1
|
Ernst S, Nonno R, Langeveld J, Andreoletti O, Acin C, Papasavva-Stylianou P, Sklaviadis T, Acutis PL, van Keulen L, Spiropoulos J, Keller M, Groschup MH, Fast C. Characterisation of European Field Goat Prion Isolates in Ovine PrP Overexpressing Transgenic Mice (Tgshp IX) Reveals Distinct Prion Strains. Pathogens 2024; 13:629. [PMID: 39204230 PMCID: PMC11357236 DOI: 10.3390/pathogens13080629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 09/03/2024] Open
Abstract
After the detection of bovine spongiform encephalopathy (BSE), and a zoonotic transmissible spongiform encephalopathy (TSE) caused by the pathological prion protein (PrPSc) in two goats, the investigation of goat prions became of greater interest. Therefore, a broad collection of European goat TSE isolates, including atypical scrapie, CH1641 and goat BSE as reference prion strains were biochemically characterised and subsequently inoculated into seven rodent models for further analysis (already published results of this comprehensive study are reviewed here for comparative reasons). We report here the histopathological and immunohistochemical data of this goat TSE panel, obtained after the first passage in Tgshp IX (tg-shARQ) mice, which overexpress the ovine prion protein. In addition to the clear-cut discrimination of all reference prion strains from the classical scrapie (CS) isolates, we were further able to determine three categories of CS strains. The investigation further indicates the occurrence of sub-strains that slightly resemble distant TSE strains, such as BSE or CH1641, reinforcing the theory that CS is not a single strain but a mixture of sub-strains, existing at varying extents in one isolate. This study further proved that Tgshp IX is a potent and reliable tool for the in-depth characterisation of prion strains.
Collapse
Affiliation(s)
- Sonja Ernst
- Friedrich-Loeffler-Institut, 17493 Greifswald-Isle of Riems, Germany; (S.E.)
| | - Romolo Nonno
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Jan Langeveld
- Wageningen BioVeterinary Research, Wageningen University & Research, P.O. Box 65, 8200 AB Lelystad, The Netherlands
| | - Olivier Andreoletti
- UMR INRAe/ENVT 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, 31076 Toulouse, France
| | - Cristina Acin
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Universidad de Zaragoza IA2 IIS Aragón, C/ Miguel Servet 177, 50013 Zaragoza, Spain
| | | | - Theodoros Sklaviadis
- School of Pharmacy, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Pier Luigi Acutis
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Torino, Italy
| | - Lucien van Keulen
- Wageningen BioVeterinary Research, Wageningen University & Research, P.O. Box 65, 8200 AB Lelystad, The Netherlands
| | - John Spiropoulos
- Department of Pathology and Animal Science, APHA Weybridge, Addlestone KT15 3NB, Surrey, UK
| | - Markus Keller
- Friedrich-Loeffler-Institut, 17493 Greifswald-Isle of Riems, Germany; (S.E.)
| | - Martin H. Groschup
- Friedrich-Loeffler-Institut, 17493 Greifswald-Isle of Riems, Germany; (S.E.)
| | - Christine Fast
- Friedrich-Loeffler-Institut, 17493 Greifswald-Isle of Riems, Germany; (S.E.)
| |
Collapse
|
2
|
Bartz JC, Benavente R, Caughey B, Christensen S, Herbst A, Hoover EA, Mathiason CK, McKenzie D, Morales R, Schwabenlander MD, Walsh DP. Chronic Wasting Disease: State of the Science. Pathogens 2024; 13:138. [PMID: 38392876 PMCID: PMC10892334 DOI: 10.3390/pathogens13020138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Chronic wasting disease (CWD) is a prion disease affecting cervid species, both free-ranging and captive populations. As the geographic range continues to expand and disease prevalence continues to increase, CWD will have an impact on cervid populations, local economies, and ecosystem health. Mitigation of this "wicked" disease will require input from many different stakeholders including hunters, landowners, research biologists, wildlife managers, and others, working together. The NC1209 (North American interdisciplinary chronic wasting disease research consortium) is composed of scientists from different disciplines involved with investigating and managing CWD. Leveraging this broad breadth of expertise, the Consortium has created a state-of-the-science review of five key aspects of CWD, including current diagnostic capabilities for detecting prions, requirements for validating these diagnostics, the role of environmental transmission in CWD dynamics, and potential zoonotic risks associated with CWD. The goal of this review is to increase stakeholders', managers', and decision-makers' understanding of this disease informed by current scientific knowledge.
Collapse
Affiliation(s)
- Jason C. Bartz
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, NE 68178, USA;
| | - Rebeca Benavente
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (R.B.); (R.M.)
| | - Byron Caughey
- Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA;
| | - Sonja Christensen
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824, USA;
| | - Allen Herbst
- U.S. Geological Survey, National Wildlife Health Center, Madison, WI 53711, USA;
| | - Edward A. Hoover
- Prion Research Center, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (E.A.H.); (C.K.M.)
| | - Candace K. Mathiason
- Prion Research Center, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (E.A.H.); (C.K.M.)
| | - Debbie McKenzie
- Department of Biological Sciences, Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2M9, Canada;
| | - Rodrigo Morales
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (R.B.); (R.M.)
- Centro Integrativo de Biologia y Quimica Aplicada (CIBQA), Universidad Bernardo O’Higgins, Santiago 8370993, Chile
| | - Marc D. Schwabenlander
- Minnesota Center for Prion Research and Outreach, Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA;
| | - Daniel P. Walsh
- U.S. Geological Survey, Montana Cooperative Wildlife Research Unit, University of Montana, Missoula, MT 59812, USA
| | | |
Collapse
|
3
|
Concha-Marambio L, Wang F, Armijo E, Gorski D, Ramirez F, Scowcroft A, Pritzkow S, Soto C. Development of a methodology for large-scale production of prions for biological and structural studies. Front Mol Biosci 2023; 10:1184029. [PMID: 37635939 PMCID: PMC10449461 DOI: 10.3389/fmolb.2023.1184029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/31/2023] [Indexed: 08/29/2023] Open
Abstract
Prion diseases are a group of infectious neurodegenerative diseases produced by the conversion of the normal prion protein (PrPC) into the disease-associated form (PrPSc). Extensive evidence indicate that the main or sole component of the infectious agent is PrPSc, which can replicate in affected individuals in the absence of nucleic acids. However, the mechanism of PrPC-to-PrPSc conversion remains elusive, which has been attributed to the lack of sufficient structural information of infectious PrPSc and a reliable system to study prion replication in vitro. In this article we adapted the Protein Misfolding Cyclic Amplification (PMCA) technology for rapid and efficient generation of highly infectious prions in large-scale. Murine prions of the RML strain were efficiently propagated in volumes up to 1,000-fold larger than conventional PMCA. The large-scale PMCA (LS-PMCA) procedure enabled to produce highly infectious prions, which maintain the strain properties of the seed used to begin the reaction. LS-PMCA was shown to work with various species and strains of prions, including mouse RML and 301C strains, hamster Hyper prion, cervid CWD prions, including a rare Norwegian CWD prion, and human CJD prions. We further improved the LS-PMCA into a bioreactor format that can operate under industry-mimicking conditions for continuous and unlimited production of PrPSc without the need to keep adding brain-derived prions. In our estimation, this bioreactor can produce in 1d an amount of prions equivalent to that present in 25 infected animals at the terminal stage of the disease. Our LS-PMCA technology may provide a valuable tool to produce large quantities of well-defined and homogeneous infectious prions for biological and structural studies.
Collapse
Affiliation(s)
- Luis Concha-Marambio
- Department of Neurology, Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, United States
- Amprion Inc., San Diego, CA, United States
| | - Fei Wang
- Department of Neurology, Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, United States
| | - Enrique Armijo
- Department of Neurology, Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, United States
| | - Damian Gorski
- Department of Neurology, Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, United States
| | - Frank Ramirez
- Department of Neurology, Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, United States
| | - Andrew Scowcroft
- Department of Neurology, Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, United States
| | - Sandra Pritzkow
- Department of Neurology, Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, United States
| | - Claudio Soto
- Department of Neurology, Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, United States
- Amprion Inc., San Diego, CA, United States
| |
Collapse
|
4
|
Wang F, Pritzkow S, Soto C. PMCA for ultrasensitive detection of prions and to study disease biology. Cell Tissue Res 2023; 392:307-321. [PMID: 36567368 PMCID: PMC9790818 DOI: 10.1007/s00441-022-03727-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/08/2022] [Indexed: 12/27/2022]
Abstract
The emergence of a novel class of infectious agent composed exclusively of a misfolded protein (termed prions) has been a challenge in modern biomedicine. Despite similarities on the behavior of prions with respect to conventional pathogens, the many uncertainties regarding the biology and virulence of prions make them a worrisome paradigm. Since prions do not contain nucleic acids and rely on a very different way of replication and spreading, it was necessary to invent a novel technology to study them. In this article, we provide an overview of such a technology, termed protein misfolding cyclic amplification (PMCA), and summarize its many applications to detect prions and understand prion biology.
Collapse
Affiliation(s)
- Fei Wang
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Sandra Pritzkow
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Claudio Soto
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas McGovern Medical School, Houston, TX, 77030, USA.
| |
Collapse
|
5
|
Block AJ, Bartz JC. Prion strains: shining new light on old concepts. Cell Tissue Res 2023; 392:113-133. [PMID: 35796874 PMCID: PMC11318079 DOI: 10.1007/s00441-022-03665-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/23/2022] [Indexed: 02/04/2023]
Abstract
Prion diseases are a group of inevitably fatal neurodegenerative disorders affecting numerous mammalian species, including humans. The existence of heritable phenotypes of disease in the natural host suggested that prions exist as distinct strains. Transmission of sheep scrapie to rodent models accelerated prion research, resulting in the isolation and characterization of numerous strains with distinct characteristics. These strains are grouped into categories based on the incubation period of disease in different strains of mice and also by how stable the strain properties were upon serial passage. These classical studies defined the host and agent parameters that affected strain properties, and, prior to the advent of the prion hypothesis, strain properties were hypothesized to be the result of mutations in a nucleic acid genome of a conventional pathogen. The development of the prion hypothesis challenged the paradigm of infectious agents, and, initially, the existence of strains was difficult to reconcile with a protein-only agent. In the decades since, much evidence has revealed how a protein-only infectious agent can perform complex biological functions. The prevailing hypothesis is that strain-specific conformations of PrPSc encode prion strain diversity. This hypothesis can provide a mechanism to explain the observed strain-specific differences in incubation period of disease, biochemical properties of PrPSc, tissue tropism, and subcellular patterns of pathology. This hypothesis also explains how prion strains mutate, evolve, and adapt to new species. These concepts are applicable to prion-like diseases such as Parkinson's and Alzheimer's disease, where evidence of strain diversity is beginning to emerge.
Collapse
Affiliation(s)
- Alyssa J Block
- Department of Medical Microbiology and Immunology, Creighton University, 2500 California Plaza, Omaha, NE, 68178, USA
| | - Jason C Bartz
- Department of Medical Microbiology and Immunology, Creighton University, 2500 California Plaza, Omaha, NE, 68178, USA.
| |
Collapse
|
6
|
Sun JL, Telling GC. New developments in prion disease research using genetically modified mouse models. Cell Tissue Res 2023; 392:33-46. [PMID: 36929219 DOI: 10.1007/s00441-023-03761-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 03/03/2023] [Indexed: 03/18/2023]
Abstract
While much of what we know about the general principles of protein-based information transfer derives from studies of experimentally adapted rodent prions, these laboratory strains are limited in their ability to recapitulate features of human and animal prions and the diseases they produce. Here, we review how recent approaches using genetically modified mice have informed our understanding of naturally occurring prion diseases, their strain properties, and the factors controlling their transmission and evolution. In light of the increasing importance of chronic wasting disease, the application of mouse transgenesis to study this burgeoning and highly contagious prion disorder, in particular recent insights derived from gene-targeting approaches, will be a major focus of this review.
Collapse
Affiliation(s)
- Julianna L Sun
- Prion Research Center, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, USA
| | - Glenn C Telling
- Prion Research Center, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, USA.
| |
Collapse
|
7
|
Block AJ, York TC, Benedict R, Ma J, Bartz JC. Prion protein amino acid sequence influences formation of authentic synthetic PrP Sc. Sci Rep 2023; 13:441. [PMID: 36624174 PMCID: PMC9829857 DOI: 10.1038/s41598-022-26300-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/13/2022] [Indexed: 01/11/2023] Open
Abstract
Synthetic prions, generated de novo from minimal, non-infectious components, cause bona fide prion disease in animals. Transmission of synthetic prions to hosts expressing syngeneic PrPC results in extended, variable incubation periods and incomplete attack rates. In contrast, murine synthetic prions (MSP) generated via PMCA with minimal cofactors readily infected mice and hamsters and rapidly adapted to both species. To investigate if hamster synthetic prions (HSP) generated under the same conditions as the MSP are also highly infectious, we inoculated hamsters with HSP generated with either hamster wild type or mutant (ΔG54, ΔG54/M139I, M139I/I205M) recombinant PrP. None of the inoculated hamsters developed clinical signs of prion disease, however, brain homogenate from HSPWT- and HSPΔG54-infected hamsters contained PrPSc, indicating subclinical infection. Serial passage in hamsters resulted in clinical disease at second passage accompanied by changes in incubation period and PrPSc conformational stability between second and third passage. These data suggest the HSP, in contrast to the MSP, are not comprised of PrPSc, and instead generate authentic PrPSc via deformed templating. Differences in infectivity between the MSP and HSP suggest that, under similar generation conditions, the amino acid sequence of PrP influences generation of authentic PrPSc.
Collapse
Affiliation(s)
- Alyssa J Block
- Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, 2500 California Plaza, Omaha, NE, 68178, USA
| | - Taylor C York
- Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, 2500 California Plaza, Omaha, NE, 68178, USA
| | - Romilly Benedict
- Department of Plant, Soil, and Microbial Sciences, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, USA
| | - Jiyan Ma
- Van Andel Institute, Center for Neurodegenerative Science, Grand Rapids, MI, USA
| | - Jason C Bartz
- Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, 2500 California Plaza, Omaha, NE, 68178, USA.
| |
Collapse
|
8
|
Wang Z, Qin K, Camacho MV, Cali I, Yuan J, Shen P, Greenlee J, Kong Q, Mastrianni JA, Zou WQ. Generation of human chronic wasting disease in transgenic mice. Acta Neuropathol Commun 2021; 9:158. [PMID: 34565488 PMCID: PMC8474769 DOI: 10.1186/s40478-021-01262-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 09/08/2021] [Indexed: 12/23/2022] Open
Abstract
Chronic wasting disease (CWD) is a cervid prion disease caused by the accumulation of an infectious misfolded conformer (PrPSc) of cellular prion protein (PrPC). It has been spreading rapidly in North America and also found in Asia and Europe. Although bovine spongiform encephalopathy (i.e. mad cow disease) is the only animal prion disease known to be zoonotic, the transmissibility of CWD to humans remains uncertain. Here we report the generation of the first CWD-derived infectious human PrPSc by elk CWD PrPSc-seeded conversion of PrPC in normal human brain homogenates using in vitro protein misfolding cyclic amplification (PMCA). Western blotting with human PrP selective antibody confirmed that the PMCA-generated protease-resistant PrPSc was derived from the human PrPC substrate. Two lines of humanized transgenic mice expressing human PrP with either Val or Met at the polymorphic codon 129 developed clinical prion disease following intracerebral inoculation with the PMCA-generated CWD-derived human PrPSc. Diseased mice exhibited distinct PrPSc patterns and neuropathological changes in the brain. Our study, using PMCA and animal bioassays, provides the first evidence that CWD PrPSc can cross the species barrier to convert human PrPC into infectious PrPSc that can produce bona fide prion disease when inoculated into humanized transgenic mice.
Collapse
|
9
|
Peden AH, Suleiman S, Barria MA. Understanding Intra-Species and Inter-Species Prion Conversion and Zoonotic Potential Using Protein Misfolding Cyclic Amplification. Front Aging Neurosci 2021; 13:716452. [PMID: 34413769 PMCID: PMC8368127 DOI: 10.3389/fnagi.2021.716452] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/07/2021] [Indexed: 11/17/2022] Open
Abstract
Prion diseases are fatal neurodegenerative disorders that affect humans and animals, and can also be transmitted from animals to humans. A fundamental event in prion disease pathogenesis is the conversion of normal host prion protein (PrPC) to a disease-associated misfolded form (PrPSc). Whether or not an animal prion disease can infect humans cannot be determined a priori. There is a consensus that classical bovine spongiform encephalopathy (C-type BSE) in cattle transmits to humans, and that classical sheep scrapie is of little or no risk to human health. However, the zoonotic potential of more recently identified animal prion diseases, such as atypical scrapie, H-type and L-type BSE and chronic wasting disease (CWD) in cervids, remains an open question. Important components of the zoonotic barrier are (i) physiological differences between humans and the animal in question, (ii) amino acid sequence differences of the animal and human PrPC, and (iii) the animal prion strain, enciphered in the conformation of PrPSc. Historically, the direct inoculation of experimental animals has provided essential information on the transmissibility and compatibility of prion strains. More recently, cell-free molecular conversion assays have been used to examine the molecular compatibility on prion replication and zoonotic potential. One such assay is Protein Misfolding Cyclic Amplification (PMCA), in which a small amount of infected tissue homogenate, containing PrPSc, is added as a seed to an excess of normal tissue homogenate containing PrPC, and prion conversion is accelerated by cycles of incubation and ultrasonication. PMCA has been used to measure the molecular feasibility of prion transmission in a range of scenarios using genotypically homologous and heterologous combinations of PrPSc seed and PrPC substrate. Furthermore, this method can be used to speculate on the molecular profile of PrPSc that might arise from a zoonotic transmission. We discuss the experimental approaches that have been used to model both the intra- and inter-species molecular compatibility of prions, and the factors affecting PrPc to PrPSc conversion and zoonotic potential. We conclude that cell-free prion protein conversion assays, especially PMCA, are useful, rapid and low-cost approaches for elucidating the mechanisms of prion propagation and assessing the risk of animal prions to humans.
Collapse
Affiliation(s)
- Alexander H Peden
- National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, Deanery of Clinical Medicine, The University of Edinburgh, Edinburgh, United Kingdom
| | - Suzanne Suleiman
- National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, Deanery of Clinical Medicine, The University of Edinburgh, Edinburgh, United Kingdom
| | - Marcelo A Barria
- National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, Deanery of Clinical Medicine, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
10
|
Bian J, Kim S, Kane SJ, Crowell J, Sun JL, Christiansen J, Saijo E, Moreno JA, DiLisio J, Burnett E, Pritzkow S, Gorski D, Soto C, Kreeger TJ, Balachandran A, Mitchell G, Miller MW, Nonno R, Vikøren T, Våge J, Madslien K, Tran L, Vuong TT, Benestad SL, Telling GC. Adaptive selection of a prion strain conformer corresponding to established North American CWD during propagation of novel emergent Norwegian strains in mice expressing elk or deer prion protein. PLoS Pathog 2021; 17:e1009748. [PMID: 34310663 PMCID: PMC8341702 DOI: 10.1371/journal.ppat.1009748] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/05/2021] [Accepted: 06/24/2021] [Indexed: 12/24/2022] Open
Abstract
Prions are infectious proteins causing fatal, transmissible neurodegenerative diseases of animals and humans. Replication involves template-directed refolding of host encoded prion protein, PrPC, by its infectious conformation, PrPSc. Following its discovery in captive Colorado deer in 1967, uncontrollable contagious transmission of chronic wasting disease (CWD) led to an expanded geographic range in increasing numbers of free-ranging and captive North American (NA) cervids. Some five decades later, detection of PrPSc in free-ranging Norwegian (NO) reindeer and moose marked the first indication of CWD in Europe. To assess the properties of these emergent NO prions and compare them with NA CWD we used transgenic (Tg) and gene targeted (Gt) mice expressing PrP with glutamine (Q) or glutamate (E) at residue 226, a variation in wild type cervid PrP which influences prion strain selection in NA deer and elk. Transmissions of NO moose and reindeer prions to Tg and Gt mice recapitulated the characteristic features of CWD in natural hosts, revealing novel prion strains with disease kinetics, neuropathological profiles, and capacities to infect lymphoid tissues and cultured cells that were distinct from those causing NA CWD. In support of strain variation, PrPSc conformers comprising emergent NO moose and reindeer CWD were subject to selective effects imposed by variation at residue 226 that were different from those controlling established NA CWD. Transmission of particular NO moose CWD prions in mice expressing E at 226 resulted in selection of a kinetically optimized conformer, subsequent transmission of which revealed properties consistent with NA CWD. These findings illustrate the potential for adaptive selection of strain conformers with improved fitness during propagation of unstable NO prions. Their potential for contagious transmission has implications for risk analyses and management of emergent European CWD. Finally, we found that Gt mice expressing physiologically controlled PrP levels recapitulated the lymphotropic properties of naturally occurring CWD strains resulting in improved susceptibilities to emergent NO reindeer prions compared with over-expressing Tg counterparts. These findings underscore the refined advantages of Gt models for exploring the mechanisms and impacts of strain selection in peripheral compartments during natural prion transmission. Prions cause fatal, transmissible neurodegenerative diseases in animals and humans. They are composed of an infectious, neurotoxic protein (PrP) which replicates by imposing pathogenic conformations on its normal, host-encoded counterpart. Chronic wasting disease (CWD) is a contagious prion disorder threatening increasing numbers of free-ranging and captive North American deer, elk, and moose. While CWD detection in Norwegian reindeer and moose in 2016 marked the advent of disease in Europe, its origins and relationship to North American CWD were initially unclear. Here we show, using mice engineered to express deer or elk PrP, that Norwegian reindeer and moose CWD are caused by novel prion strains with properties distinct from those of North American CWD. We found that selection and propagation of North American and Norwegian CWD strains was controlled by a key amino acid residue in host PrP. We also found that particular Norwegian isolates adapted during their propagation in mice to produce prions with characteristics of the North American strain. Our findings defining the transmission profiles of novel Norwegian prions and their unstable potential to produce adapted strains with improved fitness for contagious transmission have implications for risk analyses and management of emergent European CWD.
Collapse
Affiliation(s)
- Jifeng Bian
- Prion Research Center (PRC), the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Sehun Kim
- Prion Research Center (PRC), the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Sarah J. Kane
- Prion Research Center (PRC), the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Jenna Crowell
- Prion Research Center (PRC), the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Julianna L. Sun
- Prion Research Center (PRC), the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
- Program in Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Jeffrey Christiansen
- Prion Research Center (PRC), the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Eri Saijo
- Prion Research Center (PRC), the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Julie A. Moreno
- Prion Research Center (PRC), the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - James DiLisio
- Prion Research Center (PRC), the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Emily Burnett
- Prion Research Center (PRC), the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Sandra Pritzkow
- Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, Department of Neurology, University of Texas Houston Medical School, Houston, Texas, United States of America
| | - Damian Gorski
- Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, Department of Neurology, University of Texas Houston Medical School, Houston, Texas, United States of America
| | - Claudio Soto
- Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, Department of Neurology, University of Texas Houston Medical School, Houston, Texas, United States of America
| | - Terry J. Kreeger
- Wyoming Game and Fish Department, Wheatland, Wyoming, United States of America
| | - Aru Balachandran
- Canadian Food Inspection Agency, National and OIE Reference Laboratory for Scrapie and CWD, Ottawa, Canada
| | - Gordon Mitchell
- Canadian Food Inspection Agency, National and OIE Reference Laboratory for Scrapie and CWD, Ottawa, Canada
| | - Michael W. Miller
- Colorado Parks and Wildlife, Fort Collins, Colorado, United States of America
| | - Romolo Nonno
- Istituto Superiore di Sanità, Department of Veterinary Public Health, Nutrition and Food Safety, Rome, Italy
| | - Turid Vikøren
- Norwegian Veterinary Institute, OIE Reference laboratory for CWD, Oslo, Norway
| | - Jørn Våge
- Norwegian Veterinary Institute, OIE Reference laboratory for CWD, Oslo, Norway
| | - Knut Madslien
- Norwegian Veterinary Institute, OIE Reference laboratory for CWD, Oslo, Norway
| | - Linh Tran
- Norwegian Veterinary Institute, OIE Reference laboratory for CWD, Oslo, Norway
| | - Tram Thu Vuong
- Norwegian Veterinary Institute, OIE Reference laboratory for CWD, Oslo, Norway
| | - Sylvie L. Benestad
- Norwegian Veterinary Institute, OIE Reference laboratory for CWD, Oslo, Norway
| | - Glenn C. Telling
- Prion Research Center (PRC), the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
- Program in Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail:
| |
Collapse
|
11
|
Pritzkow S, Gorski D, Ramirez F, Telling GC, Benestad SL, Soto C. North American and Norwegian Chronic Wasting Disease prions exhibit different potential for interspecies transmission and zoonotic risk. J Infect Dis 2021; 225:542-551. [PMID: 34302479 DOI: 10.1093/infdis/jiab385] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/23/2021] [Indexed: 12/17/2022] Open
Abstract
Chronic wasting disease (CWD) is a rapidly spreading prion disorder affecting various species of wild and captive cervids. The risk that CWD poses to co-habiting animals or more importantly to humans is largely unknown. In this study we investigated differences in the capacity of CWD isolates obtained from six different cervid species to induce prion conversion in vitro by PMCA. We define and quantify spillover and zoonotic potential indices as the efficiency by which CWD prions sustain prion generation in vitro at expenses of normal prion proteins from various mammals and human, respectively. Our data suggest that reindeer and red deer from Norway could be the most transmissible CWD prions to other mammals, whereas North American CWD prions were more prone to generate human prions in vitro. Our results suggest that Norway and North American CWD prions correspond to different strains with distinct spillover and zoonotic potentials.
Collapse
Affiliation(s)
- Sandra Pritzkow
- Mitchell Center for Alzheimer's disease and related Brain disorders, Department of Neurology, University of Texas McGovern Medical School at Houston, Texas, USA
| | - Damian Gorski
- Mitchell Center for Alzheimer's disease and related Brain disorders, Department of Neurology, University of Texas McGovern Medical School at Houston, Texas, USA
| | - Frank Ramirez
- Mitchell Center for Alzheimer's disease and related Brain disorders, Department of Neurology, University of Texas McGovern Medical School at Houston, Texas, USA
| | - Glenn C Telling
- Prion Research Center, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Sylvie L Benestad
- Norwegian Veterinary Institute, OIE Reference Laboratory for CWD, Oslo, Norway
| | - Claudio Soto
- Mitchell Center for Alzheimer's disease and related Brain disorders, Department of Neurology, University of Texas McGovern Medical School at Houston, Texas, USA
| |
Collapse
|
12
|
Cazzaniga FA, De Luca CMG, Bistaffa E, Consonni A, Legname G, Giaccone G, Moda F. Cell-free amplification of prions: Where do we stand? PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 175:325-358. [PMID: 32958239 DOI: 10.1016/bs.pmbts.2020.08.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neurodegenerative diseases (NDs) such as Alzheimer's disease (AD), Parkinson's disease (PD), atypical parkinsonisms, frontotemporal dementia (FTLD) and prion diseases are characterized by the accumulation of misfolded proteins in the central nervous system (CNS). Although the cause for the initiation of protein aggregation is not well understood, these aggregates are disease-specific. For instance, AD is characterized by the intraneuronal accumulation of tau and extracellular deposition of amyloid-β (Aβ), PD is marked by the intraneuronal accumulation of α-synuclein, many FTLD are associated with the accumulation of TDP-43 while prion diseases show aggregates of misfolded prion protein. Hence, misfolded proteins are considered disease-specific biomarkers and their identification and localization in the CNS, collected postmortem, is required for a definitive diagnosis. With the development of two innovative cell-free amplification techniques named Protein Misfolding Cyclic Amplification (PMCA) and Real-Time Quaking-Induced Conversion (RT-QuIC), traces of disease-specific biomarkers were found in CSF and other peripheral tissues (e.g., urine, blood, and olfactory mucosa) of patients with different NDs. These techniques exploit an important feature shared by many misfolded proteins, that is their ability to interact with their normally folded counterparts and force them to undergo similar structural rearrangements. Essentially, RT-QuIC and PMCA mimic in vitro the same pathological processes of protein misfolding which occur in vivo in a very rapid manner. For this reason, they have been employed for studying different aspects of protein misfolding but, overall, they seem to be very promising for the premortem diagnosis of NDs.
Collapse
Affiliation(s)
- Federico Angelo Cazzaniga
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Unit of Neurology 5 and Neuropathology, Milan, Italy
| | | | - Edoardo Bistaffa
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Unit of Neurology 5 and Neuropathology, Milan, Italy
| | - Alessandra Consonni
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Neurology IV-Neuroimmunology and Neuromuscular Diseases Unit, Milan, Italy
| | - Giuseppe Legname
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore Di Studi Avanzati (SISSA), Trieste, Italy
| | - Giorgio Giaccone
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Unit of Neurology 5 and Neuropathology, Milan, Italy
| | - Fabio Moda
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Unit of Neurology 5 and Neuropathology, Milan, Italy.
| |
Collapse
|
13
|
Makarava N, Chang JCY, Molesworth K, Baskakov IV. Posttranslational modifications define course of prion strain adaptation and disease phenotype. J Clin Invest 2020; 130:4382-4395. [PMID: 32484800 PMCID: PMC7410085 DOI: 10.1172/jci138677] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/13/2020] [Indexed: 12/13/2022] Open
Abstract
Posttranslational modifications are a common feature of proteins associated with neurodegenerative diseases including prion protein (PrPC), tau, and α-synuclein. Alternative self-propagating protein states or strains give rise to different disease phenotypes and display strain-specific subsets of posttranslational modifications. The relationships between strain-specific structure, posttranslational modifications, and disease phenotype are poorly understood. We previously reported that among hundreds of PrPC sialoglycoforms expressed by a cell, individual prion strains recruited PrPC molecules selectively, according to the sialylation status of their N-linked glycans. Here we report that transmission of a prion strain to a new host is accompanied by a dramatic shift in the selectivity of recruitment of PrPC sialoglycoforms, giving rise to a self-propagating scrapie isoform (PrPSc) with a unique sialoglycoform signature and disease phenotype. The newly emerged strain has the shortest incubation time to disease and is characterized by colocalization of PrPSc with microglia and a very profound proinflammatory response, features that are linked to a unique sialoglycoform composition of PrPSc. The current work provides experimental support for the hypothesis that strain-specific patterns of PrPSc sialoglycoforms formed as a result of selective recruitment dictate strain-specific disease phenotypes. This work suggests a causative relationship between a strain-specific structure, posttranslational modifications, and disease phenotype.
Collapse
Affiliation(s)
- Natallia Makarava
- Center for Biomedical Engineering and Technology and
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jennifer Chen-Yu Chang
- Center for Biomedical Engineering and Technology and
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Kara Molesworth
- Center for Biomedical Engineering and Technology and
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Ilia V. Baskakov
- Center for Biomedical Engineering and Technology and
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
14
|
Kang HE, Bian J, Kane SJ, Kim S, Selwyn V, Crowell J, Bartz JC, Telling GC. Incomplete glycosylation during prion infection unmasks a prion protein epitope that facilitates prion detection and strain discrimination. J Biol Chem 2020; 295:10420-10433. [PMID: 32513872 PMCID: PMC7383396 DOI: 10.1074/jbc.ra120.012796] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 05/31/2020] [Indexed: 11/06/2022] Open
Abstract
The causative factors underlying conformational conversion of cellular prion protein (PrPC) into its infectious counterpart (PrPSc) during prion infection remain undetermined, in part because of a lack of monoclonal antibodies (mAbs) that can distinguish these conformational isoforms. Here we show that the anti-PrP mAb PRC7 recognizes an epitope that is shielded from detection when glycans are attached to Asn-196. We observed that whereas PrPC is predisposed to full glycosylation and is therefore refractory to PRC7 detection, prion infection leads to diminished PrPSc glycosylation at Asn-196, resulting in an unshielded PRC7 epitope that is amenable to mAb recognition upon renaturation. Detection of PRC7-reactive PrPSc in experimental and natural infections with various mouse-adapted scrapie strains and with prions causing deer and elk chronic wasting disease and transmissible mink encephalopathy uncovered that incomplete PrPSc glycosylation is a consistent feature of prion pathogenesis. We also show that interrogating the conformational properties of the PRC7 epitope affords a direct means of distinguishing different prion strains. Because the specificity of our approach for prion detection and strain discrimination relies on the extent to which N-linked glycosylation shields or unshields PrP epitopes from antibody recognition, it dispenses with the requirement for additional standard manipulations to distinguish PrPSc from PrPC, including evaluation of protease resistance. Our findings not only highlight an innovative and facile strategy for prion detection and strain differentiation, but are also consistent with a mechanism of prion replication in which structural instability of incompletely glycosylated PrP contributes to the conformational conversion of PrPC to PrPSc.
Collapse
Affiliation(s)
- Hae-Eun Kang
- Prion Research Center (PRC), the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado
| | - Jifeng Bian
- Prion Research Center (PRC), the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado
| | - Sarah J. Kane
- Prion Research Center (PRC), the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado
| | - Sehun Kim
- Prion Research Center (PRC), the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado
| | - Vanessa Selwyn
- Prion Research Center (PRC), the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado,Program in Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado
| | - Jenna Crowell
- Prion Research Center (PRC), the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado
| | - Jason C. Bartz
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, Nebraska
| | - Glenn C. Telling
- Prion Research Center (PRC), the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado,Program in Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado,For correspondence: Glenn C. Telling,
| |
Collapse
|
15
|
Detection of Pathognomonic Biomarker PrP Sc and the Contribution of Cell Free-Amplification Techniques to the Diagnosis of Prion Diseases. Biomolecules 2020; 10:biom10030469. [PMID: 32204429 PMCID: PMC7175149 DOI: 10.3390/biom10030469] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 02/07/2023] Open
Abstract
Transmissible spongiform encephalopathies or prion diseases are rapidly progressive neurodegenerative diseases, the clinical manifestation of which can resemble other promptly evolving neurological maladies. Therefore, the unequivocal ante-mortem diagnosis is highly challenging and was only possible by histopathological and immunohistochemical analysis of the brain at necropsy. Although surrogate biomarkers of neurological damage have become invaluable to complement clinical data and provide more accurate diagnostics at early stages, other neurodegenerative diseases show similar alterations hindering the differential diagnosis. To solve that, the detection of the pathognomonic biomarker of disease, PrPSc, the aberrantly folded isoform of the prion protein, could be used. However, the amounts in easily accessible tissues or body fluids at pre-clinical or early clinical stages are extremely low for the standard detection methods. The solution comes from the recent development of in vitro prion propagation techniques, such as Protein Misfolding Cyclic Amplification (PMCA) and Real Time-Quaking Induced Conversion (RT-QuIC), which have been already applied to detect minute amounts of PrPSc in different matrixes and make early diagnosis of prion diseases feasible in a near future. Herein, the most relevant tissues and body fluids in which PrPSc has been detected in animals and humans are being reviewed, especially those in which cell-free prion propagation systems have been used with diagnostic purposes.
Collapse
|
16
|
Giaccone G, Moda F. PMCA Applications for Prion Detection in Peripheral Tissues of Patients with Variant Creutzfeldt-Jakob Disease. Biomolecules 2020; 10:biom10030405. [PMID: 32151109 PMCID: PMC7175161 DOI: 10.3390/biom10030405] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/02/2020] [Accepted: 03/05/2020] [Indexed: 12/19/2022] Open
Abstract
Prion diseases are neurodegenerative and invariably fatal conditions that affect humans and animals. In particular, Creutzfeldt-Jakob disease (CJD) and bovine spongiform encephalopathy (BSE) are paradigmatic forms of human and animal prion diseases, respectively. Human exposure to BSE through contaminated food caused the appearance of the new variant form of CJD (vCJD). These diseases are caused by an abnormal prion protein named PrPSc (or prion), which accumulates in the brain and leads to the onset of the disease. Their definite diagnosis can be formulated only at post-mortem after biochemical and neuropathological identification of PrPSc. Thanks to the advent of an innovative technique named protein misfolding cyclic amplification (PMCA), traces of PrPSc, undetectable with the standard diagnostic techniques, were found in peripheral tissues of patients with vCJD, even at preclinical stages. The technology is currently being used in specialized laboratories and can be exploited for helping physicians in formulating an early and definite diagnosis of vCJD using peripheral tissues. However, this assay is currently unable to detect prions associated with the sporadic CJD (sCJD) forms, which are more frequent than vCJD. This review will focus on the most recent advances and applications of PMCA in the field of vCJD and other human prion disease diagnosis.
Collapse
|
17
|
Moore J, Tatum T, Hwang S, Vrentas C, West Greenlee MH, Kong Q, Nicholson E, Greenlee J. Novel Strain of the Chronic Wasting Disease Agent Isolated From Experimentally Inoculated Elk With LL132 Prion Protein. Sci Rep 2020; 10:3148. [PMID: 32081886 PMCID: PMC7035384 DOI: 10.1038/s41598-020-59819-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 02/04/2020] [Indexed: 02/05/2023] Open
Abstract
Chronic wasting disease (CWD) is a fatal, progressive disease that affects cervid species, including Rocky mountain elk (Cervus elaphus nelsoni). There are 2 allelic variants in the elk prion protein gene: L132 (leucine) and M132 (methionine). Following experimental oral challenge with the CWD agent incubation periods are longest in LL132 elk, intermediate in ML132 elk, and shortest in MM132 elk. In order to ascertain whether such CWD-infected elk carry distinct prion strains, groups of Tg12 mice that express M132 elk prion protein were inoculated intracranially with brain homogenate from individual CWD-infected elk of various genotypes (LL132, LM132, or MM132). Brain samples were examined for microscopic changes and assessment of the biochemical properties of disease-associated prion protein (PrPSc). On first passage, mice challenged with LL132 elk inoculum had prolonged incubation periods and greater PrPSc fibril stability compared to mice challenged with MM132 or LM132 inoculum. On second passage, relative incubation periods, western blot profiles, and neuropathology were maintained. These results suggest that the CWD prion isolated from LL132 elk is a novel CWD strain and that M132 PrPC is able to propagate some biophysical properties of the L132 PrPSc conformation.
Collapse
Affiliation(s)
- Jo Moore
- USDA, Agricultural Research Service, National Animal Disease Center, Virus and Prion Research Unit, Ames, 50010, USA
| | - Trudy Tatum
- USDA, Agricultural Research Service, National Animal Disease Center, Virus and Prion Research Unit, Ames, 50010, USA
| | - Soyoun Hwang
- USDA, Agricultural Research Service, National Animal Disease Center, Virus and Prion Research Unit, Ames, 50010, USA
| | - Catherine Vrentas
- USDA, Agricultural Research Service, National Animal Disease Center, Virus and Prion Research Unit, Ames, 50010, USA
| | | | - Qingzhong Kong
- Case Western Reserve University, Departments of Pathology and Neurology, Cleveland, 44106, USA
| | - Eric Nicholson
- USDA, Agricultural Research Service, National Animal Disease Center, Virus and Prion Research Unit, Ames, 50010, USA
| | - Justin Greenlee
- USDA, Agricultural Research Service, National Animal Disease Center, Virus and Prion Research Unit, Ames, 50010, USA.
| |
Collapse
|
18
|
Hackl S, Becker CFW. Prion protein-Semisynthetic prion protein (PrP) variants with posttranslational modifications. J Pept Sci 2019; 25:e3216. [PMID: 31713950 PMCID: PMC6899880 DOI: 10.1002/psc.3216] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/23/2019] [Accepted: 08/23/2019] [Indexed: 12/16/2022]
Abstract
Deciphering the pathophysiologic events in prion diseases is challenging, and the role of posttranslational modifications (PTMs) such as glypidation and glycosylation remains elusive due to the lack of homogeneous protein preparations. So far, experimental studies have been limited in directly analyzing the earliest events of the conformational change of cellular prion protein (PrPC ) into scrapie prion protein (PrPSc ) that further propagates PrPC misfolding and aggregation at the cellular membrane, the initial site of prion infection, and PrP misfolding, by a lack of suitably modified PrP variants. PTMs of PrP, especially attachment of the glycosylphosphatidylinositol (GPI) anchor, have been shown to be crucially involved in the PrPSc formation. To this end, semisynthesis offers a unique possibility to understand PrP behavior invitro and invivo as it provides access to defined site-selectively modified PrP variants. This approach relies on the production and chemoselective linkage of peptide segments, amenable to chemical modifications, with recombinantly produced protein segments. In this article, advances in understanding PrP conversion using semisynthesis as a tool to obtain homogeneous posttranslationally modified PrP will be discussed.
Collapse
Affiliation(s)
- Stefanie Hackl
- University of Vienna, Faculty of Chemistry, Institute of Biological Chemistry, Vienna, Austria
| | - Christian F W Becker
- University of Vienna, Faculty of Chemistry, Institute of Biological Chemistry, Vienna, Austria
| |
Collapse
|
19
|
Moda F, Bolognesi ML, Legname G. Novel screening approaches for human prion diseases drug discovery. Expert Opin Drug Discov 2019; 14:983-993. [PMID: 31271065 DOI: 10.1080/17460441.2019.1637851] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Introduction: Human prion diseases are rare fatal neurodegenerative diseases caused by the misfolding and aggregation of the prion protein in the form of infectious prions. So far, these diseases are incurable. One of the major difficulties in identifying suitable drugs is the availability of robust preclinical screening methods. All molecules identified have been screened using cell-based assays and in vivo murine models. The existence of a continuum of prion strains has hampered the identification of efficacious molecules modulating the progression of different forms of the disease. Areas covered: The advent of new in vitro screening methodologies is allowing for novel strategies to develop new compounds that could interfere with a broad range of diseases. In particular, two innovative techniques named Real Time Quaking Induced Conversion (RT-QuIC) and Protein Misfolding Cyclic Amplification (PMCA) have opened new venues for testing compounds in a rapid a reproducible way. These are discussed within. Expert opinion: For human prion diseases, one major hurdle has been a well-defined screening methodology. In other animal species, cell-based assays have been employed that could replicate animal prions indefinitely. Such a tool for human prion diseases is still missing. Therefore, the advent of RT-QuIC and PMCA has proven instrumental to overcome this limitation.
Collapse
Affiliation(s)
- Fabio Moda
- Division of Neurology 5 - Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta , Milano , Italy
| | - Maria Laura Bolognesi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna , Bologna , Italy
| | - Giuseppe Legname
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA) , Trieste , Italy
| |
Collapse
|
20
|
Primary structural differences at residue 226 of deer and elk PrP dictate selection of distinct CWD prion strains in gene-targeted mice. Proc Natl Acad Sci U S A 2019; 116:12478-12487. [PMID: 31147460 PMCID: PMC6589652 DOI: 10.1073/pnas.1903947116] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Our gene-targeting strategy addresses several critical issues relating to chronic wasting disease (CWD), a contagious, lethal neurodegenerative prion disease affecting wild as well as captive cervids, which poses an uncertain risk to humans. First, we show that residue 226, the sole primary structural difference between deer and elk prion protein, dictates the selection and propagation of different CWD strains. Because the strain properties of prions affect their host-range potential, these findings suggest that CWD from elk and deer pose distinct risks to humans and other species. Second, we show that these gene-targeted mice offer an unprecedented means to address distinctive aspects of CWD peripheral pathogenesis and horizontal transmission that are not afforded by previously generated transgenic mouse models. Although the unifying hallmark of prion diseases is CNS neurodegeneration caused by conformational corruption of host prion protein (PrP) to its infective counterpart, contagious transmission of chronic wasting disease (CWD) results from shedding of prions produced at high titers in the periphery of diseased cervids. While deer and elk PrP primary structures are equivalent except at residue 226, which is glutamate in elk and glutamine in deer, the effect of this difference on CWD pathogenesis is largely unknown. Using a gene-targeting approach where the mouse PrP coding sequence was replaced with elk or deer PrP, we show that the resulting GtE226 and GtQ226 mice had distinct kinetics of disease onset, prion conformations, and distributions of prions in the brains of diseased mice following intracerebral CWD challenge. These findings indicate that amino acid differences at PrP residue 226 dictate the selection and propagation of divergent strains in deer and elk with CWD. Because prion strain properties largely dictate host-range potential, our findings suggest that prion strains from elk and deer pose distinct risks to sympatric species or humans exposed to CWD. GtE226 and GtQ226 mice were also highly susceptible to CWD prions following intraperitoneal and oral exposures, a characteristic that stood in stark contrast to previously produced transgenic models. Remarkably, disease transmission was effective when infected mice were cohoused with naïve cagemates. Our findings indicate that gene-targeted mice provide unprecedented opportunities to accurately investigate CWD peripheral pathogenesis, CWD strains, and mechanisms of horizontal CWD transmission.
Collapse
|
21
|
In vitro Modeling of Prion Strain Tropism. Viruses 2019; 11:v11030236. [PMID: 30857283 PMCID: PMC6466166 DOI: 10.3390/v11030236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 12/30/2022] Open
Abstract
Prions are atypical infectious agents lacking genetic material. Yet, various strains have been isolated from animals and humans using experimental models. They are distinguished by the resulting pattern of disease, including the localization of PrPsc deposits and the spongiform changes they induce in the brain of affected individuals. In this paper, we discuss the emerging use of cellular and acellular models to decipher the mechanisms involved in the strain-specific targeting of distinct brain regions. Recent studies suggest that neuronal cultures, protein misfolding cyclic amplification, and combination of both approaches may be useful to explore this under-investigated but central domain of the prion field.
Collapse
|
22
|
Benestad SL, Telling GC. Chronic wasting disease: an evolving prion disease of cervids. HANDBOOK OF CLINICAL NEUROLOGY 2018; 153:135-151. [PMID: 29887133 DOI: 10.1016/b978-0-444-63945-5.00008-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chronic wasting disease (CWD) is a relatively new and burgeoning prion epidemic of deer, elk, reindeer, and moose, which are members of the cervid family. While the disease was first described in captive deer, its subsequent discovery in various species of free-ranging animals makes it the only currently recognized prion disorder of both wild and farmed animals. In addition to its expanding range of host species, CWD continues to spread from North America to new geographic areas, including South Korea, and most recently Norway, marking the first time this disease was detected in Europe. Its unparalleled efficiency of contagious transmission, combined with high densities of deer in certain areas, complicates strategies for controlling CWD, raising concerns about its potential for spread to new species. Because there is a high prevalence of CWD in deer and elk, which are commonly hunted and consumed by humans, and since prions from cattle with bovine spongiform encephalopathy have been transmitted to humans causing variant Creutzfeldt-Jakob disease, the possibility of zoonotic transmission of CWD is particularly concerning. Here we review the clinical and pathologic features of CWD and its disturbing epidemiology, and discuss features that affect its transmission, including genetic susceptibility, pathogenesis, and agent strain variability. Finally, we discuss evidence that speaks to the potential for zoonotic transmission of this emerging disease.
Collapse
Affiliation(s)
| | - Glenn C Telling
- Prion Research Center (PRC) and the Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States.
| |
Collapse
|
23
|
Makarava N, Savtchenko R, Lasch P, Beekes M, Baskakov IV. Preserving prion strain identity upon replication of prions in vitro using recombinant prion protein. Acta Neuropathol Commun 2018; 6:92. [PMID: 30208966 PMCID: PMC6134792 DOI: 10.1186/s40478-018-0597-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 09/06/2018] [Indexed: 11/24/2022] Open
Abstract
Last decade witnessed an enormous progress in generating authentic infectious prions or PrPSc in vitro using recombinant prion protein (rPrP). Previous work established that rPrP that lacks posttranslational modification is able to support replication of highly infectious PrPSc with assistance of cofactors of polyanionic nature and/or lipids. Unexpectedly, previous studies also revealed that seeding of rPrP by brain-derived PrPSc gave rise to new prion strains with new disease phenotypes documenting loss of a strain identity upon replication in rPrP substrate. Up to now, it remains unclear whether prion strain identity can be preserved upon replication in rPrP. The current study reports that faithful replication of hamster strain SSLOW could be achieved in vitro using rPrP as a substrate. We found that a mixture of phosphatidylethanolamine (PE) and synthetic nucleic acid polyA was sufficient for stable replication of hamster brain-derived SSLOW PrPSc in serial Protein Misfolding Cyclic Amplification (sPMCA) that uses hamster rPrP as a substrate. The disease phenotype generated in hamsters upon transmission of recombinant PrPSc produced in vitro was strikingly similar to the original SSLOW diseases phenotype with respect to the incubation time to disease, as well as clinical, neuropathological and biochemical features. Infrared microspectroscopy (IR-MSP) indicated that PrPSc produced in animals upon transmission of recombinant PrPSc is structurally similar if not identical to the original SSLOW PrPSc. The current study is the first to demonstrate that rPrP can support replication of brain-derived PrPSc while preserving its strain identity. In addition, the current work is the first to document that successful propagation of a hamster strain could be achieved in vitro using hamster rPrP.
Collapse
|
24
|
Moreno JA, Telling GC. Molecular Mechanisms of Chronic Wasting Disease Prion Propagation. Cold Spring Harb Perspect Med 2018; 8:cshperspect.a024448. [PMID: 28193766 DOI: 10.1101/cshperspect.a024448] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Prion disease epidemics, which have been unpredictable recurrences, are of significant concern for animal and human health. Examples include kuru, once the leading cause of death among the Fore people in Papua New Guinea and caused by mortuary feasting; bovine spongiform encephalopathy (BSE) and its subsequent transmission to humans in the form of variant Creutzfeldt-Jakob disease (vCJD), and repeated examples of large-scale prion disease epidemics in animals caused by contaminated vaccines. The etiology of chronic wasting disease (CWD), a relatively new and burgeoning prion epidemic in deer, elk, and moose (members of the cervid family), is more enigmatic. The disease was first described in captive and later in wild mule deer and subsequently in free-ranging as well as captive Rocky Mountain elk, white-tailed deer, and most recently moose. It is therefore the only recognized prion disorder of both wild and captive animals. In addition to its expanding range of hosts, CWD continues to spread to new geographical areas, including recent cases in Norway. The unparalleled efficiency of the contagious transmission of the disease combined with high densities of deer in certain areas of North America complicates strategies for controlling CWD and raises concerns about its potential spread to new species. Because there is a high prevalence of CWD in deer and elk, which are commonly hunted and consumed by humans, the possibility of zoonotic transmission is particularly concerning. Here, we review the current status of naturally occurring CWD and describe advances in our understanding of its molecular pathogenesis, as shown by studies of CWD prions in novel in vivo and in vitro systems.
Collapse
Affiliation(s)
- Julie A Moreno
- Prion Research Center (PRC) and the Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado 80525
| | - Glenn C Telling
- Prion Research Center (PRC) and the Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado 80525
| |
Collapse
|
25
|
Villar-Piqué A, Schmitz M, Candelise N, Ventura S, Llorens F, Zerr I. Molecular and Clinical Aspects of Protein Aggregation Assays in Neurodegenerative Diseases. Mol Neurobiol 2018; 55:7588-7605. [DOI: 10.1007/s12035-018-0926-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 01/24/2018] [Indexed: 12/20/2022]
|
26
|
Ricci A, Allende A, Bolton D, Chemaly M, Davies R, Fernández Escámez PS, Gironés R, Herman L, Koutsoumanis K, Lindqvist R, Nørrung B, Robertson L, Ru G, Sanaa M, Skandamis P, Snary E, Speybroeck N, Kuile BT, Threlfall J, Wahlström H, Benestad S, Gavier-Widen D, Miller MW, Telling GC, Tryland M, Latronico F, Ortiz-Pelaez A, Stella P, Simmons M. Scientific opinion on chronic wasting disease (II). EFSA J 2018; 16:e05132. [PMID: 32625679 PMCID: PMC7328883 DOI: 10.2903/j.efsa.2018.5132] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The European Commission asked EFSA for a scientific opinion on chronic wasting disease in two parts. Part one, on surveillance, animal health risk-based measures and public health risks, was published in January 2017. This opinion (part two) addresses the remaining Terms of Reference, namely, 'are the conclusions and recommendations in the EFSA opinion of June 2004 on diagnostic methods for chronic wasting disease still valid? If not, an update should be provided', and 'update the conclusions of the 2010 EFSA opinion on the results of the European Union survey on chronic wasting disease in cervids, as regards its occurrence in the cervid population in the European Union'. Data on the performance of authorised rapid tests in North America are not comprehensive, and are more limited than those available for the tests approved for statutory transmissible spongiform encephalopathies surveillance applications in cattle and sheep. There are no data directly comparing available rapid test performances in cervids. The experience in Norway shows that the Bio-Rad TeSeE™ SAP test, immunohistochemistry and western blotting have detected reindeer, moose and red deer cases. It was shown that testing both brainstem and lymphoid tissue from each animal increases the surveillance sensitivity. Shortcomings in the previous EU survey limited the reliability of inferences that could be made about the potential disease occurrence in Europe. Subsequently, testing activity in Europe was low, until the detection of the disease in Norway, triggering substantial testing efforts in that country. Available data neither support nor refute the conclusion that chronic wasting disease does not occur widely in the EU and do not preclude the possibility that the disease was present in Europe before the survey was conducted. It appears plausible that chronic wasting disease could have become established in Norway more than a decade ago.
Collapse
|
27
|
Igel-Egalon A, Béringue V, Rezaei H, Sibille P. Prion Strains and Transmission Barrier Phenomena. Pathogens 2018; 7:E5. [PMID: 29301257 PMCID: PMC5874731 DOI: 10.3390/pathogens7010005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/25/2017] [Accepted: 12/26/2017] [Indexed: 11/30/2022] Open
Abstract
Several experimental evidences show that prions are non-conventional pathogens, which physical support consists only in proteins. This finding raised questions regarding the observed prion strain-to-strain variations and the species barrier that happened to be crossed with dramatic consequences on human health and veterinary policies during the last 3 decades. This review presents a focus on a few advances in the field of prion structure and prion strains characterization: from the historical approaches that allowed the concept of prion strains to emerge, to the last results demonstrating that a prion strain may in fact be a combination of a few quasi species with subtle biophysical specificities. Then, we will focus on the current knowledge on the factors that impact species barrier strength and species barrier crossing. Finally, we present probable scenarios on how the interaction of strain properties with host characteristics may account for differential selection of new conformer variants and eventually species barrier crossing.
Collapse
Affiliation(s)
- Angélique Igel-Egalon
- Virologie et Immunologie Moléculaires, INRA, Université Paris-Saclay, UR892, 78350 Jouy-en-Josas, France.
| | - Vincent Béringue
- Virologie et Immunologie Moléculaires, INRA, Université Paris-Saclay, UR892, 78350 Jouy-en-Josas, France.
| | - Human Rezaei
- Virologie et Immunologie Moléculaires, INRA, Université Paris-Saclay, UR892, 78350 Jouy-en-Josas, France.
| | - Pierre Sibille
- Virologie et Immunologie Moléculaires, INRA, Université Paris-Saclay, UR892, 78350 Jouy-en-Josas, France.
| |
Collapse
|
28
|
Moda F. Protein Misfolding Cyclic Amplification of Infectious Prions. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 150:361-374. [PMID: 28838669 DOI: 10.1016/bs.pmbts.2017.06.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Transmissible spongiform encephalopathies, or prion diseases, are a group of incurable disorders caused by the accumulation of an abnormally folded prion protein (PrPSc) in the brain. According to the "protein-only" hypothesis, PrPSc is the infectious agent able to propagate the disease by acting as a template for the conversion of the correctly folded prion protein (PrPC) into the pathological isoform. Recently, the mechanism of PrPC conversion has been mimicked in vitro using an innovative technique named protein misfolding cyclic amplification (PMCA). This technology represents a great tool for studying diverse aspects of prion biology in the field of basic research and diagnosis. Moreover, PMCA can be expanded for the study of the misfolding process associated to other neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and frontotemporal lobar degeneration.
Collapse
Affiliation(s)
- Fabio Moda
- IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy.
| |
Collapse
|
29
|
De Novo Generation of a Unique Cervid Prion Strain Using Protein Misfolding Cyclic Amplification. mSphere 2017; 2:mSphere00372-16. [PMID: 28144628 PMCID: PMC5266495 DOI: 10.1128/msphere.00372-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 01/11/2017] [Indexed: 11/29/2022] Open
Abstract
CWD is the only known TSE that affects free-ranging wildlife, specifically cervids such as elk, deer, moose, caribou, and reindeer. CWD has become endemic in both free-ranging and captive herds in North America, South Korea, and, most recently, northern Europe. The prion research community continues to debate the origins of CWD. Original foci of CWD emergence in Colorado and Wyoming coincident with the sheep TSE scrapie suggest that scrapie prions may have adapted to cervids to cause CWD. However, emerging evidence supports the idea that cervid PrPC may be more prone to misfolding to the pathological isoform. Here we test the hypothesis that cervid PrPC can spontaneously misfold to create de novo prions. Whether CWD can arise spontaneously as a sporadic TSE or represents a new TSE caused by cervid-adapted scrapie prions profoundly impacts surveillance and mitigation strategies. Substantial evidence supports the hypothesis that prions are misfolded, infectious, insoluble, and protease-resistant proteins (PrPRES) devoid of instructional nucleic acid that cause transmissible spongiform encephalopathies (TSEs). Protein misfolding cyclic amplification (PMCA) has provided additional evidence that PrPRes acts as a template that can convert the normal cellular prion protein (PrPC) present in uninfected normal brain homogenate (NBH) into the infectious misfolded PrPRES isoform. Human PrPC has been shown to spontaneously convert to a misfolded pathological state causing sporadic Creutzfeldt-Jakob disease (sCJD). Several investigators have reported spontaneous generation of prions by in vitro assays, including PMCA. Here we tested the rate of de novo generation of cervid prions in our laboratory using our standard PMCA protocol and NBH from transgenic mice expressing cervid PrPC (TgCerPrP mice). We generated de novo prions in rounds 4, 5, and 7 at low cumulative rates of 1.6, 5.0, and 6.7%, respectively. The prions caused infectious chronic wasting disease (CWD) upon inoculation into normal uninfected TgCerPrP mice and displayed unique biochemical characteristics compared to other cervid prion strains. We conclude that PMCA of cervid PrPC from normal brain homogenate spontaneously generated a new cervid prion strain. These data support the potential for cervids to develop sporadic CWD. IMPORTANCE CWD is the only known TSE that affects free-ranging wildlife, specifically cervids such as elk, deer, moose, caribou, and reindeer. CWD has become endemic in both free-ranging and captive herds in North America, South Korea, and, most recently, northern Europe. The prion research community continues to debate the origins of CWD. Original foci of CWD emergence in Colorado and Wyoming coincident with the sheep TSE scrapie suggest that scrapie prions may have adapted to cervids to cause CWD. However, emerging evidence supports the idea that cervid PrPC may be more prone to misfolding to the pathological isoform. Here we test the hypothesis that cervid PrPC can spontaneously misfold to create de novo prions. Whether CWD can arise spontaneously as a sporadic TSE or represents a new TSE caused by cervid-adapted scrapie prions profoundly impacts surveillance and mitigation strategies. Podcast: A podcast concerning this article is available.
Collapse
|
30
|
Prion replication without host adaptation during interspecies transmissions. Proc Natl Acad Sci U S A 2017; 114:1141-1146. [PMID: 28096357 DOI: 10.1073/pnas.1611891114] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Adaptation of prions to new species is thought to reflect the capacity of the host-encoded cellular form of the prion protein (PrPC) to selectively propagate optimized prion conformations from larger ensembles generated in the species of origin. Here we describe an alternate replicative process, termed nonadaptive prion amplification (NAPA), in which dominant conformers bypass this requirement during particular interspecies transmissions. To model susceptibility of horses to prions, we produced transgenic (Tg) mice expressing cognate PrPC Although disease transmission to only a subset of infected TgEq indicated a significant barrier to EqPrPC conversion, the resulting horse prions unexpectedly failed to cause disease upon further passage to TgEq. TgD expressing deer PrPC was similarly refractory to deer prions from diseased TgD infected with mink prions. In both cases, the resulting prions transmitted to mice expressing PrPC from the species of prion origin, demonstrating that transmission barrier eradication of the originating prions was ephemeral and adaptation superficial in TgEq and TgD. Horse prions produced in vitro by protein misfolding cyclic amplification of mouse prions using horse PrPC also failed to infect TgEq but retained tropism for wild-type mice. Concordant patterns of neuropathology and prion deposition in susceptible mice infected with NAPA prions and the corresponding prion of origin confirmed preservation of strain properties. The comparable responses of both prion types to guanidine hydrochloride denaturation indicated this occurs because NAPA precludes selection of novel prion conformations. Our findings provide insights into mechanisms regulating interspecies prion transmission and a framework to reconcile puzzling epidemiological features of certain prion disorders.
Collapse
|
31
|
Abstract
Protein misfolding cyclic amplification (PMCA) amplifies infectious prions in vitro. Over the past decade, PMCA has become an essential tool in prion research. The current chapter describes in detail the PMCA format with beads (PMCAb) and several methods that rely on PMCAb for assessing strain-specific prion amplification rates, for selective amplification of subtypes of PrPSc from a mixture, and a PMCAb approach that can replace animal titration of scrapie material. Development of PMCAb-based methodology is important for addressing a number of research topics including prion strain evolution, selection and adaptation, strain-typing, prion detection, and biochemical requirements for prion replication.
Collapse
|
32
|
Moreno JA, Telling GC. Insights into Mechanisms of Transmission and Pathogenesis from Transgenic Mouse Models of Prion Diseases. Methods Mol Biol 2017; 1658:219-252. [PMID: 28861793 DOI: 10.1007/978-1-4939-7244-9_16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Prions represent a new paradigm of protein-mediated information transfer. In the case of mammals, prions are the cause of fatal, transmissible neurodegenerative diseases, sometimes referred to as transmissible spongiform encephalopathies (TSEs), which frequently occur as epidemics. An increasing body of evidence indicates that the canonical mechanism of conformational corruption of cellular prion protein (PrPC) by the pathogenic isoform (PrPSc) that is the basis of prion formation in TSEs is common to a spectrum of proteins associated with various additional human neurodegenerative disorders, including the more common Alzheimer's and Parkinson's diseases. The peerless infectious properties of TSE prions, and the unparalleled tools for their study, therefore enable elucidation of mechanisms of template-mediated conformational propagation that are generally applicable to these related disease states. Many unresolved issues remain including the exact molecular nature of the prion, the detailed cellular and molecular mechanisms of prion propagation, and the means by which prion diseases can be both genetic and infectious. In addition, we know little about the mechanism by which neurons degenerate during prion diseases. Tied to this, the physiological role of the normal form of the prion protein remains unclear and it is uncertain whether or not loss of this function contributes to prion pathogenesis. The factors governing the transmission of prions between species remain unclear, in particular the means by which prion strains and PrP primary structure interact to affect interspecies prion transmission. Despite all these unknowns, advances in our understanding of prions have occurred because of their transmissibility to experimental animals, and the development of transgenic (Tg) mouse models has done much to further our understanding about various aspects of prion biology. In this review, we will focus on advances in our understanding of prion biology that occurred in the past 8 years since our last review of this topic.
Collapse
Affiliation(s)
- Julie A Moreno
- Cell and Molecular Biology Graduate Program, Molecular, Cellular and Integrative Neuroscience Graduate Program, Department of Microbiology, Immunology and Pathology, Prion Research Center, Colorado State University, Fort Collins, CO, 80523, USA
| | - Glenn C Telling
- Cell and Molecular Biology Graduate Program, Molecular, Cellular and Integrative Neuroscience Graduate Program, Department of Microbiology, Immunology and Pathology, Prion Research Center, Colorado State University, Fort Collins, CO, 80523, USA.
| |
Collapse
|
33
|
Abstract
Since the term protein was first coined in 1838 and protein was discovered to be the essential component of fibrin and albumin, all cellular proteins were presumed to play beneficial roles in plants and mammals. However, in 1967, Griffith proposed that proteins could be infectious pathogens and postulated their involvement in scrapie, a universally fatal transmissible spongiform encephalopathy in goats and sheep. Nevertheless, this novel hypothesis had not been evidenced until 1982, when Prusiner and coworkers purified infectious particles from scrapie-infected hamster brains and demonstrated that they consisted of a specific protein that he called a "prion." Unprecedentedly, the infectious prion pathogen is actually derived from its endogenous cellular form in the central nervous system. Unlike other infectious agents, such as bacteria, viruses, and fungi, prions do not contain genetic materials such as DNA or RNA. The unique traits and genetic information of prions are believed to be encoded within the conformational structure and posttranslational modifications of the proteins. Remarkably, prion-like behavior has been recently observed in other cellular proteins-not only in pathogenic roles but also serving physiological functions. The significance of these fascinating developments in prion biology is far beyond the scope of a single cellular protein and its related disease.
Collapse
|
34
|
Vanni I, Migliore S, Cosseddu GM, Di Bari MA, Pirisinu L, D’Agostino C, Riccardi G, Agrimi U, Nonno R. Isolation of a Defective Prion Mutant from Natural Scrapie. PLoS Pathog 2016; 12:e1006016. [PMID: 27880822 PMCID: PMC5120856 DOI: 10.1371/journal.ppat.1006016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 10/21/2016] [Indexed: 11/18/2022] Open
Abstract
It is widely known that prion strains can mutate in response to modification of the replication environment and we have recently reported that prion mutations can occur in vitro during amplification of vole-adapted prions by Protein Misfolding Cyclic Amplification on bank vole substrate (bvPMCA). Here we exploited the high efficiency of prion replication by bvPMCA to study the in vitro propagation of natural scrapie isolates. Although in vitro vole-adapted PrPSc conformers were usually similar to the sheep counterpart, we repeatedly isolated a PrPSc mutant exclusively when starting from extremely diluted seeds of a single sheep isolate. The mutant and faithful PrPSc conformers showed to be efficiently autocatalytic in vitro and were characterized by different PrP protease resistant cores, spanning aa ∼155–231 and ∼80–231 respectively, and by different conformational stabilities. The two conformers could thus be seen as different bona fide PrPSc types, putatively accounting for prion populations with different biological properties. Indeed, once inoculated in bank vole the faithful conformer was competent for in vivo replication while the mutant was unable to infect voles, de facto behaving like a defective prion mutant. Overall, our findings confirm that prions can adapt and evolve in the new replication environments and that the starting population size can affect their evolutionary landscape, at least in vitro. Furthermore, we report the first example of “authentic” defective prion mutant, composed of brain-derived PrPC and originating from a natural scrapie isolate. Our results clearly indicate that the defective mutant lacks of some structural characteristics, that presumably involve the central region ∼90–155, critical for infectivity but not for in vitro replication. Finally, we propose a molecular mechanism able to account for the discordant in vitro and in vivo behavior, suggesting possible new paths for investigating the molecular bases of prion infectivity. Prions are unique infectious agents, consisting of PrPSc, a self-propagating aggregated conformer of the host-encoded prion protein PrPC. Despite the absence of any nucleic acid information, prions exist as distinct strains that share the same amino acid sequence but differ in their conformation. Moreover, prions can mutate and are thus heterogeneous populations able to evolve and adapt to new replication environments. During in vitro amplification of sheep scrapie, we found that a prion mutant could be obtained from one natural isolate. The prion mutant identified was characterized in vivo and in vitro, showing unusual biochemical and biological features: a smaller than usual C-terminal proteinase resistant core of PrPSc, which spans aa ∼155–231, and the inability to propagate in vivo despite an efficient autocatalytic replication in vitro. With such a signature, we denoted the mutant as a “defective” prion mutant. We thus postulate a new hypothesis for the discrepancy between the in vitro and in vivo behavior of the defective mutant and suggest that the central PrPSc domain ∼90–160 might have a key role in prion replication. This work provides important new insights into the mechanism underpinning prion replication and has numerous implications for understanding the molecular requirements indispensable for prion infectivity.
Collapse
Affiliation(s)
- Ilaria Vanni
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | - Sergio Migliore
- Istituto Zooprofilattico Sperimentale of Sicily "A. Mirri", Palermo, Italy
| | - Gian Mario Cosseddu
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo, Italy
| | - Michele Angelo Di Bari
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | - Laura Pirisinu
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | - Claudia D’Agostino
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | - Geraldina Riccardi
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | - Umberto Agrimi
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | - Romolo Nonno
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
- * E-mail:
| |
Collapse
|
35
|
Hu PP, Morales R, Duran-Aniotz C, Moreno-Gonzalez I, Khan U, Soto C. Role of Prion Replication in the Strain-dependent Brain Regional Distribution of Prions. J Biol Chem 2016; 291:12880-12887. [PMID: 27056328 DOI: 10.1074/jbc.m115.681791] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Indexed: 01/30/2023] Open
Abstract
One intriguing feature of prion diseases is their strain variation. Prion strains are differentiated by the clinical consequences they generate in the host, their biochemical properties, and their potential to infect other animal species. The selective targeting of these agents to specific brain structures have been extensively used to characterize prion strains. However, the molecular basis dictating strain-specific neurotropism are still elusive. In this study, isolated brain structures from animals infected with four hamster prion strains (HY, DY, 139H, and SSLOW) were analyzed for their content of protease-resistant PrP(Sc) Our data show that these strains have different profiles of PrP deposition along the brain. These patterns of accumulation, which were independent of regional PrP(C) production, were not reproduced by in vitro replication when different brain regions were used as substrate for the misfolding-amplification reaction. On the contrary, our results show that in vitro replication efficiency depended exclusively on the amount of PrP(C) present in each part of the brain. Our results suggest that the variable regional distribution of PrP(Sc) in distinct strains is not determined by differences on prion formation, but on other factors or cellular pathways. Our findings may contribute to understand the molecular mechanisms of prion pathogenesis and strain diversity.
Collapse
Affiliation(s)
- Ping Ping Hu
- From the Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas Houston Medical School, Houston, Texas 77030,; Innovative Drug Research Centre, Chongqing University, Chongqing 401331, China, and
| | - Rodrigo Morales
- From the Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas Houston Medical School, Houston, Texas 77030
| | - Claudia Duran-Aniotz
- From the Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas Houston Medical School, Houston, Texas 77030,; Universidad de los Andes, Facultad de Medicina, Av. San Carlos de Apoquindo 2200, Las Condes, Santiago, Chile
| | - Ines Moreno-Gonzalez
- From the Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas Houston Medical School, Houston, Texas 77030
| | - Uffaf Khan
- From the Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas Houston Medical School, Houston, Texas 77030
| | - Claudio Soto
- From the Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas Houston Medical School, Houston, Texas 77030,; Universidad de los Andes, Facultad de Medicina, Av. San Carlos de Apoquindo 2200, Las Condes, Santiago, Chile.
| |
Collapse
|
36
|
Chapuis J, Moudjou M, Reine F, Herzog L, Jaumain E, Chapuis C, Quadrio I, Boulliat J, Perret-Liaudet A, Dron M, Laude H, Rezaei H, Béringue V. Emergence of two prion subtypes in ovine PrP transgenic mice infected with human MM2-cortical Creutzfeldt-Jakob disease prions. Acta Neuropathol Commun 2016; 4:10. [PMID: 26847207 PMCID: PMC4743415 DOI: 10.1186/s40478-016-0284-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 01/26/2016] [Indexed: 11/23/2022] Open
Abstract
Introduction Mammalian prions are proteinaceous pathogens responsible for a broad range of fatal neurodegenerative diseases in humans and animals. These diseases can occur spontaneously, such as Creutzfeldt-Jakob disease (CJD) in humans, or be acquired or inherited. Prions are primarily formed of macromolecular assemblies of the disease-associated prion protein PrPSc, a misfolded isoform of the host-encoded prion protein PrPC. Within defined host-species, prions can exist as conformational variants or strains. Based on both the M/V polymorphism at codon 129 of PrP and the electrophoretic signature of PrPSc in the brain, sporadic CJD is classified in different subtypes, which may encode different strains. A transmission barrier, the mechanism of which remains unknown, limits prion cross-species propagation. To adapt to the new host, prions have the capacity to ‘mutate’ conformationally, leading to the emergence of a variant with new biological properties. Here, we transmitted experimentally one rare subtype of human CJD, designated cortical MM2 (129 MM with type 2 PrPSc), to transgenic mice overexpressing either human or the VRQ allele of ovine PrPC. Results In marked contrast with the reported absence of transmission to knock-in mice expressing physiological levels of human PrP, this subtype transmitted faithfully to mice overexpressing human PrP, and exhibited unique strain features. Onto the ovine PrP sequence, the cortical MM2 subtype abruptly evolved on second passage, thereby allowing emergence of a pair of strain variants with distinct PrPSc biochemical characteristics and differing tropism for the central and lymphoid tissues. These two strain components exhibited remarkably distinct replicative properties in cell-free amplification assay, allowing the ‘physical’ cloning of the minor, lymphotropic component, and subsequent isolation in ovine PrP mice and RK13 cells. Conclusions Here, we provide in-depth assessment of the transmissibility and evolution of one rare subtype of sporadic CJD upon homologous and heterologous transmission. The notion that the environment or matrix where replication is occurring is key to the selection and preferential amplification of prion substrain components raises new questions on the determinants of prion replication within and between species. These data also further interrogate on the interplay between animal and human prions. Electronic supplementary material The online version of this article (doi:10.1186/s40478-016-0284-9) contains supplementary material, which is available to authorized users.
Collapse
|
37
|
Faburay B, Tark D, Kanthasamy AG, Richt JA. In vitro amplification of scrapie and chronic wasting disease PrP(res) using baculovirus-expressed recombinant PrP as substrate. Prion 2015; 8:393-403. [PMID: 25495764 DOI: 10.4161/19336896.2014.983753] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Protein misfolding cyclic amplification (PMCA) is an in vitro simulation of prion replication, which relies on the use of normal brain homogenate derived from host species as substrate for the specific amplification of abnormal prion protein, PrP(Sc). Studies showed that recombinant cellular PrP, PrP(C), expressed in Escherichia coli lacks N-glycosylation and an glycophosphatidyl inositol anchor (GPI) and therefore may not be the most suitable substrate in seeded PMCA reactions to recapitulate prion conversion in vitro. In this study, we expressed 2 PRNP genotypes of sheep, V136L141R154Q171 and A136F141R154Q171, and one genotype of white-tailed deer (Q95G96, X132,Y216) using the baculovirus expression system and evaluated their suitability as substrates in seeded-PMCA. It has been reported that host-encoded mammalian RNA molecules and divalent cations play a role in the pathogenesis of prion diseases, and RNA molecules have also been shown to improve the sensitivity of PMCA assays. Therefore, we also assessed the effect of co-factors, such as prion-specific mRNA molecules and a divalent cation, manganese, on protein conversion. Here, we report that baculovirus-expressed recombinant PrP(C) shows a glycoform and GPI-anchor profile similar to mammalian brain-derived PrP(C) and supports amplification of PrP(Sc) and PrP(CWD) derived from prion-affected animals in a single round of seeded PMCA in the absence of exogenous co-factors. Addition of species-specific in vitro transcribed PrP mRNA molecules stimulated the conversion efficiency resulting in increased PrP(Sc) or PrP(CWD) production. Addition of 2 to 20 μM of manganese chloride (MnCl2) to unseeded PMCA resulted in conversion of recombinant PrP(C) to protease-resistant PrP. Collectively, we demonstrate, for the first time, that baculovirus expressed sheep and deer PrP can serve as a substrate in protein misfolding cyclic amplification for sheep and deer prions in the absence of additional exogenous co-factors.
Collapse
Affiliation(s)
- Bonto Faburay
- a Department of Diagnostic Medicine and Pathobiology ; College of Veterinary Medicine ; Kansas State University ; Manhattan , KS USA
| | | | | | | |
Collapse
|
38
|
Shikiya RA, Eckland TE, Young AJ, Bartz JC. Prion formation, but not clearance, is supported by protein misfolding cyclic amplification. Prion 2015; 8:415-20. [PMID: 25482601 DOI: 10.4161/19336896.2014.983759] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Prion diseases are fatal transmissible neurodegenerative disorders that affect animals including humans. The kinetics of prion infectivity and PrP(Sc) accumulation can differ between prion strains and within a single strain in different tissues. The net accumulation of PrP(Sc) in animals is controlled by the relationship between the rate of PrP(Sc) formation and clearance. Protein misfolding cyclic amplification (PMCA) is a powerful technique that faithfully recapitulates PrP(Sc) formation and prion infectivity in a cell-free system. PMCA has been used as a surrogate for animal bioassay and can model species barriers, host range, strain co-factors and strain interference. In this study we investigated if degradation of PrP(Sc) and/or prion infectivity occurs during PMCA. To accomplish this we performed PMCA under conditions that do not support PrP(Sc) formation and did not observe either a reduction in PrP(Sc) abundance or an extension of prion incubation period, compared to untreated control samples. These results indicate that prion clearance does not occur during PMCA. These data have significant implications for the interpretation of PMCA based experiments such as prion amplification rate, adaptation to new species and strain interference where production and clearance of prions can affect the outcome.
Collapse
Affiliation(s)
- Ronald A Shikiya
- a Department of Medical Microbiology and Immunology ; School of Medicine; Creighton University ; Omaha, NE USA
| | | | | | | |
Collapse
|
39
|
Scientific Opinion on a request for a review of a scientific publication concerning the zoonotic potential of ovine scrapie prions. EFSA J 2015. [DOI: 10.2903/j.efsa.2015.4197] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
40
|
Saá P, Cervenakova L. Protein misfolding cyclic amplification (PMCA): Current status and future directions. Virus Res 2014; 207:47-61. [PMID: 25445341 DOI: 10.1016/j.virusres.2014.11.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 10/05/2014] [Accepted: 11/06/2014] [Indexed: 12/26/2022]
Abstract
Transmissible spongiform encephalopathies (TSEs) most commonly known as prion diseases are invariably fatal neurological disorders that affect humans and animals. These disorders differ from other neurodegenerative conformational diseases caused by the accumulation in the brain of misfolded proteins, sometimes with amyloid properties, in their ability to infect susceptible species by various routes. While the infectious properties of amyloidogenic proteins, other than misfolded prion protein (PrP(TSE)), are currently under scrutiny, their potential to transmit from cell to cell, one of the intrinsic properties of the prion, has been recently shown in vitro and in vivo. Over the decades, various cell culture and laboratory animal models have been developed to study TSEs. These assays have been widely used in a variety of applications but showed to be time consuming and entailed elevated costs. Novel economic and fast alternatives became available with the development of in vitro assays that are based on the property of conformationally abnormal PrP(TSE) to recruit normal cellular PrP(C) to misfold. These include the cell-free conversion assay, protein misfolding cyclic amplification (PMCA) and quaking induced conversion assay (QuIC), of which the PMCA has been the only technology shown to generate infectious prions. Moreover, it allows indefinite amplification of PrP(TSE) with strain-specific biochemical and biological properties of the original molecules and under certain conditions may give rise to new spontaneously generated prions. The method also allows addressing the species barrier phenomena and assessing possible risks of animal-to-animal and animal-to-human transmission. Additionally, its unprecedented sensitivity has made possible the detection of as little as one infectious dose of PrP(TSE) and the biochemical identification of this protein in different tissues and biological fluids, including blood, cerebral spinal fluid (CSF), semen, milk, urine and saliva during the pre-clinical and clinical phases of the disease. The mechanistic similarities between TSEs and other conformational disorders have resulted in the adaptation of the PMCA to the amplification and detection of various amyloidogenic proteins. Here we provide a compelling discussion of the different applications of this technology to the study of TSEs and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Paula Saá
- Transmissible Diseases Department, American National Red Cross, Biomedical Services, Holland Laboratory, 15601 Crabbs Branch Way, Rockville, MD 20855, United States.
| | - Larisa Cervenakova
- Transmissible Diseases Department, American National Red Cross, Biomedical Services, Holland Laboratory, 15601 Crabbs Branch Way, Rockville, MD 20855, United States
| |
Collapse
|
41
|
Levavasseur E, Privat N, Martin JCE, Simoneau S, Baron T, Flan B, Torres JM, Haïk S. Molecular modeling of prion transmission to humans. Viruses 2014; 6:3766-77. [PMID: 25279820 PMCID: PMC4213560 DOI: 10.3390/v6103766] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 09/26/2014] [Accepted: 09/30/2014] [Indexed: 11/16/2022] Open
Abstract
Using different prion strains, such as the variant Creutzfeldt-Jakob disease agent and the atypical bovine spongiform encephalopathy agents, and using transgenic mice expressing human or bovine prion protein, we assessed the reliability of protein misfolding cyclic amplification (PMCA) to model interspecies and genetic barriers to prion transmission. We compared our PMCA results with in vivo transmission data characterized by attack rates, i.e., the percentage of inoculated mice that developed the disease. Using 19 seed/substrate combinations, we observed that a significant PMCA amplification was only obtained when the mouse line used as substrate is susceptible to the corresponding strain. Our results suggest that PMCA provides a useful tool to study genetic barriers to transmission and to study the zoonotic potential of emerging prion strains.
Collapse
Affiliation(s)
- Etienne Levavasseur
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ. Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, 75013 Paris, France.
| | - Nicolas Privat
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ. Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, 75013 Paris, France.
| | | | | | - Thierry Baron
- Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail (ANSES), Unité Maladies neurodégénératives, 69394 Lyon, France.
| | | | - Juan-Maria Torres
- Centro de Investigacion en Sanidad Animal, Carretera de Algete a El Casar, 28130 Madrid, Spain.
| | - Stéphane Haïk
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ. Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, 75013 Paris, France.
| |
Collapse
|
42
|
Sialylation of prion protein controls the rate of prion amplification, the cross-species barrier, the ratio of PrPSc glycoform and prion infectivity. PLoS Pathog 2014; 10:e1004366. [PMID: 25211026 PMCID: PMC4161476 DOI: 10.1371/journal.ppat.1004366] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 07/28/2014] [Indexed: 12/15/2022] Open
Abstract
The central event underlying prion diseases involves conformational change of the cellular form of the prion protein (PrPC) into the disease-associated, transmissible form (PrPSc). PrPC is a sialoglycoprotein that contains two conserved N-glycosylation sites. Among the key parameters that control prion replication identified over the years are amino acid sequence of host PrPC and the strain-specific structure of PrPSc. The current work highlights the previously unappreciated role of sialylation of PrPC glycans in prion pathogenesis, including its role in controlling prion replication rate, infectivity, cross-species barrier and PrPSc glycoform ratio. The current study demonstrates that undersialylated PrPC is selected during prion amplification in Protein Misfolding Cyclic Amplification (PMCAb) at the expense of oversialylated PrPC. As a result, PMCAb-derived PrPSc was less sialylated than brain-derived PrPSc. A decrease in PrPSc sialylation correlated with a drop in infectivity of PMCAb-derived material. Nevertheless, enzymatic de-sialylation of PrPC using sialidase was found to increase the rate of PrPSc amplification in PMCAb from 10- to 10,000-fold in a strain-dependent manner. Moreover, de-sialylation of PrPC reduced or eliminated a species barrier of for prion amplification in PMCAb. These results suggest that the negative charge of sialic acid controls the energy barrier of homologous and heterologous prion replication. Surprisingly, the sialylation status of PrPC was also found to control PrPSc glycoform ratio. A decrease in PrPC sialylation levels resulted in a higher percentage of the diglycosylated glycoform in PrPSc. 2D analysis of charge distribution revealed that the sialylation status of brain-derived PrPC differed from that of spleen-derived PrPC. Knocking out lysosomal sialidase Neu1 did not change the sialylation status of brain-derived PrPC, suggesting that Neu1 is not responsible for desialylation of PrPC. The current work highlights previously unappreciated role of PrPC sialylation in prion diseases and opens multiple new research directions, including development of new therapeutic approaches. The central event underlying prion diseases involves conformational change of the cellular form of the prion protein (PrPC) into disease-associated, transmissible form (PrPSc). The amino acid sequence of PrPC and strain-specific structure of PrPSc are among the key parameters that control prion replication and transmission. The current study showed that PrPC posttranslational modification, specifically sialylation of N-linked glycans, plays a key role in regulating prion replication rate, infectivity, cross-species barrier and PrPSc glycoform ratio. A decrease in PrPC sialylation level increased the rate of prion replication in a strain-specific manner and reduced or eliminated a species barrier when prion replication was seeded by heterologous seeds. At the same time, a decrease in sialylation correlated with a drop in infectivity of PrPSc material produced in vitro. The current study also demonstrated that the PrPSc glycoform ratio, which is an important feature used for strain typing, is not only controlled by prion strain or host but also the sialylation status of PrPC. This study opens multiple new directions in prion research, including development of new therapeutic approaches.
Collapse
|
43
|
Barria MA, Balachandran A, Morita M, Kitamoto T, Barron R, Manson J, Knight R, Ironside JW, Head MW. Molecular barriers to zoonotic transmission of prions. Emerg Infect Dis 2014; 20:88-97. [PMID: 24377702 PMCID: PMC3884726 DOI: 10.3201/eid2001.130858] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The risks posed to human health by individual animal prion diseases cannot be determined a priori and are difficult to address empirically. The fundamental event in prion disease pathogenesis is thought to be the seeded conversion of normal prion protein to its pathologic isoform. We used a rapid molecular conversion assay (protein misfolding cyclic amplification) to test whether brain homogenates from specimens of classical bovine spongiform encephalopathy (BSE), atypical BSE (H-type BSE and L-type BSE), classical scrapie, atypical scrapie, and chronic wasting disease can convert normal human prion protein to the abnormal disease-associated form. None of the tested prion isolates from diseased animals were as efficient as classical BSE in converting human prion protein. However, in the case of chronic wasting disease, there was no absolute barrier to conversion of the human prion protein.
Collapse
|
44
|
Krejciova Z, Barria MA, Jones M, Ironside JW, Jeffrey M, González L, Head MW. Genotype-dependent molecular evolution of sheep bovine spongiform encephalopathy (BSE) prions in vitro affects their zoonotic potential. J Biol Chem 2014; 289:26075-26088. [PMID: 25100723 DOI: 10.1074/jbc.m114.582965] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Prion diseases are rare fatal neurological conditions of humans and animals, one of which (variant Creutzfeldt-Jakob disease) is known to be a zoonotic form of the cattle disease bovine spongiform encephalopathy (BSE). What makes one animal prion disease zoonotic and others not is poorly understood, but it appears to involve compatibility between the prion strain and the host prion protein sequence. Concerns have been raised that the United Kingdom sheep flock may have been exposed to BSE early in the cattle BSE epidemic and that serial BSE transmission in sheep might have resulted in adaptation of the agent, which may have come to phenotypically resemble scrapie while maintaining its pathogenicity for humans. We have modeled this scenario in vitro. Extrapolation from our results suggests that if BSE were to infect sheep in the field it may, with time and in some sheep genotypes, become scrapie-like at the molecular level. However, the results also suggest that if BSE in sheep were to come to resemble scrapie it would lose its ability to affect humans.
Collapse
Affiliation(s)
- Zuzana Krejciova
- National Creutzfeldt-Jakob Disease Research and Surveillance Unit, The University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Marcelo A Barria
- National Creutzfeldt-Jakob Disease Research and Surveillance Unit, The University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Michael Jones
- Scottish National Blood Transfusion Service, Edinburgh EH17 7QT, United Kingdom, and
| | - James W Ironside
- National Creutzfeldt-Jakob Disease Research and Surveillance Unit, The University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Martin Jeffrey
- Animal Health and Veterinary Laboratories Agency, Lasswade, Edinburgh EH26 0PZ, United Kingdom
| | - Lorenzo González
- Animal Health and Veterinary Laboratories Agency, Lasswade, Edinburgh EH26 0PZ, United Kingdom
| | - Mark W Head
- National Creutzfeldt-Jakob Disease Research and Surveillance Unit, The University of Edinburgh, Edinburgh EH4 2XU, United Kingdom,.
| |
Collapse
|
45
|
Structural effects of PrP polymorphisms on intra- and interspecies prion transmission. Proc Natl Acad Sci U S A 2014; 111:11169-74. [PMID: 25034251 DOI: 10.1073/pnas.1404739111] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Understanding the molecular parameters governing prion propagation is crucial for controlling these lethal, proteinaceous, and infectious neurodegenerative diseases. To explore the effects of prion protein (PrP) sequence and structural variations on intra- and interspecies transmission, we integrated studies in deer, a species naturally susceptible to chronic wasting disease (CWD), a burgeoning, contagious epidemic of uncertain origin and zoonotic potential, with structural and transgenic (Tg) mouse modeling and cell-free prion amplification. CWD properties were faithfully maintained in deer following passage through Tg mice expressing cognate PrP, and the influences of naturally occurring PrP polymorphisms on CWD susceptibility were accurately reproduced in Tg mice or cell-free systems. Although Tg mice also recapitulated susceptibility of deer to sheep prions, polymorphisms that provided protection against CWD had distinct and varied influences. Whereas substitutions at residues 95 and 96 in the unstructured region affected CWD propagation, their protective effects were overridden during replication of sheep prions in Tg mice and, in the case of residue 96, deer. The inhibitory effects on sheep prions of glutamate at residue 226 in elk PrP, compared with glutamine in deer PrP, and the protective effects of the phenylalanine for serine substitution at the adjacent residue 225, coincided with structural rearrangements in the globular domain affecting interaction between α-helix 3 and the loop between β2 and α-helix 2. These structure-function analyses are consistent with previous structural investigations and confirm a role for plasticity of this tertiary structural epitope in the control of PrP conversion and strain propagation.
Collapse
|
46
|
Murayama Y, Masujin K, Imamura M, Ono F, Shibata H, Tobiume M, Yamamura T, Shimozaki N, Terao K, Yamakawa Y, Sata T. Ultrasensitive detection of PrP(Sc) in the cerebrospinal fluid and blood of macaques infected with bovine spongiform encephalopathy prion. J Gen Virol 2014; 95:2576-2588. [PMID: 25024281 DOI: 10.1099/vir.0.066225-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Prion diseases are characterized by the prominent accumulation of the misfolded form of a normal cellular protein (PrP(Sc)) in the central nervous system. The pathological features and biochemical properties of PrP(Sc) in macaque monkeys infected with the bovine spongiform encephalopathy (BSE) prion have been found to be similar to those of human subjects with variant Creutzfeldt-Jakob disease (vCJD). Non-human primate models are thus ideally suited for performing valid diagnostic tests and determining the efficacy of potential therapeutic agents. In the current study, we developed a highly efficient method for in vitro amplification of cynomolgus macaque BSE PrP(Sc). This method involves amplifying PrP(Sc) by protein misfolding cyclic amplification (PMCA) using mouse brain homogenate as a PrP(C) substrate in the presence of sulfated dextran compounds. This method is capable of amplifying very small amounts of PrP(Sc) contained in the cerebrospinal fluid (CSF) and white blood cells (WBCs), as well as in the peripheral tissues of macaques that have been intracerebrally inoculated with the BSE prion. After clinical signs of the disease appeared in three macaques, we detected PrP(Sc) in the CSF by serial PMCA, and the CSF levels of PrP(Sc) tended to increase with disease progression. In addition, PrP(Sc) was detectable in WBCs at the clinical phases of the disease in two of the three macaques. Thus, our highly sensitive, novel method may be useful for furthering the understanding of the tissue distribution of PrP(Sc) in non-human primate models of CJD.
Collapse
Affiliation(s)
- Yuichi Murayama
- Influenza and Prion Disease Research Center, National Institute of Animal Health, Tsukuba, Ibaraki, Japan
| | - Kentaro Masujin
- Influenza and Prion Disease Research Center, National Institute of Animal Health, Tsukuba, Ibaraki, Japan
| | - Morikazu Imamura
- Influenza and Prion Disease Research Center, National Institute of Animal Health, Tsukuba, Ibaraki, Japan
| | - Fumiko Ono
- Chiba Institute of Science Faculty of Risk and Crisis Management, Choshi, Chiba, Japan
| | - Hiroaki Shibata
- Tsukuba Primate Research Center, National Institute of Biomedical Innovation, Tsukuba, Ibaraki, Japan
| | - Minoru Tobiume
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tomoaki Yamamura
- Influenza and Prion Disease Research Center, National Institute of Animal Health, Tsukuba, Ibaraki, Japan
| | - Noriko Shimozaki
- Influenza and Prion Disease Research Center, National Institute of Animal Health, Tsukuba, Ibaraki, Japan
| | - Keiji Terao
- Tsukuba Primate Research Center, National Institute of Biomedical Innovation, Tsukuba, Ibaraki, Japan
| | - Yoshio Yamakawa
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tetsutaro Sata
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
47
|
Lacroux C, Comoy E, Moudjou M, Perret-Liaudet A, Lugan S, Litaise C, Simmons H, Jas-Duval C, Lantier I, Béringue V, Groschup M, Fichet G, Costes P, Streichenberger N, Lantier F, Deslys JP, Vilette D, Andréoletti O. Preclinical detection of variant CJD and BSE prions in blood. PLoS Pathog 2014; 10:e1004202. [PMID: 24945656 PMCID: PMC4055790 DOI: 10.1371/journal.ppat.1004202] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 05/01/2014] [Indexed: 11/19/2022] Open
Abstract
The emergence of variant Creutzfeldt Jakob Disease (vCJD) is considered a likely consequence of human dietary exposure to Bovine Spongiform Encephalopathy (BSE) agent. More recently, secondary vCJD cases were identified in patients transfused with blood products prepared from apparently healthy donors who later went on to develop the disease. As there is no validated assay for detection of vCJD/BSE infected individuals the prevalence of the disease in the population remains uncertain. In that context, the risk of vCJD blood borne transmission is considered as a serious concern by health authorities. In this study, appropriate conditions and substrates for highly efficient and specific in vitro amplification of vCJD/BSE agent using Protein Misfolding Cyclic Amplification (PMCA) were first identified. This showed that whatever the origin (species) of the vCJD/BSE agent, the ovine Q171 PrP substrates provided the best amplification performances. These results indicate that the homology of PrP amino-acid sequence between the seed and the substrate is not the crucial determinant of the vCJD agent propagation in vitro. The ability of this method to detect endogenous vCJD/BSE agent in the blood was then defined. In both sheep and primate models of the disease, the assay enabled the identification of infected individuals in the early preclinical stage of the incubation period. Finally, sample panels that included buffy coat from vCJD affected patients and healthy controls were tested blind. The assay identified three out of the four tested vCJD affected patients and no false positive was observed in 141 healthy controls. The negative results observed in one of the tested vCJD cases concurs with results reported by others using a different vCJD agent blood detection assay and raises the question of the potential absence of prionemia in certain patients.
Collapse
Affiliation(s)
- Caroline Lacroux
- UMR INRA ENVT 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, Toulouse, France
| | - Emmanuel Comoy
- CEA, Institute of Emerging Diseases and Innovative Therapies (iMETI), Division of Prions and Related Diseases (SEPIA), Fontenay-aux-Roses, France
| | - Mohammed Moudjou
- UR892 Virologie et Immunologie Moléculaires Centre de Recherche de Jouy-en-Josas, Jouy-en-Josas, France
| | - Armand Perret-Liaudet
- Hospices Civils de Lyon –Laboratoire Diagnostic Maladies à Prions; CNRS, INSERM, UCB Lyon1, Centre de Recherche en Neurosciences de Lyon, BioRan, Bron, France
| | - Séverine Lugan
- UMR INRA ENVT 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, Toulouse, France
| | - Claire Litaise
- UMR INRA ENVT 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, Toulouse, France
| | - Hugh Simmons
- VLA Weybridge, ASU, New Haw, Addlestone, Surrey, United Kingdom
| | | | - Isabelle Lantier
- INRA, UMR 1282 Infectiologie et Santé Publique, Nouzilly, France
| | - Vincent Béringue
- UR892 Virologie et Immunologie Moléculaires Centre de Recherche de Jouy-en-Josas, Jouy-en-Josas, France
| | - Martin Groschup
- Friedrich-Loeffler-Institut, Greifswald, Insel Riems, Germany
| | - Guillaume Fichet
- UR892 Virologie et Immunologie Moléculaires Centre de Recherche de Jouy-en-Josas, Jouy-en-Josas, France
- Franklab, Montigny-le-Bretonneux, France
| | - Pierrette Costes
- UMR INRA ENVT 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, Toulouse, France
| | - Nathalie Streichenberger
- UR892 Virologie et Immunologie Moléculaires Centre de Recherche de Jouy-en-Josas, Jouy-en-Josas, France
| | - Frederic Lantier
- INRA, UMR 1282 Infectiologie et Santé Publique, Nouzilly, France
| | - Jean Philippe Deslys
- CEA, Institute of Emerging Diseases and Innovative Therapies (iMETI), Division of Prions and Related Diseases (SEPIA), Fontenay-aux-Roses, France
| | - Didier Vilette
- UMR INRA ENVT 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, Toulouse, France
| | - Olivier Andréoletti
- UMR INRA ENVT 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, Toulouse, France
- * E-mail:
| |
Collapse
|
48
|
Quinacrine promotes replication and conformational mutation of chronic wasting disease prions. Proc Natl Acad Sci U S A 2014; 111:6028-33. [PMID: 24711410 DOI: 10.1073/pnas.1322377111] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Quinacrine's ability to reduce levels of pathogenic prion protein (PrP(Sc)) in mouse cells infected with experimentally adapted prions led to several unsuccessful clinical studies in patients with prion diseases, a 10-y investment to understand its mechanism of action, and the production of related compounds with expectations of greater efficacy. We show here, in stark contrast to this reported inhibitory effect, that quinacrine enhances deer and elk PrP(Sc) accumulation and promotes propagation of prions causing chronic wasting disease (CWD), a fatal, transmissible, neurodegenerative disorder of cervids of uncertain zoonotic potential. Surprisingly, despite increased prion titers in quinacrine-treated cells, transmission of the resulting prions produced prolonged incubation times and altered PrP(Sc) deposition patterns in the brains of diseased transgenic mice. This unexpected outcome is consistent with quinacrine affecting the intrinsic properties of the CWD prion. Accordingly, quinacrine-treated CWD prions were comprised of an altered PrP(Sc) conformation. Our findings provide convincing evidence for drug-induced conformational mutation of prions without the prerequisite of generating drug-resistant variants of the original strain. More specifically, they show that a drug capable of restraining prions in one species/strain setting, and consequently used to treat human prion diseases, improves replicative ability in another and therefore force reconsideration of current strategies to screen antiprion compounds.
Collapse
|
49
|
Abstract
Zoonotic prion transmission was reported after the bovine spongiform encephalopathy (BSE) epidemic, when >200 cases of prion disease in humans were diagnosed as variant Creutzfeldt-Jakob disease. Assessing the risk of cross-species prion transmission remains challenging. We and others have studied how specific amino acid residue differences between species impact prion conversion and have found that the β2-α2 loop region of the mouse prion protein (residues 165-175) markedly influences infection by sheep scrapie, BSE, mouse-adapted scrapie, deer chronic wasting disease, and hamster-adapted scrapie prions. The tyrosine residue at position 169 is strictly conserved among mammals and an aromatic side chain in this position is essential to maintain a 310-helical turn in the β2-α2 loop. Here we examined the impact of the Y169G substitution together with the previously described S170N, N174T "rigid loop" substitutions on cross-species prion transmission in vivo and in vitro. We found that transgenic mice expressing mouse PrP containing the triple-amino acid substitution completely resisted infection with two strains of mouse prions and with deer chronic wasting disease prions. These studies indicate that Y169 is important for prion formation, and they provide a strong indication that variation of the β2-α2 loop structure can modulate interspecies prion transmission.
Collapse
|
50
|
Enhanced virulence of sheep-passaged bovine spongiform encephalopathy agent is revealed by decreased polymorphism barriers in prion protein conversion studies. J Virol 2013; 88:2903-12. [PMID: 24371051 DOI: 10.1128/jvi.02446-13] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Bovine spongiform encephalopathy (BSE) can be efficiently transmitted to small ruminants (sheep and goats) with certain prion protein (PrP) genotypes. Polymorphisms in PrP of both the host and donor influence the transmission efficiency of transmissible spongiform encephalopathies (TSEs) in general. These polymorphisms in PrP also modulate the PrP conversion underlying TSE agent replication. Here we demonstrate that single-round protein misfolding cyclic amplification (PMCA) can be used to assess species and polymorphism barriers at the molecular level. We assessed those within and between the ovine and bovine species in vitro using a variety of natural scrapie and experimentally generated cross-species BSE agents. These BSE agents include ovBSE-ARQ isolates (BSE derived from sheep having the ARQ/ARQ PrP genotype), and two unique BSE-derived variants: BSE passaged in VRQ/VRQ sheep and a cow BSE agent isolate generated by back-transmission of ovBSE-ARQ into its original host. PMCA allowed us to quantitatively determine PrP conversion profiles that correlated with known in vivo transmissibility and susceptibility in the two ruminant species in which strain-specific molecular signatures, like its molecular weight after protease digestion, were maintained. Furthermore, both BSE agent isolates from ARQ and VRQ sheep demonstrated a surprising transmission profile in which efficient transmissions to both sheep and bovine variants was combined. Finally, all data support the notion that ARQ-derived sheep BSE points to a significant increase in virulence compared to all other tested scrapie- and BSE-derived variants reflected by the increased conversion efficiencies of previously inefficient convertible PrP variants (including the so-called "resistant" sheep ARR variant). IMPORTANCE Prion diseases such as scrapie in sheep and goats, BSE in cattle, and Creutzfeldt-Jakob disease (CJD) in humans are fatal neurodegenerative diseases caused by prions. BSE is known to be transmissible to a variety of hosts, including sheep and humans. Based on the typical BSE agent strain signatures and epidemiological data, the occurrence of a novel variant of CJD in humans was linked to BSE occurrence in the United Kingdom. Measures, including genetic selection of sheep toward less susceptible PrP genotypes, have been implemented to lower the risk of BSE transmission into sheep, since the disease could potentially spread into a natural reservoir. In this study, we demonstrated using molecular PrP conversion studies that when BSE is first transmitted through sheep, the host range is modified significantly and the PrP converting potency increased, allowing the ovine BSE to transmit more efficiently than cow BSE into supposedly less susceptible hosts.
Collapse
|