1
|
Bhat T, Cao A, Yin J. Virus-like Particles: Measures and Biological Functions. Viruses 2022; 14:383. [PMID: 35215979 PMCID: PMC8877645 DOI: 10.3390/v14020383] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/10/2022] [Accepted: 02/10/2022] [Indexed: 12/25/2022] Open
Abstract
Virus-like particles resemble infectious virus particles in size, shape, and molecular composition; however, they fail to productively infect host cells. Historically, the presence of virus-like particles has been inferred from total particle counts by microscopy, and infectious particle counts or plaque-forming-units (PFUs) by plaque assay; the resulting ratio of particles-to-PFUs is often greater than one, easily 10 or 100, indicating that most particles are non-infectious. Despite their inability to hijack cells for their reproduction, virus-like particles and the defective genomes they carry can exhibit a broad range of behaviors: interference with normal virus growth during co-infections, cell killing, and activation or inhibition of innate immune signaling. In addition, some virus-like particles become productive as their multiplicities of infection increase, a sign of cooperation between particles. Here, we review established and emerging methods to count virus-like particles and characterize their biological functions. We take a critical look at evidence for defective interfering virus genomes in natural and clinical isolates, and we review their potential as antiviral therapeutics. In short, we highlight an urgent need to better understand how virus-like genomes and particles interact with intact functional viruses during co-infection of their hosts, and their impacts on the transmission, severity, and persistence of virus-associated diseases.
Collapse
Affiliation(s)
| | | | - John Yin
- Department of Chemical and Biological Engineering, Wisconsin Institute for Discovery, University of Wisconsin-Madison, 330 N. Orchard Street, Madison, WI 53715, USA; (T.B.); (A.C.)
| |
Collapse
|
2
|
Ekanayaka P, Lee SY, Herath TUB, Kim JH, Kim TH, Lee H, Chathuranga K, Chathuranga WAG, Park JH, Lee JS. Foot-and-mouth disease virus VP1 target the MAVS to inhibit type-I interferon signaling and VP1 E83K mutation results in virus attenuation. PLoS Pathog 2020; 16:e1009057. [PMID: 33232374 PMCID: PMC7723281 DOI: 10.1371/journal.ppat.1009057] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 12/08/2020] [Accepted: 10/07/2020] [Indexed: 02/07/2023] Open
Abstract
VP1, a pivotal capsid protein encoded by the foot-and-mouth disease virus (FMDV), plays an important role in receptor-mediated attachment and humoral immune responses. Previous studies show that amino acid changes in the VP1 protein of cell culture-adapted strains of FMDV alter the properties of the virus. In addition, FMDV VP1 modulates host IFN signal transduction. Here, we examined the ability of cell culture-adapted FMDV VP1(83K) and wild-type FMDV VP1(83E) to evade host immunity by blocking mitochondrial antiviral signaling protein (MAVS)/TNF Receptor Associated Factor 3 (TRAF3) mediated cellular innate responses. Wild-type FMDV VP1(83E) interacted specifically with C-terminal TRAF3-binding site within MAVS and this interaction inhibited binding of TRAF3 to MAVS, thereby suppressing interferon-mediated responses. This was not observed for cell culture-adapted FMDV VP1(83K). Finally, chimeric FMDV harboring VP1(83K) showed very low pathogenicity in pigs. Collectively, these data highlight a critical role of VP1 with respect to suppression of type-I IFN pathway and attenuation of FMDV by the E83K mutation in VP1. Foot-and-Mouth disease (FMD), a highly contagious viral disease of cloven-hoofed animals, causes huge economic losses. To generate a FMD vaccine, cell culture-adapted strains of FMDV that show improved growth properties and allow repeated passage are needed. Generally, adaptation of field-isolated FMDV is accompanied by changes in viral properties, including amino acid mutations. A VP1 E83K mutation in cell culture-adapted FMDV was identified previously; here, we examined the impact of VP1 E83K on virus pathogenicity and type-I IFN pathway. Cell culture-adapted FMDV O1 Manisa, and highly virulent strain of O/Andong/SKR/2010, acquired the E83K mutation in the VP1 protein, which attenuated the virus via disposing VP1 mediate negative regulation ability of host cellular IFN responses. The data suggest a rational approach to viral propagation in cell culture and virus attenuation, which could be utilized for future development of FMDV vaccines.
Collapse
Affiliation(s)
- Pathum Ekanayaka
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Seo-Yong Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea.,Animal and Plant Quarantine Agency, Gyeongsangbuk-do, Republic of Korea.,FVC, Gyeongsangbuk-do, Republic of Korea
| | - Thilina U B Herath
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Jae-Hoon Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Tae-Hwan Kim
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea.,Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Hyuncheol Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea.,California Institute for Quantitative Biosciences, University of California, Berkeley, California, United States of America
| | - Kiramage Chathuranga
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - W A Gayan Chathuranga
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Jong-Hyeon Park
- Animal and Plant Quarantine Agency, Gyeongsangbuk-do, Republic of Korea
| | - Jong-Soo Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
3
|
Abstract
Viral population numbers are extremely large compared with those of their host species. Population bottlenecks are frequent during the life cycle of viruses and can reduce viral populations transiently to very few individuals. Viruses have to confront several types of constraints that can be divided into basal, cell-dependent, and organism-dependent constraints. Viruses overcome them exploiting a number of molecular mechanisms, with an important contribution of population numbers and genome variation. The adaptive potential of viruses is reflected in modifications of cell tropism and host range, escape to components of the host immune response, and capacity to alternate among different host species, among other phenotypic changes. Despite a fitness cost of most mutations required to overcome a selective constraint, viruses can find evolutionary pathways that ensure their survival in equilibrium with their hosts.
Collapse
|
4
|
Weigert M, Ross-Gillespie A, Leinweber A, Pessi G, Brown SP, Kümmerli R. Manipulating virulence factor availability can have complex consequences for infections. Evol Appl 2016; 10:91-101. [PMID: 28035238 PMCID: PMC5192820 DOI: 10.1111/eva.12431] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 09/07/2016] [Indexed: 12/12/2022] Open
Abstract
Given the rise of bacterial resistance against antibiotics, we urgently need alternative strategies to fight infections. Some propose we should disarm rather than kill bacteria, through targeted disruption of their virulence factors. It is assumed that this approach (i) induces weak selection for resistance because it should only minimally impact bacterial fitness, and (ii) is specific, only interfering with the virulence factor in question. Given that pathogenicity emerges from complex interactions between pathogens, hosts and their environment, such assumptions may be unrealistic. To address this issue in a test case, we conducted experiments with the opportunistic human pathogen Pseudomonas aeruginosa, where we manipulated the availability of a virulence factor, the iron‐scavenging pyoverdine, within the insect host Galleria mellonella. We observed that pyoverdine availability was not stringently predictive of virulence and affected bacterial fitness in nonlinear ways. We show that this complexity could partly arise because pyoverdine availability affects host responses and alters the expression of regulatorily linked virulence factors. Our results reveal that virulence factor manipulation feeds back on pathogen and host behaviour, which in turn affects virulence. Our findings highlight that realizing effective and evolutionarily robust antivirulence therapies will ultimately require deeper engagement with the intrinsic complexity of host–pathogen systems.
Collapse
Affiliation(s)
- Michael Weigert
- Department of Plant and Microbial Biology University of Zurich Zurich Switzerland; Microbiology Department of Biology I Ludwig Maximilians University Munich Martinsried Germany
| | - Adin Ross-Gillespie
- Department of Plant and Microbial Biology University of Zurich Zurich Switzerland; Bioinformatics Core Facility SIB Swiss Institute of Bioinformatics Lausanne Switzerland
| | - Anne Leinweber
- Department of Plant and Microbial Biology University of Zurich Zurich Switzerland
| | - Gabriella Pessi
- Department of Plant and Microbial Biology University of Zurich Zurich Switzerland
| | - Sam P Brown
- School of Biological Sciences Georgia Institute of Technology Atlanta Georgia USA
| | - Rolf Kümmerli
- Department of Plant and Microbial Biology University of Zurich Zurich Switzerland
| |
Collapse
|
5
|
Liu F, Wu X, Li L, Zou Y, Liu S, Wang Z. Evolutionary characteristics of morbilliviruses during serial passages in vitro: Gradual attenuation of virus virulence. Comp Immunol Microbiol Infect Dis 2016; 47:7-18. [DOI: 10.1016/j.cimid.2016.05.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 05/22/2016] [Accepted: 05/24/2016] [Indexed: 02/05/2023]
|
6
|
Differential Persistence of Foot-and-Mouth Disease Virus in African Buffalo Is Related to Virus Virulence. J Virol 2016; 90:5132-5140. [PMID: 26962214 DOI: 10.1128/jvi.00166-16] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 03/07/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Foot-and-mouth disease (FMD) virus (FMDV) circulates as multiple serotypes and strains in many regions of endemicity. In particular, the three Southern African Territories (SAT) serotypes are maintained effectively in their wildlife reservoir, the African buffalo, and individuals may harbor multiple SAT serotypes for extended periods in the pharyngeal region. However, the exact site and mechanism for persistence remain unclear. FMD in buffaloes offers a unique opportunity to study FMDV persistence, as transmission from carrier ruminants has convincingly been demonstrated for only this species. Following coinfection of naive African buffaloes with isolates of three SAT serotypes from field buffaloes, palatine tonsil swabs were the sample of choice for recovering infectious FMDV up to 400 days postinfection (dpi). Postmortem examination identified infectious virus for up to 185 dpi and viral genomes for up to 400 dpi in lymphoid tissues of the head and neck, focused mainly in germinal centers. Interestingly, viral persistence in vivo was not homogenous, and the SAT-1 isolate persisted longer than the SAT-2 and SAT-3 isolates. Coinfection and passage of these SAT isolates in goat and buffalo cell lines demonstrated a direct correlation between persistence and cell-killing capacity. These data suggest that FMDV persistence occurs in the germinal centers of lymphoid tissue but that the duration of persistence is related to virus replication and cell-killing capacity. IMPORTANCE Foot-and-mouth disease virus (FMDV) causes a highly contagious acute vesicular disease in domestic livestock and wildlife species. African buffaloes (Syncerus caffer) are the primary carrier hosts of FMDV in African savannah ecosystems, where the disease is endemic. We have shown that the virus persists for up to 400 days in buffaloes and that there is competition between viruses during mixed infections. There was similar competition in cell culture: viruses that killed cells quickly persisted more efficiently in passaged cell cultures. These results may provide a mechanism for the dominance of particular viruses in an ecosystem.
Collapse
|
7
|
Constrained evolvability of interferon suppression in an RNA virus. Sci Rep 2016; 6:24722. [PMID: 27098004 PMCID: PMC4838867 DOI: 10.1038/srep24722] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 04/04/2016] [Indexed: 02/05/2023] Open
Abstract
Innate immunity responses controlled by interferon (IFN) are believed to constitute a major selective pressure shaping viral evolution. Viruses encode a variety of IFN suppressors, but these are often multifunctional proteins that also play essential roles in other steps of the viral infection cycle, possibly limiting their evolvability. Here, we experimentally evolved a vesicular stomatitis virus (VSV) mutant carrying a defect in the matrix protein (M∆51) that abolishes IFN suppression and that has been previously used in the context of oncolytic virotherapy. Serial transfers of this virus in normal, IFN-secreting cells led to a modest recovery of IFN blocking capacity and to weak increases in viral fitness. Full-genome ultra-deep sequencing and phenotypic analysis of population variants revealed that the anti-IFN function of the matrix protein was not restored, and that the Mdelta51 defect was instead compensated by changes in the viral phosphoprotein. We also show that adaptation to IFN-secreting cells can be driven by the selection of fast-growing viruses with no IFN suppression capacity, and that these population variants can be trans-complemented by other, IFN-suppressing variants. Our results thus suggest that virus-virus interactions and alternative strategies of innate immunity evasion can determine the evolution of IFN suppression in a virus.
Collapse
|
8
|
Domingo E. Interaction of Virus Populations with Their Hosts. VIRUS AS POPULATIONS 2016. [PMCID: PMC7150142 DOI: 10.1016/b978-0-12-800837-9.00004-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Viral population numbers are extremely large compared with those of their host species. Population bottlenecks are frequent during the life cycle of viruses and can reduce viral populations transiently to very few individuals. Viruses have to confront several types of constraints that can be divided in basal, cell-dependent, and organism-dependent constraints. Viruses overcome them exploiting a number of molecular mechanisms, with an important contribution of population numbers and genome variation. The adaptive potential of viruses is reflected in modifications of cell tropism and host range, escape to components of the host immune response, and capacity to alternate among different host species, among other phenotypic changes. Despite a fitness cost of most mutations required to overcome a selective constraint, viruses can find evolutionary pathways that ensure their survival in equilibrium with their hosts.
Collapse
|
9
|
Pasin F, Simón-Mateo C, García JA. The hypervariable amino-terminus of P1 protease modulates potyviral replication and host defense responses. PLoS Pathog 2014; 10:e1003985. [PMID: 24603811 PMCID: PMC3946448 DOI: 10.1371/journal.ppat.1003985] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Accepted: 01/23/2014] [Indexed: 12/22/2022] Open
Abstract
The replication of many RNA viruses involves the translation of polyproteins, whose processing by endopeptidases is a critical step for the release of functional subunits. P1 is the first protease encoded in plant potyvirus genomes; once activated by an as-yet-unknown host factor, it acts in cis on its own C-terminal end, hydrolyzing the P1-HCPro junction. Earlier research suggests that P1 cooperates with HCPro to inhibit host RNA silencing defenses. Using Plum pox virus as a model, we show that although P1 does not have a major direct role in RNA silencing suppression, it can indeed modulate HCPro function by its self-cleavage activity. To study P1 protease regulation, we used bioinformatic analysis and in vitro activity experiments to map the core C-terminal catalytic domain. We present evidence that the hypervariable region that precedes the protease domain is predicted as intrinsically disordered, and that it behaves as a negative regulator of P1 proteolytic activity in in vitro cleavage assays. In viral infections, removal of the P1 protease antagonistic regulator is associated with greater symptom severity, induction of salicylate-dependent pathogenesis-related proteins, and reduced viral loads. We suggest that fine modulation of a viral protease activity has evolved to keep viral amplification below host-detrimental levels, and thus to maintain higher long-term replicative capacity.
Collapse
Affiliation(s)
- Fabio Pasin
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Carmen Simón-Mateo
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Juan Antonio García
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| |
Collapse
|
10
|
Calvo M, Malinowski T, García JA. Single amino acid changes in the 6K1-CI region can promote the alternative adaptation of Prunus- and Nicotiana-propagated Plum pox virus C isolates to either host. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:136-49. [PMID: 24200075 DOI: 10.1094/mpmi-08-13-0242-r] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plum pox virus (PPV) C is one of the less common PPV strains and specifically infects cherry trees in nature. Making use of two PPV-C isolates that display different pathogenicity features, i.e., SwCMp, which had been adapted to Nicotiana species, and BY101, which had been isolated from cherry rootstock L2 (Prunus lannesiana) and propagated only in cherry species, we have generated two infective full-length cDNA clones in order to determine which viral factors are involved in the adaptation to each host. According to our results, the C-P3(PIPO)/6K1/N-CI (cylindrical inclusion) region contains overlapping but not coincident viral determinants involved in symptoms development, local viral amplification, and systemic movement capacity. Amino acid changes in this region promoting the adaptation to N. benthamiana or P. avium have trade-off effects in the alternative host. In both cases, adaptation can be achieved through single amino acid changes in the NIapro protease recognition motif between 6K1 and CI or in nearby sequences. Thus, we hypothesize that the potyvirus polyprotein processing could depend on specific host factors and the adaptation of PPV-C isolates to particular hosts relies on a fine regulation of the proteolytic cleavage of the 6K1-CI junction.
Collapse
|
11
|
Töpfer A, Höper D, Blome S, Beer M, Beerenwinkel N, Ruggli N, Leifer I. Sequencing approach to analyze the role of quasispecies for classical swine fever. Virology 2013; 438:14-9. [PMID: 23415390 DOI: 10.1016/j.virol.2012.11.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 11/28/2012] [Indexed: 10/27/2022]
Abstract
Classical swine fever virus (CSFV) is a positive-sense RNA virus with a high degree of genetic variability among isolates. High diversity is also found in virulence, with strains covering the complete spectrum from avirulent to highly virulent. The underlying genetic determinants are far from being understood. Since RNA polymerases of RNA viruses lack any proof-reading activity, different genome variations called haplotypes, occur during replication. A set of haplotypes is referred to as a viral quasispecies. Genetic variability can be a fitness advantage through facilitating of a more effective escape from the host immune response. In order to investigate the correlation of quasispecies composition and virulence in vivo, we analyzed next-generation sequencing data of CSFV isolates of varying virulence. Viral samples from pigs infected with the highly virulent isolates "Koslov" and "Brescia" showed higher quasispecies diversity and more nucleotide variability, compared to samples of pigs infected with low and moderately virulent isolates.
Collapse
Affiliation(s)
- Armin Töpfer
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
12
|
Leifer I, Ruggli N, Blome S. Approaches to define the viral genetic basis of classical swine fever virus virulence. Virology 2013; 438:51-5. [PMID: 23415391 DOI: 10.1016/j.virol.2013.01.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 11/20/2012] [Accepted: 01/18/2013] [Indexed: 10/27/2022]
Abstract
Classical swine fever (CSF), a highly contagious disease of pigs caused by the classical swine fever virus (CSFV), can lead to important economic losses in the pig industry. Numerous CSFV isolates with various degrees of virulence have been isolated worldwide, ranging from low virulent strains that do not result in any apparent clinical signs to highly virulent strains that cause a severe peracute hemorrhagic fever with nearly 100% mortality. Knowledge of the molecular determinants of CSFV virulence is an important issue for effective disease control and development of safe and effective marker vaccines. In this review, the latest studies in the field of CSFV virulence are discussed. The topic of virulence is addressed from different angles; nonconventional approaches like codon pair usage and quasispecies are considered. Future research approaches in the field of CSFV virulence are proposed.
Collapse
Affiliation(s)
- Immanuel Leifer
- Institute of Virology and Immunoprophylaxis (IVI), Sensemattstrasse 293, CH-3147 Mittelhäusern, Switzerland.
| | | | | |
Collapse
|
13
|
Furió V, Garijo R, Durán M, Moya A, Bell JC, Sanjuán R. Relationship between within-host fitness and virulence in the vesicular stomatitis virus: correlation with partial decoupling. J Virol 2012; 86:12228-36. [PMID: 22951843 PMCID: PMC3486475 DOI: 10.1128/jvi.00755-12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Given the parasitic nature of viruses, it is sometimes assumed that rates of viral replication and dissemination within hosts (within-host fitness) correlate with virulence. However, there is currently little empirical evidence supporting this principle. To test this, we quantified the fitness and virulence of 21 single- or double-nucleotide mutants of the vesicular stomatitis virus in baby hamster kidney cells (BHK-21). We found that, overall, these two traits correlated positively, but significant outliers were identified. Particularly, a single mutation in the conserved C terminus of the N nucleocapsid (U1323A) had a strongly deleterious fitness effect but did not alter or even slightly increased virulence. We also found a double mutant of the M matrix protein and G glycoprotein (U2617G/A3802G mutant) with high fitness yet low virulence. We further characterized these mutants in primary cultures from mouse brain cells and in vivo and found that their relative fitness values were similar to those observed in BHK-21 cells. The mutations had weak effects on the virus-induced death rate of total brain cells, although they specifically reduced neuron death rates. Furthermore, increased apoptosis levels were detected in neurons infected with the U2617G/A3802G mutant, consistent with its known inability to block interferon secretion. In vivo, this mutant had reduced virulence and, despite its low brain titer, it retained a relatively high fitness value owing to its ability to suppress competitor viruses. Overall, our results are in broad agreement with the notion that viral fitness and virulence should be positively correlated but show that certain mutations can break this association and that the fitness-virulence relationship can depend on complex virus-host and virus-virus interactions.
Collapse
Affiliation(s)
- Victoria Furió
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, Spain
| | - Raquel Garijo
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, Spain
| | - María Durán
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, Spain
| | - Andrés Moya
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, Spain
- Departament de Genètica, Universitat de València, Spain
- Unidad Mixta de Investigación en Genómica y Salud, Centro Superior de Investigación en Salud Pública (CSISP), Spain
| | - John C. Bell
- Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Rafael Sanjuán
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, Spain
- Departament de Genètica, Universitat de València, Spain
| |
Collapse
|
14
|
Jaramillo N, Domingo E, Muñoz-Egea MC, Tabarés E, Gadea I. Evidence of Muller's ratchet in herpes simplex virus type 1. J Gen Virol 2012; 94:366-375. [PMID: 23100362 DOI: 10.1099/vir.0.044685-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Population bottlenecks can have major effects in the evolution of RNA viruses, but their possible influence in the evolution of DNA viruses is largely unknown. Genetic and biological variation of herpes simplex virus type 1 (HSV-1) has been studied by subjecting 23 biological clones of the virus to 10 plaque-to-plaque transfers. In contrast to large population passages, plaque transfers led to a decrease in replicative capacity of HSV-1. Two out of a total of 23 clones did not survive to the last transfer in 143 TK(-) cells. DNA from three genomic regions (DNA polymerase, glycoprotein gD and thymidine kinase) from the initial and passaged clones was sequenced. Nucleotide substitutions were detected in the TK and gD genes, but not in the DNA polymerase gene. Assuming a uniform distribution of mutations along the genome, the average rate of fixation of mutations was about five mutations per viral genome and plaque transfer. This value is comparable to the range of values calculated for RNA viruses. Four plaque-transferred populations lost neurovirulence for mice, as compared with the corresponding initial clones. LD(50) values obtained with the populations subjected to serial bottlenecks were 4- to 67-fold higher than for their parental clones. These results equate HSV-1 with RNA viruses regarding fitness decrease as a result of plaque-to-plaque transfers, and show that population bottlenecks can modify the pathogenic potential of HSV-1. Implications for the evolution of complex DNA viruses are discussed.
Collapse
Affiliation(s)
- Nacarí Jaramillo
- Departamento de Medicina Preventiva Salud Pública y Microbiología, Facultad de Medicina, UAM, Madrid, Spain
| | - Esteban Domingo
- Centro de Investigación en Red de Enfermedades Hepáticas y Digestivas (CIBER ehd), Barcelona, Spain.,Centro de Biología Molecular 'Severo Ochoa' (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid) Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | | | - Enrique Tabarés
- Departamento de Medicina Preventiva Salud Pública y Microbiología, Facultad de Medicina, UAM, Madrid, Spain
| | | |
Collapse
|
15
|
Ojosnegros S, Delgado-Eckert E, Beerenwinkel N. Competition-colonization trade-off promotes coexistence of low-virulence viral strains. J R Soc Interface 2012; 9:2244-54. [PMID: 22513722 DOI: 10.1098/rsif.2012.0160] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
RNA viruses exist as genetically diverse populations displaying a range of virulence degrees. The evolution of virulence in viral populations is, however, poorly understood. On the basis of the experimental observation of an RNA virus clone in cell culture diversifying into two subpopulations of different virulence, we study the dynamics of mutating virus populations with varying virulence. We introduce a competition-colonization trade-off into standard mathematical models of intra-host viral infection. Colonizers are fast-spreading virulent strains, whereas the competitors are less-virulent variants but more successful within co-infected cells. We observe a two-step dynamics of the population. Early in the infection, the population is dominated by colonizers, which later are outcompeted by competitors. Our simulations suggest the existence of steady state in which all virulence classes coexist but are dominated by the most competitive ones. This equilibrium implies collective virulence attenuation in the population, in contrast to previous models predicting evolution of the population towards increased virulence.
Collapse
Affiliation(s)
- Samuel Ojosnegros
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
| | | | | |
Collapse
|
16
|
Lancaster KZ, Pfeiffer JK. Viral population dynamics and virulence thresholds. Curr Opin Microbiol 2012; 15:525-30. [PMID: 22658738 PMCID: PMC3424342 DOI: 10.1016/j.mib.2012.05.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 05/07/2012] [Accepted: 05/13/2012] [Indexed: 12/17/2022]
Abstract
Viral factors and host barriers influence virally induced disease, and asymptomatic versus symptomatic infection is governed by a 'virulence threshold'. Understanding modulation of virulence thresholds could lend insight into disease outcome and aid in rational therapeutic and vaccine design. RNA viruses are an excellent system to study virulence thresholds in the context of quasispecies population dynamics. RNA viruses have high error frequencies and our understanding of viral population dynamics has been shaped by quasispecies evolutionary theory. In turn, research using RNA viruses as replicons with short generation times and high mutation rates has been an invaluable tool to test models of quasispecies theory. The challenge and new frontier of RNA virus population dynamics research is to combine multiple theoretical models and experimental data to describe viral population behavior as it changes, moving within and between hosts, to predict disease and pathogen emergence. Several excellent studies have begun to undertake this challenge using novel approaches.
Collapse
Affiliation(s)
- Karen Z Lancaster
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9048, USA
| | | |
Collapse
|
17
|
Abstract
Evolution of RNA viruses occurs through disequilibria of collections of closely related mutant spectra or mutant clouds termed viral quasispecies. Here we review the origin of the quasispecies concept and some biological implications of quasispecies dynamics. Two main aspects are addressed: (i) mutant clouds as reservoirs of phenotypic variants for virus adaptability and (ii) the internal interactions that are established within mutant spectra that render a virus ensemble the unit of selection. The understanding of viruses as quasispecies has led to new antiviral designs, such as lethal mutagenesis, whose aim is to drive viruses toward low fitness values with limited chances of fitness recovery. The impact of quasispecies for three salient human pathogens, human immunodeficiency virus and the hepatitis B and C viruses, is reviewed, with emphasis on antiviral treatment strategies. Finally, extensions of quasispecies to nonviral systems are briefly mentioned to emphasize the broad applicability of quasispecies theory.
Collapse
Affiliation(s)
- Esteban Domingo
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), C/ Nicolás Cabrera, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain.
| | | | | |
Collapse
|
18
|
Le Nouën C, Toquin D, Müller H, Raue R, Kean KM, Langlois P, Cherbonnel M, Eterradossi N. Different domains of the RNA polymerase of infectious bursal disease virus contribute to virulence. PLoS One 2012; 7:e28064. [PMID: 22253687 PMCID: PMC3258228 DOI: 10.1371/journal.pone.0028064] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 10/31/2011] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Infectious bursal disease virus (IBDV) is a pathogen of worldwide significance to the poultry industry. IBDV has a bi-segmented double-stranded RNA genome. Segments A and B encode the capsid, ribonucleoprotein and non-structural proteins, or the virus polymerase (RdRp), respectively. Since the late eighties, very virulent (vv) IBDV strains have emerged in Europe inducing up to 60% mortality. Although some progress has been made in understanding the molecular biology of IBDV, the molecular basis for the pathogenicity of vvIBDV is still not fully understood. METHODOLOGY, PRINCIPAL FINDINGS Strain 88180 belongs to a lineage of pathogenic IBDV phylogenetically related to vvIBDV. By reverse genetics, we rescued a molecular clone (mc88180), as pathogenic as its parent strain. To study the molecular basis for 88180 pathogenicity, we constructed and characterized in vivo reassortant or mosaic recombinant viruses derived from the 88180 and the attenuated Cu-1 IBDV strains. The reassortant virus rescued from segments A of 88180 (A88) and B of Cu-1 (BCU1) was milder than mc88180 showing that segment B is involved in 88180 pathogenicity. Next, the exchange of different regions of BCU1 with their counterparts in B88 in association with A88 did not fully restore a virulence equivalent to mc88180. This demonstrated that several regions if not the whole B88 are essential for the in vivo pathogenicity of 88180. CONCLUSION, SIGNIFICANCE The present results show that different domains of the RdRp, are essential for the in vivo pathogenicity of IBDV, independently of the replication efficiency of the mosaic viruses.
Collapse
Affiliation(s)
- Cyril Le Nouën
- Avian and Rabbit Virology, Immunology and Parasitology Unit, OIE Reference Laboratory for Infectious Bursal Disease, French Agency for Food, Environmental and Occupational Health Safety (Anses), Ploufragan, France
| | - Didier Toquin
- Avian and Rabbit Virology, Immunology and Parasitology Unit, OIE Reference Laboratory for Infectious Bursal Disease, French Agency for Food, Environmental and Occupational Health Safety (Anses), Ploufragan, France
| | - Hermann Müller
- Institute for Virology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Rüdiger Raue
- Institute for Virology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | | | - Patrick Langlois
- Virus Genetics and Biosecurity Unit, French Agency for Food, Environmental and Occupational Health Safety (ANSES), Ploufragan, France
| | - Martine Cherbonnel
- Avian and Rabbit Virology, Immunology and Parasitology Unit, OIE Reference Laboratory for Infectious Bursal Disease, French Agency for Food, Environmental and Occupational Health Safety (Anses), Ploufragan, France
| | - Nicolas Eterradossi
- Avian and Rabbit Virology, Immunology and Parasitology Unit, OIE Reference Laboratory for Infectious Bursal Disease, French Agency for Food, Environmental and Occupational Health Safety (Anses), Ploufragan, France
- * E-mail:
| |
Collapse
|
19
|
Quasispecies as a matter of fact: viruses and beyond. Virus Res 2011; 162:203-15. [PMID: 21945638 PMCID: PMC7172439 DOI: 10.1016/j.virusres.2011.09.018] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 09/12/2011] [Accepted: 09/12/2011] [Indexed: 12/13/2022]
Abstract
We review the origins of the quasispecies concept and its relevance for RNA virus evolution, viral pathogenesis and antiviral treatment strategies. We emphasize a critical point of quasispecies that refers to genome collectivities as the unit of selection, and establish parallels between RNA viruses and some cellular systems such as bacteria and tumor cells. We refer also to tantalizing new observations that suggest quasispecies behavior in prions, perhaps as a result of the same quantum-mechanical indeterminations that underlie protein conformation and error-prone replication in genetic systems. If substantiated, these observations with prions could lead to new research on the structure-function relationship of non-nucleic acid biological molecules.
Collapse
|
20
|
Ojosnegros S, Beerenwinkel N, Domingo E. Competition-colonization dynamics: An ecology approach to quasispecies dynamics and virulence evolution in RNA viruses. Commun Integr Biol 2011; 3:333-6. [PMID: 20798818 DOI: 10.4161/cib.3.4.11658] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Accepted: 02/25/2010] [Indexed: 11/19/2022] Open
Abstract
A single and purified clone of foot-and-mouth disease virus diversified in cell culture into two subpopulations that were genetically distinct. The subpopulation with higher virulence was a minority and was suppressed by the dominant but less virulent one. These two populations follow the competitioncolonization dynamics described in ecology. Virulent viruses can be regarded as colonizers because they killed the cells faster and they spread faster. The attenuated subpopulation resembles competitors because of its higher replication efficiency in coinfected cells. Our results suggest a new model for the evolution of virulence which is based on interactions between components of the quasispecies. Competition between viral mutants takes place at two levels, intracellular competition and competition for new cells. The two strategies are subjected to densitydependent selection.
Collapse
|
21
|
Wargo AR, Kurath G. In vivo fitness associated with high virulence in a vertebrate virus is a complex trait regulated by host entry, replication, and shedding. J Virol 2011; 85:3959-67. [PMID: 21307204 PMCID: PMC3126118 DOI: 10.1128/jvi.01891-10] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Accepted: 01/29/2011] [Indexed: 12/14/2022] Open
Abstract
The relationship between pathogen fitness and virulence is typically examined by quantifying only one or two pathogen fitness traits. More specifically, it is regularly assumed that within-host replication, as a precursor to transmission, is the driving force behind virulence. In reality, many traits contribute to pathogen fitness, and each trait could drive the evolution of virulence in different ways. Here, we independently quantified four viral infection cycle traits, namely, host entry, within-host replication, within-host coinfection fitness, and shedding, in vivo, in the vertebrate virus Infectious hematopoietic necrosis virus (IHNV). We examined how each of these stages of the viral infection cycle contributes to the fitness of IHNV genotypes that differ in virulence in rainbow trout. This enabled us to determine how infection cycle fitness traits are independently associated with virulence. We found that viral fitness was independently regulated by each of the traits examined, with the largest impact on fitness being provided by within-host replication. Furthermore, the more virulent of the two genotypes of IHNV we used had advantages in all of the traits quantified. Our results are thus congruent with the assumption that virulence and within-host replication are correlated but suggest that infection cycle fitness is complex and that replication is not the only trait associated with virulence.
Collapse
Affiliation(s)
- Andrew R Wargo
- Western Fisheries Research Center, 6505 NE 65th Street, Seattle, WA 98115-5016, USA.
| | | |
Collapse
|
22
|
Chapuis É, Pagès S, Emelianoff V, Givaudan A, Ferdy JB. Virulence and pathogen multiplication: a serial passage experiment in the hypervirulent bacterial insect-pathogen Xenorhabdus nematophila. PLoS One 2011; 6:e15872. [PMID: 21305003 PMCID: PMC3031541 DOI: 10.1371/journal.pone.0015872] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 11/25/2010] [Indexed: 11/20/2022] Open
Abstract
The trade-off hypothesis proposes that the evolution of pathogens' virulence is shaped by a link between virulence and contagiousness. This link is often assumed to come from the fact that pathogens are contagious only if they can reach high parasitic load in the infected host. In this paper we present an experimental test of the hypothesis that selection on fast replication can affect virulence. In a serial passage experiment, we selected 80 lines of the bacterial insect-pathogen Xenorhabdus nematophila to multiply fast in an artificial culture medium. This selection resulted in shortened lag phase in our selected bacteria. We then injected these bacteria into insects and observed an increase in virulence. This could be taken as a sign that virulence in Xenorhabdus is linked to fast multiplication. But we found, among the selected lineages, either no link or a positive correlation between lag duration and virulence: the most virulent bacteria were the last to start multiplying. We then surveyed phenotypes that are under the control of the flhDC super regulon, which has been shown to be involved in Xenorhabdus virulence. We found that, in one treatment, the flhDC regulon has evolved rapidly, but that the changes we observed were not connected to virulence. All together, these results indicate that virulence is, in Xenorhabdus as in many other pathogens, a multifactorial trait. Being able to grow fast is one way to be virulent. But other ways exist which renders the evolution of virulence hard to predict.
Collapse
Affiliation(s)
- Élodie Chapuis
- The Center for Biology and Management of Populations, Montpellier, France
| | - Sylvie Pagès
- Laboratoire EMIP, UMR INRA UM2 1133, Université Montpellier 2, Montpellier, France
| | - Vanya Emelianoff
- The Center for Biology and Management of Populations, Montpellier, France
| | - Alain Givaudan
- Laboratoire EMIP, UMR INRA UM2 1133, Université Montpellier 2, Montpellier, France
| | - Jean-Baptiste Ferdy
- Laboratoire Évolution et Diversité Biologique UMR CNRS UPS 5174, Université Toulouse 3, Toulouse, France
| |
Collapse
|
23
|
Abstract
Viruses are fast evolving pathogens that continuously adapt to the highly variable environments they live and reproduce in. Strategies devoted to inhibit virus replication and to control their spread among hosts need to cope with these extremely heterogeneous populations and with their potential to avoid medical interventions. Computational techniques such as phylogenetic methods have broadened our picture of viral evolution both in time and space, and mathematical modeling has contributed substantially to our progress in unraveling the dynamics of virus replication, fitness, and virulence. Integration of multiple computational and mathematical approaches with experimental data can help to predict the behavior of viral pathogens and to anticipate their escape dynamics. This piece of information plays a critical role in some aspects of vaccine development, such as viral strain selection for vaccinations or rational attenuation of viruses. Here we review several aspects of viral evolution that can be addressed quantitatively, and we discuss computational methods that have the potential to improve vaccine design.
Collapse
Affiliation(s)
- Samuel Ojosnegros
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
| | | |
Collapse
|
24
|
Padiglione A, Aleksic E, French M, Arnott A, Wilson KM, Tippett E, Kaye M, Gray L, Ellett A, Crane M, Leslie DE, Lewin SR, Breschkin A, Birch C, Gorry PR, McPhee DA, Crowe SM. Extremely prolonged HIV seroconversion associated with an MHC haplotype carrying disease susceptibility genes for antibody deficiency disorders. Clin Immunol 2010; 137:199-208. [DOI: 10.1016/j.clim.2010.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 06/30/2010] [Accepted: 07/16/2010] [Indexed: 02/01/2023]
|
25
|
Li S, Gao M, Zhang R, Song G, Song J, Liu D, Cao Y, Li T, Ma B, Liu X, Wang J. A mutant of infectious Asia 1 serotype foot-and-mouth disease virus with the deletion of 10-amino-acid in the 3A protein. Virus Genes 2010; 41:406-13. [DOI: 10.1007/s11262-010-0529-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Accepted: 09/02/2010] [Indexed: 11/29/2022]
|
26
|
Manrubia SC, Domingo E, Lázaro E. Pathways to extinction: beyond the error threshold. Philos Trans R Soc Lond B Biol Sci 2010; 365:1943-52. [PMID: 20478889 DOI: 10.1098/rstb.2010.0076] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Since the introduction of the quasispecies and the error catastrophe concepts for molecular evolution by Eigen and their subsequent application to viral populations, increased mutagenesis has become a common strategy to cause the extinction of viral infectivity. Nevertheless, the high complexity of virus populations has shown that viral extinction can occur through several other pathways apart from crossing an error threshold. Increases in the mutation rate enhance the appearance of defective forms and promote the selection of mechanisms that are able to counteract the accelerated appearance of mutations. Current models of viral evolution take into account more realistic scenarios that consider compensatory and lethal mutations, a highly redundant genotype-to-phenotype map, rough fitness landscapes relating phenotype and fitness, and where phenotype is described as a set of interdependent traits. Further, viral populations cannot be understood without specifying the characteristics of the environment where they evolve and adapt. Altogether, it turns out that the pathways through which viral quasispecies go extinct are multiple and diverse.
Collapse
Affiliation(s)
- Susanna C Manrubia
- Centro de Astrobiología, INTA-CSIC, Ctra. de Ajalvir km. 4, 28850 Torrejón de Ardoz, Madrid, Spain.
| | | | | |
Collapse
|
27
|
Maree FF, Blignaut B, de Beer TAP, Visser N, Rieder EA. Mapping of amino acid residues responsible for adhesion of cell culture-adapted foot-and-mouth disease SAT type viruses. Virus Res 2010; 153:82-91. [PMID: 20637812 DOI: 10.1016/j.virusres.2010.07.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 07/06/2010] [Accepted: 07/08/2010] [Indexed: 11/29/2022]
Abstract
Foot-and-mouth disease virus (FMDV) infects host cells by adhering to the alpha(V) subgroup of the integrin family of cellular receptors in a Arg-Gly-Asp (RGD) dependent manner. FMD viruses, propagated in non-host cell cultures are reported to acquire the ability to enter cells via alternative cell surface molecules. Sequencing analysis of SAT1 and SAT2 cell culture-adapted variants showed acquisition of positively charged amino acid residues within surface-exposed loops of the outer capsid structural proteins. The fixation of positively charged residues at position 110-112 in the beta F-beta G loop of VP1 of SAT1 isolates is thought to correlate with the acquisition of the ability to utilise alternative glycosaminoglycan (GAG) molecules for cell entry. Similarly, two SAT2 viruses that adapted readily to BHK-21 cells accumulated positively charged residues at positions 83 and 85 of the beta D-beta E loop of VP1. Both regions surround the fivefold axis of the virion. Recombinant viruses containing positively charged residues at position 110 and 112 of VP1 were able to infect CHO-K1 cells (that expresses GAG) and demonstrated increased infectivity in BHK-21 cells. Therefore, recombinant SAT viruses engineered to express substitutions that induce GAG-binding could be exploited in the rational design of vaccine seed stocks with improved growth properties in cell cultures.
Collapse
Affiliation(s)
- Francois F Maree
- Transboundary Animal Diseases Programme, Onderstepoort Veterinary Institute, Agricultural Research Council, Onderstepoort 0110, South Africa.
| | | | | | | | | |
Collapse
|
28
|
Wargo AR, Garver KA, Kurath G. Virulence correlates with fitness in vivo for two M group genotypes of Infectious hematopoietic necrosis virus (IHNV). Virology 2010; 404:51-8. [PMID: 20494388 DOI: 10.1016/j.virol.2010.04.023] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 03/17/2010] [Accepted: 04/22/2010] [Indexed: 11/18/2022]
Abstract
The nature of the association between viral fitness and virulence remains elusive in vertebrate virus systems, partly due to a lack of in vivo experiments using statistically sufficient numbers of replicate hosts. We examined the relationship between virulence and fitness in Infectious hematopoietic necrosis virus (IHNV), in vivo, in intact living rainbow trout. Trout were infected with a high or low virulence genotype of M genogroup IHNV, or a mixture of the two genotypes, so as to calculate relative fitness and the effect of a competition environment on fitness. Fitness was measured as total viral load in the host at time of peak viral density, quantified by genotype-specific quantitative RT-PCR (qRT-PCR). The more virulent IHNV genotype reached higher densities in both single and mixed infections. There was no effect of competition on the performance of either genotype. Our results suggest a positive link between IHNV genotype fitness and virulence.
Collapse
Affiliation(s)
- Andrew R Wargo
- Western Fisheries Research Center, Seattle, WA 98115-5016, USA.
| | | | | |
Collapse
|
29
|
Arias A, Perales C, Escarmís C, Domingo E. Deletion mutants of VPg reveal new cytopathology determinants in a picornavirus. PLoS One 2010; 5:e10735. [PMID: 20505767 PMCID: PMC2873979 DOI: 10.1371/journal.pone.0010735] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Accepted: 04/30/2010] [Indexed: 11/18/2022] Open
Abstract
Background Success of a viral infection requires that each infected cell delivers a sufficient number of infectious particles to allow new rounds of infection. In picornaviruses, viral replication is initiated by the viral polymerase and a viral-coded protein, termed VPg, that primes RNA synthesis. Foot-and-mouth disease virus (FMDV) is exceptional among picornaviruses in that its genome encodes 3 copies of VPg. Why FMDV encodes three VPgs is unknown. Methodology and Principal Findings We have constructed four mutant FMDVs that encode only one VPg: either VPg1, VPg3, or two chimeric versions containing part of VPg1 and VPg3. All mutants, except that encoding only VPg1, were replication-competent. Unexpectedly, despite being replication-competent, the mutants did not form plaques on BHK-21 cell monolayers. The one-VPg mutant FMDVs released lower amounts of encapsidated viral RNA to the extracellular environment than wild type FMDV, suggesting that deficient plaque formation was associated with insufficient release of infectious progeny. Mutant FMDVs subjected to serial passages in BHK-21 cells regained plaque-forming capacity without modification of the number of copies of VPg. Substitutions in non-structural proteins 2C, 3A and VPg were associated with restoration of plaque formation. Specifically, replacement R55W in 2C was repeatedly found in several mutant viruses that had regained competence in plaque development. The effect of R55W in 2C was to mediate an increase in the extracellular viral RNA release without a detectable increase of total viral RNA that correlated with an enhanced capacity to alter and detach BHK-21 cells from the monolayer, the first stage of cell killing. Conclusions The results link the VPg copies in the FMDV genome with the cytopathology capacity of the virus, and have unveiled yet another function of 2C: modulation of picornavirus cell-to-cell transmission. Implications for picornaviruses pathogenesis are discussed.
Collapse
Affiliation(s)
- Armando Arias
- Departamento de Virología y Microbiología, Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
| | - Celia Perales
- Departamento de Virología y Microbiología, Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Cristina Escarmís
- Departamento de Virología y Microbiología, Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
| | - Esteban Domingo
- Departamento de Virología y Microbiología, Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
- * E-mail:
| |
Collapse
|
30
|
Abstract
During replication, RNA viruses rapidly generate diverse mutant progeny which differ in their ability to kill host cells. We report that the progeny of a single RNA viral genome diversified during hundreds of passages in cell culture and self-organized into two genetically distinct subpopulations that exhibited the competition-colonization dynamics previously recognized in many classical ecological systems. Viral colonizers alone were more efficient in killing cells than competitors in culture. In cells coinfected with both competitors and colonizers, viral interference resulted in reduced cell killing, and competitors replaced colonizers. Mathematical modeling of this coinfection dynamics predicted selection to be density dependent, which was confirmed experimentally. Thus, as is known for other ecological systems, biodiversity and even cell killing of virus populations can be shaped by a tradeoff between competition and colonization. Our results suggest a model for the evolution of virulence in viruses based on internal interactions within mutant spectra of viral quasispecies.
Collapse
|
31
|
Aguirre J, Lázaro E, Manrubia SC. A trade-off between neutrality and adaptability limits the optimization of viral quasispecies. J Theor Biol 2009; 261:148-55. [DOI: 10.1016/j.jtbi.2009.07.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 07/02/2009] [Accepted: 07/28/2009] [Indexed: 11/15/2022]
|
32
|
Increasing clinical virulence in two decades of the Italian HIV epidemic. PLoS Pathog 2009; 5:e1000454. [PMID: 19478880 PMCID: PMC2682199 DOI: 10.1371/journal.ppat.1000454] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Accepted: 04/28/2009] [Indexed: 11/19/2022] Open
Abstract
The recent origin and great evolutionary potential of HIV imply that the virulence of the virus might still be changing, which could greatly affect the future of the pandemic. However, previous studies of time trends of HIV virulence have yielded conflicting results. Here we used an established methodology to assess time trends in the severity (virulence) of untreated HIV infections in a large Italian cohort. We characterized clinical virulence by the decline slope of the CD4 count (n = 1423 patients) and the viral setpoint (n = 785 patients) in untreated patients with sufficient data points. We used linear regression models to detect correlations between the date of diagnosis (ranging 1984-2006) and the virulence markers, controlling for gender, exposure category, age, and CD4 count at entry. The decline slope of the CD4 count and the viral setpoint displayed highly significant correlation with the date of diagnosis pointing in the direction of increasing virulence. A detailed analysis of riskgroups revealed that the epidemics of intravenous drug users started with an apparently less virulent virus, but experienced the strongest trend towards steeper CD4 decline among the major exposure categories. While our study did not allow us to exclude the effect of potential time trends in host factors, our findings are consistent with the hypothesis of increasing HIV virulence. Importantly, the use of an established methodology allowed for a comparison with earlier results, which confirmed that genuine differences exist in the time trends of HIV virulence between different epidemics. We thus conclude that there is not a single global trend of HIV virulence, and results obtained in one epidemic cannot be extrapolated to others. Comparison of discordant patterns between riskgroups and epidemics hints at a converging trend, which might indicate that an optimal level of virulence might exist for the virus.
Collapse
|
33
|
Rolland M, Kerlan C, Jacquot E. The acquisition of molecular determinants involved in potato virus Y necrosis capacity leads to fitness reduction in tobacco plants. J Gen Virol 2009; 90:244-52. [PMID: 19088295 DOI: 10.1099/vir.0.005140-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The prevalence of necrotic potato virus Y (PVY) in natural populations could reflect increased fitness of necrotic isolates. In this paper, the effects of the acquisition of molecular determinants (A/G(2213) and A/C(2271)) involved in necrosis capacity on both the number of progeny produced and the competitiveness of PVY were characterized. The relationship between necrosis and fitness was tested using (i) Nicotiana tabacum cv. Xanthi and Nicotiana clevelandii, (ii) necrotic PVY(N)-605 and non-necrotic PVY(O)-139 isolates, (iii) single-mutated (PVY(KR) and PVY(ED)) and double-mutated (PVY(KRED)) versions of PVY(N)-605 and (iv) three quantitative PCR assays specific for nt A(2213), G(2213) and A(2271) of the PVY genome. The data demonstrated effects of both the genetic background and nt 2213 and 2271 on the fitness of PVY. Quantification of PVY RNA in singly infected plants revealed that both the PVY(N)-605 genetic background and the acquisition of necrotic capacity resulted in a decrease in the number of progeny produced. Competition experiments revealed that the genetic background of PVY(N) had a positive impact on competitiveness. In contrast, nucleotides involved in necrotic properties were associated with decreased fitness. Finally, in the host that did not respond to infection with necrosis, the benefit associated with the PVY(N)-605 genetic background was higher than the cost associated with the acquisition of molecular determinants involved in necrosis capacity. The opposite result was obtained in the host responding to the infection with necrosis. These results indicate that the emergence of necrotic isolates from a non-necrotic population is unlikely in tobacco.
Collapse
Affiliation(s)
- Mathieu Rolland
- INRA-Agrocampus Ouest-Université Rennes 1, UMR1099 BiO3P (Biology of Organisms and Populations applied to Plant Protection), F-35653 Le Rheu, France
| | | | | |
Collapse
|
34
|
Variations in the H/ACA box sequence of viral telomerase RNA of isolates of CVI988 Rispens vaccine. Arch Virol 2008; 153:1563-8. [PMID: 18594940 DOI: 10.1007/s00705-008-0152-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Accepted: 05/28/2008] [Indexed: 10/21/2022]
Abstract
The use of the complete DNA sequence for the Marek's disease virus (MDV) serotype 1 vaccine strain CVI988 Rispens in comparative genomic studies with virulent strains of MDV has revealed the presence of a number of insertions, deletions and single-nucleotide polymorphisms. In this study, we investigated a SNP in the H/ACA box of the viral RNA subunit of telomerase (vTR). We sequenced vTR from four different batches of CVI988 vaccine originating from a single commercial company. The A-to-G mutation defining the SNP in the H/ACA box of CVI988 vTR was present in only some of the batches. Thus, although this mutation affects CVI988 vTR function, it is not shared by all CVI988 isolates and may be a stochastic rather than causative event in CVI988 attenuation.
Collapse
|
35
|
Jalasvuori M, Bamford JKH. Structural co-evolution of viruses and cells in the primordial world. ORIGINS LIFE EVOL B 2008; 38:165-81. [PMID: 18228159 DOI: 10.1007/s11084-008-9121-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Accepted: 01/07/2008] [Indexed: 10/22/2022]
Abstract
Viruses and cells co-evolve due to the parasitic nature of viruses. Yet there are no models suggesting how the unicellular organisms and their viruses might co-evolve structurally. Here, in this study, we plunge into this unexplored field from a wide perspective and try to describe some of the intriguing ways in which viruses may have shaped the cellular life forms on the ancient Earth. At first we propose a scenario where viruses act as a driving force in the emergence of bacterial cell walls by providing favorable intermediates for the otherwise improbable steps in the cell wall generation. We also discuss the role of viruses in the evolution of cell surface components such as receptors and second membranes. Finally we focus on hypothetical proto-viruses, the selfish abusers of the RNA-world, in explaining some of the very early stages in the origin and evolution of life. Proto-viruses may be responsible for creating the first true cells in order to support their selfish needs. In this model we also suggest a logical pathway to explaining the emergence of modern viruses.
Collapse
Affiliation(s)
- Matti Jalasvuori
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyväskylä, P.O. Box 35, FIN-410014, Jyväskylä, Finland.
| | | |
Collapse
|
36
|
Domingo E, Escarmís C, Menéndez-Arias L, Perales C, Herrera M, Novella IS, Holland JJ. Viral Quasispecies: Dynamics, Interactions, and Pathogenesis *. ORIGIN AND EVOLUTION OF VIRUSES 2008. [PMCID: PMC7149507 DOI: 10.1016/b978-0-12-374153-0.00004-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Quasispecies theory is providing a solid, evolving conceptual framework for insights into virus population dynamics, adaptive potential, and response to lethal mutagenesis. The complexity of mutant spectra can influence disease progression and viral pathogenesis, as demonstrated using virus variants selected for increased replicative fidelity. Complementation and interference exerted among components of a viral quasispecies can either reinforce or limit the replicative capacity and disease potential of the ensemble. In particular, a progressive enrichment of a replicating mutant spectrum with interfering mutant genomes prompted by enhanced mutagenesis may be a key event in the sharp transition of virus populations into error catastrophe that leads to virus extinction. Fitness variations are influenced by the passage regimes to which viral populations are subjected, notably average fitness decreases upon repeated bottleneck events and fitness gains upon competitive optimization of large viral populations. Evolving viral quasispecies respond to selective constraints by replication of subpopulations of variant genomes that display higher fitness than the parental population in the presence of the selective constraint. This has been profusely documented with fitness effects of mutations associated with resistance of pathogenic viruses to antiviral agents. In particular, selection of HIV-1 mutants resistant to one or multiple antiretroviral inhibitors, and the compensatory effect of mutations in the same genome, offers a compendium of the molecular intricacies that a virus can exploit for its survival. This chapter reviews the basic principles of quasispecies dynamics as they can serve to explain the behavior of viruses.
Collapse
|
37
|
Herrera M, Grande-Pérez A, Perales C, Domingo E. Persistence of foot-and-mouth disease virus in cell culture revisited: implications for contingency in evolution. J Gen Virol 2008; 89:232-244. [DOI: 10.1099/vir.0.83312-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
If we could rewind the tape of evolution and play it again, would it turn out to be similar to or different from what we know? Obviously, this key question can only be addressed by fragmentary experimental approaches. Twenty-two years ago, we described the establishment of BHK-21 cells persistently infected with foot-and-mouth disease virus (FMDV), a system that displayed as its major biological feature a coevolution of the cells and the resident virus in the course of persistence. Now we report the establishment of two persistently infected cell lines in parallel, starting with the same clones of FMDV and BHK-21 cells used 22 years ago. We have asked whether the evolution of the two newly established cell lines and of the earlier cell line would be similar or different. The main conclusions of the study are: (i) the basic behaviour characterized by virus–cell coevolution is similar in the three carrier cell lines, despite differences in some genetic alterations of FMDV; (ii) a strikingly parallel behaviour has been observed with the two newly established cell lines passaged in parallel, unveiling a deterministic virus behaviour during persistence; and (iii) selective RT-PCR amplifications have detected imbalances in the proportion of positive- versus negative-strand viral RNA, mediated by both viral and cellular factors. The results confirm coevolution of cells and virus as a major and reproducible feature of FMDV persistence in cell culture, and suggest that rapidly evolving viruses may constitute adequate test systems to probe the influence of historical contingency on evolutionary events.
Collapse
Affiliation(s)
- Mónica Herrera
- Centro de Biología Molecular ‘Severo Ochoa’ (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Ana Grande-Pérez
- Centro de Biología Molecular ‘Severo Ochoa’ (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Celia Perales
- Centro de Biología Molecular ‘Severo Ochoa’ (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Esteban Domingo
- Centro de Biología Molecular ‘Severo Ochoa’ (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
38
|
Carrasco P, de la Iglesia F, Elena SF. Distribution of fitness and virulence effects caused by single-nucleotide substitutions in Tobacco Etch virus. J Virol 2007; 81:12979-84. [PMID: 17898073 PMCID: PMC2169111 DOI: 10.1128/jvi.00524-07] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Accepted: 09/16/2007] [Indexed: 11/20/2022] Open
Abstract
Little is known about the fitness and virulence consequences of single-nucleotide substitutions in RNA viral genomes, and most information comes from the analysis of nonrandom sets of mutations with strong phenotypic effect or which have been assessed in vitro, with their relevance in vivo being unclear. Here we used site-directed mutagenesis to create a collection of 66 clones of Tobacco etch potyvirus, each carrying a different, randomly chosen, single-nucleotide substitution. Competition experiments between each mutant and the ancestral nonmutated clone were performed in planta to quantitatively assess the relative fitness of each mutant genotype. Among all mutations, 40.9% were lethal, and among the viable ones, 36.4% were significantly deleterious and 22.7% neutral. Not a single case of beneficial effects was observed within the level of resolution of our measures. On average, the fitness of a genotype carrying a deleterious but viable mutation was 49% smaller than that for its unmutated progenitor. Deleterious mutational effects conformed to a beta probability distribution. The virulence of a subset of viable mutants was assessed as the reduction in the number of viable seeds produced by infected plants. Mutational effects on virulence ranged between 17% reductions and 24.4% increases. Interestingly, the only mutations showing a significant effect on virulence were hypervirulent. Competitive fitness and virulence were uncorrelated traits.
Collapse
Affiliation(s)
- Purificación Carrasco
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), Avenida de los naranjos s/n, 46022 València, Spain
| | | | | |
Collapse
|
39
|
Repeated bottleneck transfers can lead to non-cytocidal forms of a cytopathic virus: implications for viral extinction. J Mol Biol 2007; 376:367-79. [PMID: 18158159 DOI: 10.1016/j.jmb.2007.11.042] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Revised: 11/12/2007] [Accepted: 11/13/2007] [Indexed: 11/23/2022]
Abstract
Several biological subclones of a biological clone of foot-and-mouth disease virus (FMDV) have been subjected to many plaque-to-plaque (serial bottleneck) transfers in cell culture. At transfer 190 to 409, clones underwent a transition towards a non-cytolytic (NC) phenotype in which the virus was unable to produce plaques, representing at least a 140-fold reduction in specific infectivity relative to the parental biological clone. NC clones, however, were competent in RNA replication and established a persistent infection in cell culture without an intervening cytolytic phase. In one clone, the transition to the NC phenotype was associated with the elongation of an internal oligodenylate tract that precedes the second functional AUG translation initiation codon. The pattern of mutations and their distribution along the FMDV genome of the clones subjected to serial bottleneck transfers were compared with the pattern of mutations in FMDV clones subjected to large population passages. Both the corrected ratios of non-synonymous to synonymous mutations and some specific mutations in coding and non-coding regions suggest participation of positive selection during large population passages and not during bottleneck transfers. Some mutations in the clones that attained the NC phenotype were located in genomic regions affecting the capacity of FMDV to kill BHK-21 cells. The resistance to extinction of clones subjected to plaque-to-plaque transfers marks a striking contrast with regard to the ease of extinction mediated by lethal mutagenesis. The results document a major phenotypic transition of a virus as a result of serial bottleneck events.
Collapse
|