coa) and vWbp are involved in abscess formation. By using a three-dimensional collagen gel (3D-CoG) supplemented with fibrinogen (Fib) we studied the growth behavior of S. aureus strain Newman and a set of mutants as well as their interaction with mouse neutrophils by real-time confocal microscopy. In 3D-CoG/Fib, S. aureus forms microcolonies which are surrounded by an inner pseudocapsule and an extended outer dense microcolony-associated meshwork (MAM) containing fibrin. Coa is involved in formation of the pseudocapsule whereas MAM formation depends on vWbp. Moreover, agr-dependent dispersal of late stage microcolonies could be observed. Furthermore, we demonstrate that the pseudocapsule and the MAM act as mechanical barriers against neutrophils attracted to the microcolony. The thrombin inhibitor argatroban is able to prevent formation of both pseudocapsule and MAM and supports access of neutrophils to staphylococci. Taken together, this model can simulate specific stages of S. aureus abscess formation by temporal dissection of bacterial growth and recruitment of immune cells. It can complement established animal infection models in the development of new treatment options. Staphylococcus aureus is one of the most frequent pathogens causing divers localized and metastatic abscess-forming infections. Here we studied the role of the staphylocoagulases Coa and vWbp in the formation of microcolony-associated fibrin structures. By using a three-dimensional collagen gel (3D-CoG) supplemented with human fibrinogen as a growth environment for staphylococci and as a neutrophil migration matrix, we were able to demonstrate that Coa is involved in producing a fibrin-containing pseudocapsule wrapping the staphylococcal microcolony whereas vWbp is required for establishing an extended outer fibrin meshwork. The pseudocapsule and the outer meshwork hinder neutrophils from attacking the staphylococci. Addition of the thrombin inhibitor argatroban prevents conversion of fibrinogen to fibrin and thus abolishes barrier formation. This in vitro model provides us with new options to study formation as well as prevention of staphylococcal abscesses under tissue-like conditions.
Collapse
Affiliation(s)
- Christoph Guggenberger
- Max von Pettenkofer-Institut, Ludwig-Maximilians-University of Munich (LMU), Munich, Germany
| | - Christiane Wolz
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Julie A. Morrissey
- Department of Genetics, University of Leicester, Leicester, United Kingdom
| | - Jürgen Heesemann
- Max von Pettenkofer-Institut, Ludwig-Maximilians-University of Munich (LMU), Munich, Germany
- * E-mail:
| |
Collapse
|
49
|
Abstract
Fungal diseases have emerged as significant causes of morbidity and mortality, particularly in immune-compromised individuals, prompting greater interest in understanding the mechanisms of host resistance to these pathogens. Consequently, the past few decades have seen a tremendous increase in our knowledge of the innate and adaptive components underlying the protective (and nonprotective) mechanisms of antifungal immunity. What has emerged from these studies is that phagocytic cells are essential for protection and that defects in these cells compromise the host's ability to resist fungal infection. This review covers the functions of phagocytes in innate antifungal immunity, along with selected examples of the strategies that are used by fungal pathogens to subvert these defenses.
Collapse
Affiliation(s)
- Gordon D Brown
- Aberdeen Fungal Group, Section of Immunology and Infection, Division of Applied Medicine, Institute of Medical Sciences, University of Aberdeen, Foresterhill, United Kingdom.
| |
Collapse
|
50
|
Chai LYA, Vonk AG, Kullberg BJ, Netea MG. Immune response to Aspergillus fumigatus in compromised hosts: from bedside to bench. Future Microbiol 2011; 6:73-83. [PMID: 21162637 DOI: 10.2217/fmb.10.158] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The relevance of studies aimed at understanding host immune response against Aspergillus fumigatus takes on much significance given that all patients with invasive aspergillosis are invariably immunocompromised. This article attempts to correlate relevant findings from recent experimental studies to clinical observations made by the physician at the bedside. It is hoped that the increased understanding of host-fungus immune interaction may pave the way for the development of new management strategies against this difficult-to-treat fungal disease.
Collapse
Affiliation(s)
- Louis Y A Chai
- Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|